Direct Torque Control for Permanent Magnet Synchronous Motor Based on NARMA-L2 controller


This paper investigates the improvement of the speed and torque dynamic responses of three phase Permanent Magnet Synchronous Motor (PMSM) using Direct Torque Control (DTC) technique. Different torques are applied to PMSM at different speeds during operation to ensure the robustness of the controller for wide torque variations. Optimal PI controller is used to modify the response of DTC. The optimal gains of PI controller are tuned by Particle Swarm Optimization (PSO) technique. Neural Network controller is called the Nonlinear Autoregressive-Moving Average (NARMA-L2) which is trained based on optimal PI controller (PI-PSO) data. The results show the superiority performance of using NARMA-L2 controller on PI-PSO controller for different speeds and load change. The overall simulation and design of the scheme are implemented Using MATLAB/Simulink program.