Modeling and Control of Torso Compass Gait Biped Robot with AI Controller


This work presents the mathematical model for a torso compass gait biped robot with three degrees of freedom (DOF) which is comprised of two legs and torso. Euler Lagrange method's is used to drive the dynamic equation of robot with computed control is used as a controller. The relative angles are used to simplify the robot equation and get the symmetry of the matrix. Convention controller uses critical sampling to find the value of KP and Kv in computed controller, in this paper the Genetic optimization method is used to find the optimal value of KP and Kv with suitable objective function which employ the error and overshoot to make the biped motion smooth as possible. To investigate the work of robot a Matlab 2013b is used and the result show success of modeling