Enhanced Performance of Consensus Wireless Sensor Controlled System via Particle Swarm Optimization Algorithm

Abstract

This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of graph topology. As a result, a time consuming trial and error procedure will necessary be applied to obtain best NOI. The implementation of an intelligent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case study, variable number of nodes in a network with a random graph topology has been considered. Simulation results show that significant reduction in the NOI and power consumption has been achieved, where it decreased the NOI about 40 iteration; when using PSO for different number of nodes in the specified network.