Experimental and Simulation Investigation of Bending Moment Effect on Hollow Columns of Multi-layers of Hybrid Materials

Abstract

This paper presented the effect of bending on multi-layer of hollow columns of Hybrid materials (Carbon-Glass /epoxy-Alumina) composite this effect occurred and volume fraction of fibers. An experimental procedure was developed to study the performance of these effects under bending load using a hydraulic bending device type (MATEST. SRL) testing machine. This study has three forms through the selection of columns hollows width to thickness (a/b) (0.5, 1 and 2) with three types of layers of samples (2,4 and8) layers. The ultimate load of failure for each Hybrid/epoxy-Al2O3 had been determined and specified the optimum volume fraction (Vf) due to the effect of mixing 50% and 60% were low in the case for compared 55% volume fraction. To simulate this problem the researcher used Explicit Mesh for AUTODYN under ANSYS-15 software, it was found that maximum bending load for Hybrid/ Epoxy-Al2O3 Specimens, the maximum load of specimens increased with increasing number of layers from 2L to 8L. The results also identified that the maximum load capacity by 55% volume fraction and a/b=0.5 of all composite specimens was highest from the others types of (50% and 60%) volume fractions and (a/b=1 and a/b=2) .Also, the Increasing ratio of stress capacity for specimens have 4 to 2 layers (4/2) and 8 to 4 (8/4) for experimental results have maximum value with increasing by 48.19% and 46.84% at (Sp.4#8/Sp.2#4) and (Sp.8#6/Sp.4#6) respectively.