Nonconventional Diode Clamped Multilevel Inverter with Reduced Number of Switches

Abstract

The conventional multilevel inverter (MLI) is divided into three types: diode clamped MLI, cascade H Bridge MLI and flying capacitor MLI. The main disadvantage of these types is the higher required number of components when the number of the levels increases and this results in more switching losses, system higher cost, more complex of control circuit as well as less accuracy. The work in this paper proposes two topologies of nonconventional diode clamping MLI three phase nine levels and eleven levels. The first proposed topology has ten switches and six diodes per phase while the second topology has nine switches and four diodes per phase. The pulse width modulation (PWM) control method is used as a control to gate switches. THD of the two proposed topologies are analyzed and calculated according different values of Modulation index (where the power loss and efficiency are obtained and plotted.