Detecting Vibration Problems in Machines and Structures Using Motion Capturing by Camera

Abstract

Vibration in rotating machines and structures is normally measured using accelerometers and other vibration sensors. For large machines and structures, the process of collecting vibration data is tedious and time-consuming due to the large number of points where vibration data must be measured. In this paper, a novel non-contact vibration measurement method has been introduced by using a high-speed camera as a vibration measurement device. This method has many advantages compared with the others. It has a low cost, easy to setup, and high automation. It also can be used for full-field measurement. Many tests have been accomplished to prove the validation of this method. The verification test has been accomplished by using the machinery faults simulator. It presented a reasonable validation that the operation deflection shapes (ODS) and the phase difference of any object can be successfully measured by using a high-speed camera. The mode shape tests have been accomplished by using the whirling of shaft apparatus device to extract the time domain, frequency domain, ODS, and phase differences for many points on the shaft at the first two critical speeds. The results proved that the high-speed camera can be used to detect the vibration signal in many different fault cases. It also proved that the high-speed camera can be used to detect the ODS and the phase angle difference. That gives the proposed method more robust and acceptance.