Fuzzy PID Gain Scheduling Controller for Networked Control System

Abstract

The use of a communication network in the closed loop control systems has many advantages such as remotely controlling equipment, low cost, easy to maintenance, efficient information transmission, etc. However, the Networked Control System (NCS) has many drawbacks, such as network-induce end-to-end time delay and packet loss, which lead to significant degradation in controller performance and may result in instability. Aiming at solving performance degradation in NCS, this paper propose to take the advantages and strength of the conventional Proportional-Integral-Derivative (PID), Fuzzy Logic (FL), and Gain Scheduling (GS) fundamentals to design a Fuzzy-PID like-Gain Scheduling (F-PID-GS) control technique, which has been proved to be effective in obtaining better performance. The True Time toolbox is used to establish the simulation model of the NCS. Ethernet as a communication network is simulated for different load conditions and random packet loss. The design approach is tested on a second order stepper motor. The results obtained show the effectiveness of the proposed approach in improving the overall system performance.