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ABSTRACT

The derivation of the Embedded pair Diagonally Implicit Type

Runge-Kutta Method (EDITRKM) for solving 3rd special order ordinary
differential equations (ODES) is introduced in the current study. The
EDITRKM techniques are the name of the approach. This approach in
the present study has two types: EDITRKM 4(3) for order 4 and 3 of the
first pair and EDITRKM 5(4) for orders 5 and 4 of the second pair. To
investigate the current study, a variety of tests for five various initial
value problems (IVPs) with different step sizes h were implemented.
Then, a comparation of the present study between the EDITRKM 4(3)
and EDITRKM 5(4) for five different problems are made. The
numerical techniques elucidated as the qualification regarding the
efficiency and decimal logarithm for highest the time curve against
logarithm of number of the function call estimate.
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1. Introduction

Third-order ODEs are used in neural network
engineering and applied sciences, the dynamics of
fluid flow, the ship's motion, and electric circuits,
among other fields [1-6]. The starting value problem
for third-order ODEs where the second derivative
does not appear implicitly is addressed as

y"'(x) = f(xy(x) with y(x,) = a, y'(x) =
B and y'(xy) =y ....(1D)

The implicit methods are important because they can
reach high orders of accuracy at the equivalent
number of stages, which can be represented as an
advantage that leads to the more accurate than the
explicit approaches. This manufactures it easier to
exist the solution to the difficulties of the problems.
So, the implicit RK techniques play an important role
for denomination the physical and mathematical
problems, like a differential algebraic equation. The
diagonal implicit RK (DIRK) techniques are also
pointed to as semi-implicit approaches or semi
explicit RK techniques since they obtained at
minimum one value does not zero for the lowest of
the triangular diagonal matrices. Therefore, to solve
Eqg. (1), two general strategies can be employed. The
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elementary way is to transfer the Eqg. (1) into a
problem with first-order then apply any pattern of the
RK approach to it. Calvo M. et al. (1996) proposed
novel of embedded pairs RK approaches particularly
modified to the approximate computations of 1% order
sets of differential equations that supposed to get
oscillating approximations are found [7]. The
dispersion and dissipation orders besides the
validation of accuracy, approximation of local error
and analysis of the stability are studied according to
Van der Houwen and Sommeijer (1989) [8]. The
dispersion and dissipation of three nine stage
embedded pairs of Runge-Kutta methods of algebraic
7,5 and higher-orders that have various free
parameters are examined [7]. Moreover, [9-10]
developed a solution of the special third order for the
ODEs directly by RK technique. Finally, Senu [11]
and Fawzi et al. [12] constructed the embedded RK
technique to solve third order for the ODEs. The
explicit embedded pair Runge-Kutta (RK) method
that known as TFRKF6 (5) is improved to compute
the numerical solution of the initial value problems of
first-order for oscillatory approximations. The
suggested approach has been studied a 1% order I\VPs
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via first decreasing higher order of IVPs to the
identical system of 1% order. The embedded
techniques have algebraic 6 and 5-order according to
Fawzi, F. A. et al. (2016) [13]. Therefore, Senu et al.
[14] structted a novel embedded explicit RK method
to solve special third order problems. Ismail, F. and et
al. (2008) are purposed the Singly Embedded
Diagonally Implicit Runge-Kutta (SDIRK) methods
to combine Delay Differential Equations (DDEs) and
the computational results are compared. The singly
known as all the eigenvalues of the coefficient matrix
A are equivalent and all the diagonal elements are
same. He mentioned will use the expression loosely
for the first diagonal element that equal to zero [15].
The set of test problems are studied using the singly
diagonally implicit RK-Nystrdm general (SDIRKNG)
approach of 3" -order embedded in 4™ -order for the
integration second-order IVPs according work of
Ismail, F. et al. (2007) [16]. In this work, the special
third order of the ordinary differential equations
(ODE) of the form y'’(x) = f(x,y(x)) will be
study. The first and the second order are not occurred
as a perfect third order of the ODEs in the formula
y'"'x) = flx,y(x),y'(x),y"(x)). Results for
special third order of ODE are implemented via the
implicit embedded of DITRKM.

Section 2 demonstrates the basic idea of construction
and derivation of the DITRK system for addressing
Initial Value Problems (IVPs). The DITRK
technique’s order conditions are outlined in Section 3.
Section 4 describes Derivation Embedded DITRK
Methods. In Section 5, the Test of Problems are
presented. In Section 6, validation of the EDITRK
approach with five IVPs are computed. The
Discussion and Conclusion are given in Section 7.

2. The Methodology of DITRK Technigques
For solving IVPs in eq. (1), the prevalent formula of
the implicit RK approach for the m stage digit can be
expressed as follows:[18]

! hz I
=Yt hy +7yn + hszyildiki
e

Yn+1 -(2)

yn+1_yn+hy7,1’+h2211bk

J’n+1 =y, +h¥Z giki....(4)
=f(xn Yn) - (5)

k =[O+ cihyyn + hciyn +

h® Zi2i aij ky) -..(6)

where i = 2,3,...,m. The parameters of diagonal
implicit RK type (DITRK) methods are presumed as
i, g, d;, by, g;where i,j=1,2,3..,s are real
numbers. This scheme is known as diagonal implicit
when a;; # 0 for j>i. The last denomination
includes the single DITRK techniques that A indicate
that the lower the triangular diagonal matric of A
have same values with a;; # 0 where i =j at the
diagonal. The DITRK approach proposed from the
work of Butcher, as illustrated in Table 1 [17].

_C yn
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Table 1: Butcher form DITRK method.

d dy d dy

b B, I by
3. Order Conditions of the DITRK
Technique

According to Mechee et al. [18], the orders of
algebraic criteria for RKD approached over order 6
are as follow:

Order conditions of y:

order3 Y. d; % (7

orderd Y d;c; = L .....(8)

order5 Y d;c? 610 .. (9)

order6 Y d;c} = Fo and ¥ d; a;; = 1/720. ....(10)
Order conditions of y':

order2 Y b; = % ..(12)

order3 Y b;c; = ...(12)

order4 Y b;c? ...(13)

order5 Yb;ci=— and Yb; a;; = 1;—0 ...(14)
order 6 Zbl C; % , Xbiajc = %0 and
Y bic; Qij = Tg0 - (15)

Order conditions of y':

orderl Y g;,=1 .. (16)

order2 Y gic = % ...(17)

order3 Y g;c? = § ....(18)

orderd Yg;ci=- and Yga;; = (19)
order 5 Zglc _g , Zglawcj = and
Xgicia = ...(20)

order 6 Zgi cta;j = % . Xgiacf +
2 9 Gia; ;¢ = % )

1291‘ Cis = % ' 2 Ji a; j Cj2 = 3L > g Cia; ;¢ = 1%1 &
EZ giaij Cj2 + XY gica;jc = 20 (21)

4. Derivation Embedded DITRK Methods

The general form of DITRK technique with m-stage
for numerical solution of eq. (1) is provided. Then,
there is the creation for embedded pair RK approach,
which is active study topic that is always improving
existing codes. The derivation of p(q) pairs of
implicit DITRK techniques are employed in values of
step size codes to give a minimum error estimation.
They based on the order p method (C, A, d, b, g) and
order q method (C, A, d',b’, g') In Butcher Tabular,
the embedded pair can be started as follows:
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Table 2: Butcher Tabular of the embedded pair DITRK
Method.

€1 |Qu
cy Aay Qan

Cm Qm1 e Amm
dy  dz . dm
By By by

g1 gz o Gm
dy dy soodi
S T LS
gi g2 - gm

The primary proposes for constructing the embedded
pair of implicit DITRK techniques is to get a lone
cost error estimation for use in values of step size
approach. The techniques are represented by
improving the significant pairs and estimations of the
local error that is employed via bounded the step size
h as follow

1
hnsy = 0.9hn (22)™ . (22)

where 0.9 is the achieve factor, local error estimation
(LTE) computed at each step, and Tol refers to
requirement of the accuracy. So, if LTE < Tol that
mean the step will accept and the technique of
executing local extrapolation which refers to more
accurate computations will be employed to progress
the integration and h can be improved utilizing in eq.
(22) If LTE > Tol, the step will be refused and the
step size h, will be reduced by half. The EDITRKM
technique has been developed as an embedded RK

s 600

1 v 3
26 | 9 %00
1 V3 1
R 0 25 500
0 14 3 1 V3
ezt 3"
0 1,3 1_V3
R + 12 4 12
0 L
-5 1 2
o 10 10
-15 , 13VF 79 13V 1
3 10 3 10
0 . 3
EDITREM 4(3)

The values of A and C is computed from the 5" -
order solution then derive a three-stage order four
embedded formula. solving the egs. (8), (13), (20-21)
simultaneously then the solution for d; and b; while
g; have the same as of 5™ -order. The solutions are
obtained as
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type approach for solving third-order ODEs. Order 4
and 3 are found in the first pair, while orders 5 and 4
are found the second these approaches are developed
using factions that ensured the higher- order method
were extremely accurate while the lower methods
provided the most accurate error estimations. So, the
step size h effect to the obtain accurate results by
doubling it. For this study, we have two derivations
for Embedded DITRK 4(3) Method and Embedded
DITRK 5(4) Method as illustrated in Table 3.

In EDITRKM 4(3), the A and C values is computed
from the 4™ -order solution then derived the three-
stage 3"-order embedded equation. The solving of the
egs. (7), (11), (12), (16-18) simultaneously then the
solution for d; and b; while g; have the same values
as the 4™ -order. The solutions are obtained as

by = =10 + 25b; — 15b5v3 + 22, b, =

—26b; +15b3V3 = V3 + =, by = by, d; =
d, —ds,d; =dj,d3 =d3, 9, =0,9, = ;:93 >
According to [19], the free parameters can be
computed via minimizing the LTE, from the
minimize commend in Maple then obtained the
values of the d2=  0.137801357104202,
d3=0.931263538815273 and b3=
0.105662432884725. For optimized value in

fractional form then ds == ,d, == and b; =

I onir

1
— are choose.
10

Table 3: Table of EDITRKM 4(3) and EDITRKM
5(4).

1 JVI5| 1 34
10 4 120
/15
: b 71w
1 VIS | 3478 1 VT8
‘ | 0
o 100 4 120
13 1 JT%
! 10 TRy
5 vis 5 vis
ETaAET P 3 36
5 4 5
2 I s i
17 VIS 2449 Jvis 17
— X L
10000 36 15000 36 10000
Vi 2 5 _VI%
16 is 9 36 36
s + s
0 9 10
EDITRKM 3(4)
5 415 2 Vis . 5
by=—+—,b,==,by=——+—,d, =d; +
1736 36’727 9’73 36 36’ 1 3
Vis 1 Vis 15
—,d, =-2d;+-——,d;=d ==
36 ' 2 53 6 36’ 3 391 =5
92=5,935 =3
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According to [19], the free parameters can be
computed via minimizing the LTE from commend of
minimize in Maple then the value of d3=
0.00176412019109205 obtained. For optimized value

. . 17 .
in fractional formula then d3=m|s choose.

Finally, the coefficients of 3™ -stage embedded
EDITRK 5(4) technique can be written (see Table 3)
5. Test of Problems
The approaches that demonstrated in section 4 tested
with 5 various problems in this part. The numerical
experiments were conducted using the following
methods:
Problem (1): Consider a nonhomogeneous linear
ODE given in [20]
y"'(x) = y(x) + cos(x), with  y(0) =0, y'(0) =
0, y'"(0) =1 where x €[0,1],

(e* —cos(x)—sin(x))

and analytic solution y(x) = S E—

Problem (2): Consider the nonhomogeneous
nonlinear ODE

y"(x) = (y(x))? + cos?(x) —cos(x) —1,  with
y(0)=0, y'(0) =1, y"(0) =0 where 0<x<2,
and the exact solution y(x) = sin(x).

Problem (3): Nonhomogeneous nonlinear ODE,
reads as

Y0 =8(22)  with y(©0) =1, y'(0) =2,
y"(0) =4 where0 <x <1,
and analytic solution y(x) = e?*.

Problem (4): The homogeneous nonlinear ODEs is
considered as
1" (x) =y, (x),  with y1(0) =1, y1(0) =
0,y/(0) =1

TJPS

v () = =y (%) = 2y,(x) + 2 y3(x) with
y2(0) =0, ¥3(0) = 1,y,/(0) =0
3" (x) = y1(x) + y,(x)  with y3(0) =1,

¥3(0) = 1,y5'(0) = 1 and

analytic solution y,(x) = cosh(x), y,(x) = sinh(x)
and ys;(x) =e*where 0 < x < 1.

Problem (5): linear system of the ODEs is presented
as

y1"'(x) =y, (x),  with y1(0) =1, y1(0) =
0,y1'(0) =1,
y2"' () = y1(x)  with ¥2(0) =0, y2(0) =
1,y7(0) =0,

¥3"'(x) = y1(x) + y,(x) — sinh(x) with  y5(0) =
1, y3(0) = 0,y5'(0) = 1,

and exact solutions y;(x) = cosh(x), y,(x)=
sinh(x) and

y3(x) =e* +1— cosh(x) + x2_2 - where
0<x<1.

6. Numerical Results

The approximation result that are illustrated in the
tables below for solving problems (2.7). Following
abbreviations will be used in tables

e Tol: Tolerance.

e Method: method employed step sizes between two
points or positions.

e F. N: number of the function call.

e STEP: The number of successful steps.

e FSTEP: The number of failed steps.

e Time: execution time.

e EDITRKMA4(3): The novel 4(3) pair derived in this
study.

¢ EDITRKM5(4): The new 5(4) pair embedded
derived in current work.

Table 4: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with
h=10"%10"* 10° for the problem 1.

TOL(h) Method No. of Function Call | Time | Step | FSTEP
10-2 EDITRKM 4(3) 43 0.076 | 13 2
EDITRKM 5(4) 15 0032 | 5 0
10-4 EDITRKM 4(3) 124 0.092 | 40 2
EDITRKM 5(4) 48 0.041 | 16 0
10-6 EDITRKM 4(3) 388 0.121 | 128 2
EDITRKM 5(4) 218 0.054 | 72 1

Table 5: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with

h=10"%10"* 10° for the problem 2.

TOL(h) Method No. of Function Call | Time | Step | FSTEP
10-2 EDITRKM 4(3) 21 0.077 | 7 0
EDITRKM 5(4) 9 0.051 | 3 0
10-4 EDITRKM 4(3) 66 0.091 | 22 0
EDITRKM 5(4) 24 0.072 | 8 0
10-6 EDITRKM 4(3) 207 0.122 | 69 0
EDITRKM 5(4) 89 0.094 | 29 1
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Table 6: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with
h=10"2%10"* 107° for the problem 3.

TOL(h) Method No. of Function Call | Time | Step | FSTEP
10-2 EDITRKM 4(3) 293 0.062 | 97 1
EDITRKM 5(4) 87 0.038 | 29 0
10-4 EDITRKM 4(3) 947 0.075 | 315 1
EDITRKM 5(4) 458 0.047 | 152 1
10-6 EDITRKM 4(3) 3782 0.115 | 1260 1
EDITRKM 5(4) 2179 0.071 | 725 2

Table 7: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with
h=10"2%10"* 107° for the problem 4.

TOL(h) Method No. of Function Call | Time | Step | FSTEP
10-2 EDITRKM 4(3) 218 0.085 | 72 1
EDITRKM 5(4) 66 0.058 | 22 0
10-* EDITRKM 4(3) 701 0.097 | 233 1
EDITRKM 5(4) 321 0.066 | 107 0
10-6 EDITRKM 4(3) 2282 0.121 | 760 1
EDITRKM 5(4) 1514 0.078 | 504 1

Table 8: Comparisons of number of function call and Time of EDITRKM 4(3) and EDITRKM 5(4) with
h=10"2%10"* 107° for the problem 5.

T S, e Rbaraacs, e Prosien + ey Taearcaa 1077 400 40 T Curan e iy, e Prokae 3 U Thearcaa 1070 1070 a0
# : -

TOL(h) Method No. of Function Call | Time | Step | FSTEP
10-2 EDITRKM 4(3) 137 0.065 | 45 1
EDITRKM 5(4) 36 0.049 | 12 0
10-4 EDITRKM 4(3) 437 0.093 | 145 1
EDITRKM 5(4) 174 0.059 | 58 0
10-6 EDITRKM 4(3) 1382 0.112 | 460 1
EDITRKM 5(4) 830 0.087 | 276 1
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Fig. 1: Accuracy curve for EDITRKM 4(3) and EDITRKM 5(4) with = 1072,1074,107¢ .

ET

logarithm for highest the time curve against logarithm
of number of the function call estimate which are
obtained from the Tables (4-8). The comparative of
the present study for the EDITRKM 4(3) and

7. Discussion and Conclusion

Figure (1) show the improvement of the Embedded
pair Diagonally Implicit Type Runge-Kutta Method
(EDITRKM) created by charting of decimal
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EDITRKM 5(4) with five different problems as
mentioned in section 5. In this project, the logarithm
of time curve is computed with different Tol h =
1072,107%,107% which is known in some literatures
as the "Tol" (the given tolerance) for the five test
problems. The numerical results that obtained from
the Table (4-8) is used to create Figure (1),
respectively. As well as, calculations of the numbers
of the successful steps (Step) and the failed steps
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