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1.Introduction  

    In this article, we show how to use the finite element method (FEM) to solve the following 

problem: 

 

                     −∆𝑢 + 𝒃 ∙ ∇𝑢 = 𝑓            in Ω,                                       (1) 

                                      𝑢 = 0           on 𝜕Ω.                                 (2)        
 

Where ∆𝑢 =
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
  and ∇𝑢 =

𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
.  Suppose that Ω has a polygonal region in ℝ2 and 

bounded 𝜕Ω and 𝒃 ∈ 𝑾∞
1 (Ω). 

      Finite difference algorithms are notoriously bad at handling  shapes with irregular domains. 

The FEM can get around this drawback. Therefore, it is undoubtedly the most reliable and 

popular method to solve differential equations, which Courant initially proposed [1], who 

conducted research using a set of triangle elements. Then, in the early 1950s, engineers 

separately reinvented the process. The early authors include  Argyris [2], Turner  and others [3], 

among others. 

     Clough coined the phrase "finite element" [4]. As indicated by the widespread adoption of 

numerous cutting-edge commercial packages, FEMs have currently replaced other numerical 

approaches as the standard for solving all types of PDEs. 
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     Numerous numerical techniques for second order elliptic problems have been developed in 

recent years [5,6,7,8,9,10,11,12,13,14]. 

     The following is the paper outline: In Section 2,  FEM equations construction for Elliptic 2D 

Problem is described. In Section 3, Priori Estimates of error for  finite element method are 

proved. Numerical examples are given to show the effectiveness of the suggested strategy in 

Section 4. In the last part, we provide a brief summary of the methodology and findings. 

 

1.1 FEM equations construction  

 

    First of all, we explore the weak form of the problem in order to build an approximation of the 

finite element. We multiply the first equation by an arbitrary function ) test function ) 𝑣 ∈

𝐻0
1(Ω), integrate the result and then use the Green formula. 

∫ 𝑓𝑣 𝑑𝑥 = ∫ −∆𝑢

ΩΩ

𝑣 𝑑𝑥 + ∫ 𝒃 ∙ 𝛻𝑢

Ω

                                             

∫ 𝑓𝑣 𝑑𝑥 = ∫ ∇𝑢

ΩΩ

∙ ∇𝑣 𝑑𝑥 − ∫(𝑛 ∙ ∇𝑢)

𝜕Ω⏟      
=0

𝑣 𝑑𝑠 + ∫ 𝒃 ∙ 𝛻𝑢

Ω

𝑣𝑑𝑥 

∫ 𝑓𝑣 𝑑𝑥 = ∫ ∇𝑢

ΩΩ

∙ ∇𝑣 𝑑𝑥 + ∫ 𝒃 ∙ 𝛻𝑢

Ω

𝑣𝑑𝑥                                  

The weak formulation of  (1) − (2) and by inner product form is: Find 𝑢 ∈ 𝐻1(Ω) where 

                (∇𝑢, ∇𝑣) + (𝒃 ∙ ∇𝑢, 𝑣) = (𝑓, 𝑣),         ∀ 𝑣 ∈ 𝐻0
1(Ω)                                  (3)  

The bilinear define  𝑎(∙,∙) = 𝐻1(Ω) × 𝐻1(Ω) → ℝ  by 

and               𝑎(𝑢, 𝑣) = (∇𝑢, ∇𝑣) + (𝒃 ∙ 𝛻𝑢, 𝑣)                                                                                     (4) 

Then ,The  FEM is: Find 𝑢ℎ ∈ 𝑉ℎ ⊂ 𝐻
1(Ω) such that  

   (∇𝑢ℎ, ∇𝑣ℎ) + (𝒃 ∙ 𝛻𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ),       ∀ 𝑣ℎ ∈ 𝑉ℎ,                                             (5) 

  and                                𝑎ℎ(𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ)                                         ∀ 𝑣ℎ ∈ 𝑉ℎ,          (6) 

where the space of finite elements 

𝑉ℎ = {𝑣: 𝑣 is continuous on Ω ; 𝑣|𝐾 ∈ 𝑃1(𝐾), 𝐾 ∈ 𝑇ℎ}. 

Assume  that 𝑢 is approximated over a finite element triangle 𝐾 by 
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                             𝑢(𝑥, 𝑦) ≈ 𝑢ℎ(𝑥, 𝑦) =∑𝑢𝑗
𝐾𝜑𝑗

𝐾(𝑥, 𝑦),

3

𝑗=1

                                          (7) 

where 𝑢𝑗
𝐾 is the value of 𝑢ℎ at the 𝑗th node of the element, and 𝜑𝑗

𝐾 is the Lagrange interpolation 

function, such that 

 

𝜑𝑗
𝐾(𝑥𝑖, 𝑦𝑖) = 𝛿𝑖𝑗 . 

We must compute the following element matrices over each element 𝐾. 

Putting (7) into (5) and test function 𝑣ℎ = 𝜑𝑖
𝐾, 𝑖 = 1,2,3, respectively, 

and the source function 𝑓 is  

𝑓(𝑥, 𝑦) ≈∑𝑓𝑗

3

𝑗=1

𝜑𝑗
𝐾(𝑥, 𝑦),         𝑓𝑗 = 𝑓(𝑥𝑗 , 𝑦𝑗), 

The element diffusion matrix is obtained (stiffness matrix) 

           𝐴𝑖𝑗 ≡ ∫ ∇𝜑𝑗
𝐾 ∙ ∇𝜑𝑖

𝐾

𝐾

 𝑑𝑥 𝑑𝑦,     𝑖, 𝑗 = 1,2,3,                                               (8) 

the element convection matrix 

 

         𝐵𝑖𝑗 ≡ ∫(𝒃 ∙ ∇𝜑𝑗
𝐾)𝜑𝑖

𝐾

𝐾

 𝑑𝑥 𝑑𝑦,     𝑖, 𝑗 = 1,2,3,                                           (9) 

and the element mass matrix 

         𝑀𝑖𝑗 ≡ ∫ 𝜑𝑗
𝐾𝜑𝑖

𝐾

𝐾

 𝑑𝑥 𝑑𝑦,     𝑖, 𝑗 = 1,2,3,                                        (10) 

we collect all the elements 𝐾𝑛, 1 ≤ 𝑛 ≤ 𝑁𝐾, of  the grid 𝑇ℎ, We find a set of linear equations for the 

numerical solution 𝑢𝑗 at each node: 

           ∑(𝐴𝑖𝑗 + 𝐵𝑖𝑗)𝑢𝑗

𝑁𝐾

𝑛=1

=∑𝑀𝑖𝑗𝑓𝑗

𝑁𝐾

𝑛=1

∙                                                 (11) 

For a unique of the solution, a(∙,∙) must be coercive provided that  

(−
1

2
∇ ∙ 𝒃 ≥ 0).  Indeed,  

𝑎(𝑣, 𝑣) = (∇𝑣, ∇𝑣) + (𝒃 ∙ 𝛻𝑣, 𝑣) = (|∇𝑣|2) + (−
1

2
∇ ∙ 𝒃) 𝑣2 ≥ 𝐶‖𝑣‖1,Ω

2 , 

Where  𝐶 is a positive constant with |∙|1,Ω be the norm in 𝐻1(Ω). Thus, the Lax-Milgram lemma leads 

to an unique  special solvability. 
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 1.2 A Priori Estimates of Error 

    We begin this section with the following theorem: 

Theorem 1: In accordance with (5), the finite element approximation 𝑢ℎ satisfies the Galerkin 

orthogonally. 

(∇(𝑢 − 𝑢ℎ), ∇𝑣ℎ) + (𝒃 ∙ 𝛻(𝑢 − 𝑢ℎ), 𝑣ℎ) = 0,     ∀ 𝑣ℎ ∈ 𝑉ℎ,                           (12)         

Proof.  From the equation (3)   

(∇𝑢, ∇𝑣) + (𝒃 ∙ ∇𝑢, 𝑣) = (𝑓, 𝑣),                              ∀ 𝑣 ∈ 𝐻0
1(Ω)                       (13)  

and from the equation (5)  

    (∇𝑢ℎ, ∇𝑣ℎ) + (𝒃 ∙ 𝛻𝑢ℎ , 𝑣ℎ) = (𝑓, 𝑣ℎ),               ∀ 𝑣ℎ ∈ 𝑉ℎ,                             (14) 

Subtracting (14) from (13) and using 𝑉ℎ ⊂ 𝐻0
1(𝛺) proves the proof. 

∎ 

The following lemma will prove that we need it. 

Lemma 1: There is a constant 𝐶, such that 

       |𝑎(𝑢, 𝑣)| ≤ 𝐶‖𝑢‖𝐻1‖𝑣‖𝐻1        ∀ 𝑢, 𝑣 ∈ 𝐻0
1(𝛺)                                             (15) 

Where 𝐶 is independent of ℎ. 

Proof: The problem  (1) − (2) satisfies the variational form 

 𝑎(𝑢, 𝑣) = (𝑓, 𝑣)                   ∀ 𝑣 ∈ 𝐻0
1(𝛺),  

where  

𝑎(𝑢, 𝑣) = (∇𝑢, ∇𝑣) + (𝒃 ∙ 𝛻𝑢, 𝑣) = ∫ ∇𝑢 ∙ ∇𝑣 𝑑𝑥 + ∫ 𝒃 ∙ 𝛻𝑢

Ω

𝑣𝑑𝑥 

Appling a Cauchy-Schwarz inequality, we have 

|𝑎(𝑢, 𝑣)| = |∫ 𝛻𝑢

𝛺

∙ 𝛻𝑣 𝑑𝑥| + |∫ 𝒃 ∙ 𝛻𝑢

𝛺

𝑣𝑑𝑥| 

             ≤ ‖∇𝑢‖‖∇𝑣‖ + |𝒃|𝐿∞(Ω)‖∇𝑢‖‖𝑣‖ 

            ≤ ‖∇𝑢‖‖∇𝑣‖ + 𝐶1‖∇𝑢‖‖𝑣‖         
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 Where,  𝐶1 depends on |𝒃|𝐿∞(Ω) , then using the Poincare inequality, we have  

          ≤ ‖∇𝑢‖‖∇𝑣‖ + 𝐶1𝐶2‖∇𝑢‖‖∇𝑣‖ 

      ≤ ‖∇𝑢‖‖∇𝑣‖ + 𝐶3‖∇𝑢‖‖∇𝑣‖ 

Here, 𝐶3 = 𝐶3(𝐶1, 𝐶2) 

                   ≤ (1 + 𝐶3)‖∇𝑢‖‖∇𝑣‖ + ‖∇𝑢‖‖∇𝑣‖ 

                  ≤ 𝐶‖∇𝑢‖‖∇𝑣‖ + ‖∇𝑢‖‖∇𝑣‖,           

Such that 𝐶 = 1 + 𝐶3. Since ‖∇𝑢‖ ≤ ‖𝑢‖𝐻1 , we have  

|𝑎(𝑢, 𝑣)| ≤ 𝐶‖𝑢‖𝐻1‖𝑣‖𝐻1 .                              

∎ 

The following approximation property [15] is known to be satisfied by 𝑉ℎ. 

inf
𝑣ℎ∈𝑉ℎ

‖𝑣 − 𝑣ℎ‖ + ℎ‖𝑣 − 𝑣ℎ‖𝐻1 ≤ 𝑐ℎ
𝑚+1𝐻𝑚+1,      𝑣 ∈ 𝐻

𝑚+1(Ω) 

The following projection operators are necessary in order to obtain  the error estimates. Let 

Ψℎ: 𝐻0
1(Ω) → 𝑉ℎ the definition of the RTZ projection is by 

                        (∇(𝑢 − Ψℎ𝑢), ∇𝑣ℎ) = 0,      ∀𝑣 ∈ 𝑉ℎ                           (16) 

The following outcomes are well known to exist[16] 

‖𝑢 − Ψℎ𝑢‖ + ℎ‖∇(𝑢 −Ψℎ𝑢)‖ ≤ 𝑐ℎ
𝑚+1‖𝑢‖𝑚+1                            (17) 

Now, we deconstruct the mistakes as follows to obtain a priori error estimates:  

Let  𝑢 − 𝑢ℎ = 𝑢 − 𝜋ℎ𝑢 + 𝜋ℎ𝑢 − 𝑢ℎ = 𝛼 + 𝛽 

Applying (3), (5) and auxiliary (16), we get . 

(∇𝑢, ∇𝑣) − (∇𝑢ℎ, ∇𝑣ℎ) + (𝒃 ∙ ∇𝑢, 𝑣) − (𝒃 ∙ 𝛻𝑢ℎ, 𝑣ℎ) = 0 

(∇(𝑢 − 𝑢ℎ), ∇𝑣ℎ) + (𝒃 ∙ ∇(𝑢 − 𝑢ℎ), 𝑣ℎ) = 0 

(∇(𝑢 − 𝜋ℎ𝑢 + 𝜋ℎ𝑢 − 𝑢ℎ), 𝛻𝑣ℎ) + (𝒃 ∙ 𝛻(𝑢 − 𝜋ℎ𝑢 + 𝜋ℎ𝑢 − 𝑢ℎ), 𝑣ℎ) = 0 
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(∇(𝜋ℎ𝑢 − 𝑢ℎ), 𝛻𝑣ℎ) + (𝛻(𝑢 − 𝜋ℎ𝑢), 𝛻𝑣ℎ)⏟            
=0

+ (𝒃 ∙ 𝛻(𝑢 − 𝜋ℎ𝑢), 𝑣ℎ) 

                                                                               +(𝒃 ∙ 𝛻(𝜋ℎ𝑢 − 𝑢ℎ), 𝑣ℎ) = 0 

(𝛻𝛽, 𝛻𝑣ℎ) = −(𝒃 ∙ 𝛻𝛼, 𝑣ℎ) − (𝒃 ∙ 𝛻𝛽, 𝑣ℎ)                          ∀𝑣 ∈ 𝑉ℎ                       (18) 

The above equation is called the error equation in 𝛼 and 𝛽. 

Here, we demonstrate the error estimates for 𝑢 − 𝑢ℎ  in 𝐿2 and 𝐻1-norms. 

Theorem 2: Suppose that 𝑢 and 𝑢ℎ be the solution of (3) and (5), respectively. Then , the following 

optimal order error estimate hold. 

‖𝑢 − 𝑢ℎ‖𝐻1 ≤ 𝐶ℎ
𝑟+1‖𝑢‖𝑟+1 

Where 𝑟 ≥ 1, for 𝑑 = 2,3. The constant 𝐶 depends on 𝑐0, 𝐶4, 𝐶5. 

Proof: From the triangle inequality , we have  

   ‖𝑢 − 𝑢ℎ‖𝐻1 = ‖𝑢 − 𝜋ℎ𝑢 + 𝜋ℎ𝑢 − 𝑢ℎ‖𝐻1 

                          ≤ ‖𝑢 − 𝜋ℎ𝑢‖𝐻1 + ‖𝜋ℎ𝑢 − 𝑢ℎ‖𝐻1                                             

                          ≤ 𝛼 + 𝛽                                                                                                    (19)  

Since the estimate of 𝛼, we can take it from (17), as for the estimate 𝛽, we find it in the following 

way: Put 𝑣ℎ = 𝛽  in (18) we obtain  

                 (𝛻𝛽, 𝛻𝛽) = −(𝒃 ∙ 𝛻𝛼, 𝛽) − (𝒃 ∙ 𝛻𝛽, 𝛽).                                     (20)  

Appling a Cauchy-Schwarz inequality to every term, we obtain 

‖∇𝛽‖2 ≤ |−𝒃|𝐿∞(𝛺)‖𝛻𝛼‖‖𝛻𝛽‖ + |−𝒃|𝐿∞(𝛺)‖𝛻𝛽‖
2 

‖∇𝛽‖2 ≤ 𝐶4‖𝛻𝛼‖‖𝛻𝛽‖ + 𝐶5‖𝛻𝛽‖
2 

‖∇𝛽‖2 − 𝐶5‖𝛻𝛽‖
2 ≤ 𝐶4‖𝛻𝛼‖‖𝛻𝛽‖ 

‖∇𝛽‖2 ≤ 𝐶4‖𝛻𝛼‖‖𝛻𝛽‖ 

‖∇𝛽‖2 ≤
𝐶4

(1 − 𝐶5)
‖𝛻𝛼‖‖𝛻𝛽‖ 

‖∇𝛽‖2 ≤
𝐶4

(1 − 𝐶5)
‖𝛻𝛼‖‖𝛻𝛽‖ 

‖𝛻𝛽‖ ≤
𝐶4

(1 − 𝐶5)
‖𝛻𝛼‖ 
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Since 𝛼 , 𝛽 ∈ 𝑉ℎ ⊂ 𝐻0
1(Ω), then ‖𝛼‖ ≤ 𝑐0‖∇𝛼‖ and ‖𝛽‖ ≤ 𝑐0‖∇𝛽‖, thus, we get 

𝑐0‖𝛽‖ ≤
𝐶4

(1 − 𝐶5)
𝑐0‖𝛼‖ 

‖𝛽‖ ≤ 𝐶‖𝛼‖ 

Here, 𝐶 = 𝐶(𝑐0, 𝐶4, 𝐶5), 

From (17) we have 

            ‖𝛽‖ ≤ 𝐶ℎ𝑚+1‖𝑢‖𝑚+1,                                                                   (21) 

Substituting  (17) and (20) into (19). Then complete the proof . 

Similarly, we analyse the error estimates for 𝑢 − 𝑢ℎ  in 𝐿2-norm.   

3 Illustration Example 

Two instances are provided in this part to highlight the numerical findings. 

Example (1): Assume that Ω = [0, 1]2 is the domain. The exact solution  𝑢(𝑥, 𝑦, ) and fours 

function 𝑓(𝑥, 𝑡) for (1) are selected as: 

𝑢 = 𝑥2𝑦2, 

𝑓 = −2𝑦2 − 2𝑥2 + 2𝑥𝑦2 + 2𝑦𝑥2, 

with �⃗� = (1,1). we use multiple levels of meshes and the linear element to solve this equation. 

Table 1- The Maximum error and Convergence rate of the GFEM (5). 

        ℎ 𝑚𝑎𝑥‖𝑢 − 𝑢ℎ‖  Rate 

5.0000e-01 4.1667e-02 1.5779e+00 

2.5000e-01 1.3957e-02 1.6617e+00 

1.2500e-01 4.4112e-03 1.6935e+00 

6.2500e-02 1.3638e-03 1.7329e+00 

3.1250e-02 4.1030e-04 1.7698e+00 

1.5625e-02 1.2032e-04 1.8000e+00 
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7.8125e-03 3.4552e-05 

 

 

  

   

 

 

 

 

 

 

                                               (a)                                                                                                             (b) 

Figure -1 The levels of grid at    (a) ℎ =
1

16
  (b) ℎ =

1

32
 

 

 

 

         

 

 

 

(a)                                                                                                                      (b) 

Figure -2 (a) The exact solution at  ℎ =
1

16
 (b) The numerical solution at  ℎ =

1

16
 

 

 

 

 

 

 

                                        

(a)                                                                                                               (b) 
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Figure -3 (a) The exact solution at  ℎ =
1

32
 (b) The numerical solution at  ℎ =

1

32
 

Example (2): Assume that Ω = [0, 1]2 is the domain. The exact solution  𝑢(𝑥, 𝑦, ) for (1) is selected as: 

𝑢 = sin(𝜋𝑥) cos(𝜋𝑦),  with 𝑝 = (1,1).  
 

Table 2 The Maximum error and Convergence rate of the GFEM (5). 

        ℎ 𝑚𝑎𝑥‖𝑢 − 𝑢ℎ‖  Rate 

5.0000e-01 1.3090e-01 1.3080e+00 

2.5000e-01 5.2869e-02 1.2486e+00 

1.2500e-01 2.2250e-02 1.9372e+00 

6.2500e-02 5.8099e-03 1.9800e+00 

3.1250e-02 1.4728e-03 1.9927e+00 

1.5625e-02 3.7008e-04 1.9957e+00 

7.8125e-03 9.2794e-05 

   

 

 

 

 

 

 

 

                  (a)                                                                                                     (b)      

Figure - 4 (a) The exact solution at  ℎ =
1

16
 (b) The numerical solution at  ℎ =

1

16
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(a)                                                                                   (b)                                                                                         

Figure -5 (a) The exact solution at  ℎ =
1

32
 (b) The numerical solution at  ℎ =

1

32
 

 

4. Conclusion 

      In this article, GFEMs are  applied for 2D Problems on Linear Triangular in square domain. 

We can see that for 𝑢 the convergence rate is equal to 2. 
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