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Abstract

The aim of this paper is to present a method for solving third order ordinary differential
equations with two point boundary condition , we propose two-point osculatory interpolation
to construct polynomial solution. The original problem is concerned using two-points
osculatory interpolation with the fit equal numbers of derivatives at the end points of an
interval [0, 1] .

Also, many examples are presented to demonstrate the applicability, accuracy and

efficiency of the method by compared with conventional method .
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1. Introduction

In the study of nonlinear phenomena in physics, engineering and other sciences, many
mathematical models lead to two-point BVP's associated with non-linear high order ordinary
differential equations . In recent decades, many works have been devoted to the analysis of these
problem and many different techniques have been used or developed in order to deal with two main
questions : existence and uniqueness of solutions [1],[2] and Computation of solutions.

In this paper we use two-point osculatory interpolation ,essentially this is a generalization of
interpolation using Taylor polynomials . The idea is to approximate a function y by a polynomial
P in which values of y and any number of its derivatives at given points are fitted by the
corresponding function values and derivatives of P .

We are particularly concerned with fitting function values and derivatives at the two end
points of a finite interval, say [0,1] where a useful and succinct way of writing osculatory
interpolant P,n.; Of degree 2n + 1 was given for example by Phillips [3] as :
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so that (1) with (2) satisfies :

YO0) = Ps (@) . YO =Py (), j=0,1,2,..1.
implying that P,,.; agrees with the appropriately truncated Taylor series for vy
about x =0 and x = 1. We observe that (1) can be written directly in terms of the

Taylor coefficients a; and b; about x = 0 and x = 1 respectively, as :

n

P2n+1(x) = Z { aj Qj (X) + ('1) b j Q j (1'X) } ) (3)

j=0
2. Solution of Two-Point Third Order BVP's for ODE

A general form of 3™ - order ordinary BVP's is :-
yo0) =f(xy,y?, y?) , 0sx<1, @
subject to the boundary conditions :
yhoy=A, yWa=8.; ,i=0,1,...,k1,j=0,1,...,3-k+1, (5)
The simple idea of suggested method is use a two - point polynomial interpolation to
replace y in problem (4) and (5) by a P,,.1 Which enables any unknown derivatives of y to
be computed, the first step therefore is to construct the Py,.; to do this we need evaluate

Taylor coefficients of y aboutx=0:

y=diZo @1 X 3 a,;=y"0)/i! . (69)

Then insert the series form (6a) into (4) and equate the coefficients of powers of
X to obtain a, . Also, evaluate Taylor coefficients of y(x) about x =1
y=37,b,(x—1) 3b,=yO@)/it , (6b)

Then insert the series form (6b) into (4) and equate coefficients of powers of  ( x-1)
, to obtain by, ,then derive equation (4) with respect to x and iterate the above process to

obtain a,,iand b, .1 ,now iterate the above process many times to obtain @4, b, .2 ,then

@3, Dusezand so on, that is ,we can get @; and b;, foralli>n .
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Now, to evaluate a; , b;, for i < n, we get half number of these unknown coefficients

from given boundary condition ,then use all these @;'s and b;'s to construct P,,,; of the

form :
Poas )= 20, {a, Q)+ (-1)' b,Q,(1-%)} . (7a)
Where Q,(x)/j!=(x!/j1)(1-x)" S [ZHJ X° . (7h)

we see that (7a) have n unknown coefficients .

Now, to evaluate the remainder coefficients integrate equation (4) on [0, X] 3 -

times to obtain :

y'() —21a, = [; f(s,y.y,y")ds . (8)
Y'(X) - ar-2tax= [ (1-s)f(s y .y, y")ds . (8)

y(x) —ap—arx—21a, X2/ 21 = [F f(s,y,y,y")ds , (8

use P,,.1 as a replacement of y \y "y" in (8) and puttingx =1 in all above
integration , then we have system of 3 equations with 3 unknown coefficients which
can be solved using the MATLAB package, version 7.9, to get the unknown

coefficients, thus insert it into (7), thus (7) represent the solution of (4) .

Now, we introduce many examples of third order TPBVP's for ODE to illustrates
suggested method . Accuracy and efficiency of the suggested method is established

through comparison with B — Spline [4] .

Example

Consider the following linear third order BVP's :

~y'=¢* , 0<x<1 |,
subjecttothe BC: y(0)=0,y(1)=1,y'(1)=0 .

y

The exact solution for this problemis :
y(X) = 4.8618 - 1.4603e*- 3.4015e™ + 1/2 x &*
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Now, we solve this equation using suggested method from equations (2) and (3)

we have :

P, = 0.000000050x"- 0.000000421x*® + 0.000001569x"® -0.000003343x*+0.000004470x"-

0.000003839x* + 0.000002261x* - 0.000000606x° + 0.000017838x° - 0.000021374x® + 0.001079587x’-
0.002585821x° + 0.037009314x° - 0.119241301x"* + 0.573519604x°-1.930895608x> + 2.441117621x

For more details ,table (1) give the results for different nodes in the domain, for
n =8, i.e. P;yand errors obtained by comparing it with the exact solution. Table (2)
give a comparison between the P,; and B — Spline method given in[4] to illustrate the
accuracy of suggested method. Also, figure (1) gives comparison between the exact

and suggested method P5.

3. Conditioning of BVP's

In particular, BVP's for which a small change to the ODE or boundary conditions results in a
small change to the solution must be considered, a BVP's that has this property is said to be well-
conditioned.[5] Otherwise, the BVP's is said to be ill-conditioned. To be useful in applications, a
boundary value problems should be well posed. This means that given the input to the problem
there exists a unique solution, which depends continuously on the input .Consider the following
third order BVP's :

y2) =f(x, y(¥), y(3), y'(¥)) , xe [0, 1] : (92)
With BC: y9(0) = A, y9(1) = B;, i=0,1,....k-1, j=0,1,...,n-k+1 , (9b)
For a well-posed problem we now make the following assumptions:
1. Equation (9) has an approximate solution P € C"[0, 1], with this solution and p >
0, we associate the spheres :
Sp(P(x)) :={y € IR": [P(x) —y(x) [<p }
2. f( x, P(x), P'(x), P"(x) ) is continuously differentiable with respect to P, and of / 6P
IS continuous .

The following assumptions are important due to the error associated with
approximate solutions to BVP's, depending on the semi-analytic technique,
approximate solution ¥(x) to the linear nth-order BVP's (9) may exactly satisfy the
perturbed ODE :

O = y(x) YV 4.+ dX)F+qx) Y +Hrx) ; 0<x<1 ; (10a)
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where r : R — R™, and the linear BC :

Boy(0) +B1y(1) =P+ o | (10D)

where B+ X = 6, 0 € R" and {,B, 6} are constants. If ¥ is a reasonably good
approximate solution to (9), then ||r(x) || and || o || are small. However, this may not
imply that ¥ is close to the exact solution y. A measure of conditioning for linear
BVP's that relates both || 1(X) || and || o || to the error in the approximate solution can
be determined. The following discussion can be extended to nonlinear BVP's by considering
the variational problem on small sub domains of the nonlinear BVP's [6].

Letting : e(X)= |y (x) — Y(X) |; then subtracting the original BVP's (9) from the
perturbed BVP's (10) results in :
e”(x) = [§"x) —y"(x) | ; (11a)
e™(x)= u(x) e™V(x) +...+d(x) ')+ q(x) e(x) +1(x); 0<x<1; (11b)

withBC : Bye(0) + Bye(1)=0c ; (1lc) However, the form of the solution
can be furthered simplified by letting : ©(x) = Y(x) Q™ ; where Y is the fundamental

solution and Q is defined in (7b) . Then the general solution can be written as :
q@=&m0+jemnmom ; (12)

where G(X, t) is Green's function [7], taking norms of both sides of (12) and using the

Cauchy - Schwartz inequality [7] results in :
el <kull o [l + ke[ re0 [l (13)

where k= [[Y)QM . ; and ko = sup | [ Gex 0 [l dt

D=x=1 ¢
In (13), the L,, norm, sometimes called a maximum norm, is used due to the common

use of this norm in numerical BVP's software. For any vector v e R", the L., norm is

defined as : || v |.. = max | v |:The measure of conditioning is called the
conditioning constant k, and it is given by : k = max(Kky, k») . (14)

When the conditioning constant is of moderate size, then the BVP's is said to

be well-conditioned.
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Referring again to (13), the constant k thus provides an upper bound for the

norm of the error associated with the perturbed solution,

leco [l <k tllo [l + [lxco || ; (15)

It is important to note that the conditioning constant only depends on the
original BVP's and not the perturbed BVP's. As a result, the conditioning constant
provides a good measure of conditioning that is independent of any numerical
technique that may cause such perturbations. The well conditioned nature of a BVP's
and the local uniqueness of its desired solution are assumed in order to solve the
problem numerically.
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Table 1: The result of the suggested method for P;7 of example

Xi Exact Solution Osculatory Errors
y(X) interpolation P17 | y(X)-P17 |
0 0.000000000000000 0.000000000000000 0.000000000000000
0.1 0.225372976788598 0.225364769121097 8.207667501E-6
0.2 0.415413171479965 0.415396761919977 1.6409559988E-5
0.3 0.573186826784299 0.573162139019653 2.4687764646E-5
0.4 0.701559696972480 0.701526571840217 3.3125132263E-5
0.5 0.803238607059112 0.803196800952235 4.1806106877E-5
0.6 0.880812775733061 0.880761958161851 5.0817571211E-5
0.7 0.936795458049050 0.936735208333540 6.0249715510E-5
0.8 0.973666482074707 0.973596285135070 7.0196939637E-5
0.9 0.993916279190485 0.993835520392147 8.0758798338E-5
1 1.000092040986118 1.000092040986118 0.000000000000000
S.S.E = 2.992474308328639E-008
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Table 2 : A comparison between P;7 and B — Spline method for example.

Xi Exact Solution B — Spline Osculatory
y(X) interpolation P17
0 0.000000000000000 0 0.000000000000000
0.1] 0.225372976788598 0.2254 0.225364769121097
0.2 | 0.415413171479965 0.4154 0.415396761919977
0.3| 0.573186826784299 0.5732 0.573162139019653
0.4 0.701559696972480 0.7015 0.701526571840217
0.5| 0.803238607059112 0.8032 0.803196800952235
0.6 | 0.880812775733061 0.8808 0.880761958161851
0.7] 0.936795458049050 0.9367 0.936735208333540
0.8 | 0.973666482074707 0.9736 0.973596285135070
0.9 0.993916279190485 0.9938 0.993835520392147
1 1.000092040986118 1 1.000092040986118
S.S.E =0.00001 | S.S.E = 2.992474308328639E-008

The solution at n=8
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Figure 1: Comparison between the exact and suggested method P17 of example
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