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  الملخص
في هذا البحث تم تطوير واستعمال خوارزمية جديدة في مجال ألا مثلية غير المقيدة تعتمد           

ا باسـتخدام   :تم استخدام هذه الخوارزمية بطريقة    . على أحد نماذج المثلثية النسبية غير التربيعية      
. ياتمت مقارنة هذه الاستخدامات مع طريقة المتجهات المترافقة عدد        . الاتجاهات الخطية الدقيقة  

وان النتائج التي تم التوصل أليها أثبتت أن الخوارزمية الجديدة هي اكثر كفاءة من الخوارزميـة       
 . المعرفة في هذا المجال

 

ABSTRACT 
This paper presents the development and implementation of a new 

numberical based on a non-quadratic Triangular rational function model. 
For solving non-linear optimization problem .The algorithm is implemented 
in one version, employing exact line search. This version is compared 
numberically against versions of the CG-method. The results indicate that in 
general the new algorithm is superior to the previon algorithm.   
 

1. Introduction  
A more general model than the quadratic one is proposed in this 

paper as a basis for a CG algorithm. If q(x) is a quadratic function, then a 
function f is defined as a non-linear scaling of q(x) if the following 
condition holds : 

f = F(q(x)), dF/dq = F΄ > o and q(x) > 0 ………………. (1) 
where x* is the minimizer of q(x) with respect to x [13] .  

The following properties are immediately derived from the above 
condition:  

i) Every contour line to q(x) is a contour line of f  . 
ii) If x* is a minimzer of q(x), then it is a minimizer of f. 

iii) That x* is a global minimum of q(x) does not necessarily mean that it 
is a global minimum of f [5]. 
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Various authors have puplished-related work in the area: 
A conjugate method which minimizers the function 

 f(x) = (q(x))ρ , and x ∈ Rn  in at most step has been described by Fried[9]. 
Another special case, namely 
Whereε1 and ε2 are scalars, has been investigated by Boland et al, [5]. 

Another model has been developed by Tassopoulos and Storey, [14] 
as follows: F(q(x) = ε1 q(x) + 1/ε2q(x): ε2 > 0  
AL-Assady in [3] developed a model as follows :(F(q(x)) = In (q(x)) 
Al-Bayat, [1] has developed a new rational model which is defined as 
follows: F(q(x)) = ε1  q(x)/1-ε2 q(x). 
Also Al-Bayati [4] developed an extended CG algorithm which is based on 
a general logarithmic model   
F(q(x) = log(εq(x) – 1 ) , ε> 0 
And Al-Assady, [2] described there ECG algorithm which is based on the 
natural log function for the rational q(x) function  

 
F(q) = log            , ε2 < 0 
 
In this paper, a new sine model is investigated and tested on a set of 

standard test function, on the assumed that condition (1) holds. An extended 
conjugate gradient algorithm is developed which is based on this new model 
which scales q(x) by the natural sinh function for the rational q(x) functions. 

F(q(x) = sin (ε1 q(x) /ε2q(x)+1)   …………….(2)     
 

We first observe that q(x) and F(q(x)) given by (2) have identical 
contours, though with different function values, and they have the same 
unique minimum point denoted by x*. 
 
2.Theorem 
      Given an identical starting point x1,the method of Fletcher and Reeves 
[8]defined by 

)3........(..............................1,

2

2
1

11

11



















=

≥+−=

−=

+

++

i

i
i

iiii

g

g

idgd

gd

β

β
 

)(
2
1)())(( 2

1 2 xqxqxqF εε +=









+1)(

)(
2

1
xq

xq
ε

ε



A Rational Triangle Function… 
 

 

  45 

and  is the Euclidean norm applied to f(x)=q(x) and the ECG- 
method using the following search directions: 
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and applied to f(q(x)) generate identical conjugate directions (within a 
positive multiple if ′ ) and the identical sequence of approximations xi  to the 
solution x* for any function satisfying (1). 

It is assumed that the one-dimensional searches are exact. The 
vectors n   igg ,1  are gradients of f(q(x)) at x1 and x i ,respectively. 
Proof: 
   The theorem is true For i=1, because 
  111111 dfgfgd =′−=−=  
Now for i=2 , we have 
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It follows from ( 4 ) that 

iiiii dgd βρ+−= ++ 11  
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Both methods generate the same sequence of approximations  xI , 

since isocontour curve of  q(x) and f(q(x)) are identical. These isontours 
differ only by the function values on the corresponding curves, and hence 
the theorem is proved 
 
3. The Derivation of iρ  for the New Model:  

The implementation of the extended CG method has been performed 
for general function F(q(x) of the form of equations(2).  

The unknown quantities iρ  were expressed in terms of available 
quantities of the algorithm. 

 
The new          model can now be written as  
 
 
f(x) = F(q(x) = 
 
Solving equation (2) for q  
 
Sin-1 f(x) =  
 
 

In [ ]2)(1)( xfxif −+  =    ⇒ q =  
 
And using the expression for ffp i/ii ′′ −= 1  
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In terms of the known quantities such a function and gradient values, 

from  

                                                               
Where Q is the Hessian Matrix and x* is the minimum point, we 

have:  

Furthermore 

 

Since                therefore, we can express iρ  as follows: 

 

From (7) and (8) , it follows that : 
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Using the following transformation: 
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then y=cw/xw+c 
Therefore 
 
  
 
 
 
 
 
4.The Outlines of our New Algorithm Area: 

Given x0 ∈ Rn an initial estimate of the minimizer x*. 
Step (1): set d0 = - g0. 
Step (2) : For i =  1, 2, …. 

Compute xi = xi-1 + λi-1 di-1   
Where λi-1 is the optimal step size obtained by the line search 

procedure. 
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Step (3) : compute  
 
 
 
 
 
 
 
 
Where the derivation of scaling iρ  will be presented below. 

Step (4) : calculate the new direction  
di = - gi + iβ  di . 
where iβ  is defined by different formulae according to variation and it is 
expressed as follows:  

iβ  =  iρ (||gi||2 / ||gi-1||2 )[modified Fletcher and Reeves, 1964 F/R,[8]] 
[ ])(/)(
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−−= ρρβ [modified Hestenes an 

stiefle 1952, H/s[10]] 
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1969,[11]] 
gdg i
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= ρβ   [modified Dixon 1972,[7]] 

Conjugate gradient methods are usually implemented by restarts in 
order to avoid an accumulation of errors affecting the search directions.  

It is therefore generally agreed that restarting is very helpful in 
practices, so we have used the following restarting criterion in our practical 
investigations. If the new direction satisfies:       2

80 ggd i.i
T
i −≥  

Then a restart is also initiated. This new direction is sufficiently downhill in 
Powell [12]. 
 
5. The Numerical Experiments: 

In order to test the effectiveness of the new algorithm that have used 
to extend the CG method, a number of functions have been chosen and 
solved numerically by utilizing the new and established method. 
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The same line search was employed for all the methods. This was 
the cubic interpolation procedure described in Bunday [6]. 

It is found that the NEW method which modifies CG-algorithm is 
better than the previous algorithm shown in Tables (1) and (2). 
Table (1) which uses the H/S formula, presents a comparison between the 
results of the NEW methods and the classical CG-method. So we can show 
that the NEW method has less (NOI) and (NOF) than the classical CG. 
Method and NEW method improve the two measures of performances, vis 
(NOI) and (NOF) (56.60)% and the (60.16) % for the H/S formula. 

 
Table (1):  Comparison between the different ECG – methods by using 

H/S formula . 
 

Test Function N New NOI (NOF) Classical CG NOI (NOF) 
2 18 (51) 19 (53) 

200 12 (35) 14 (40) CUBIC 
400 13 (32) 14 (40) 

2 31 (82) 34 (87) 
10 21 (63) 26 (71) ROSEN 

100 19 (56) 17 (52) 
60 48 (102) 125(303) 
80 91 (203) 112 (303) POWELL 

400 221 (537) 401 (860) 
40 16 (44) 22 (73) 
60 17 (47) 22 (61) Non 

Diagonal 
100 16 (46) 22 (60) 
40 50 (124) 82 (197) 

200 147 (338) 211 (491) MIELE 
400 142 (324) 402 (910) 

4 18 (113) 25 (148) 
40 19 (129) 20 (132) CANTRAL 

400 14 (71) 20 (132) 
40 9(21) 9(20)  

SHALLOW 400 8(21) 9(21) 
Total NOI (NOF) 930 (2439) 1606 (4054) 
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Table (2) which uses the P/R formula, presents a comparison 
between the results of the NEW methods and the classical CG-method. So 
we can show that the NEW method has less (NOI) and (NOF) than the 
classical CG. Method and NEW method improve the two measures of 
performances, vis (NOI) and (NOF) by (49.22)% and the (53.71) % for the 
P/R formula. 

 

Table (2): Comparison between the differenct ECG – methods 
by using P/R formula. 

 

Test Function N New NOI (NOF) Classical CG NOI (NOF) 
2 18 (51) 19 (53) 

200 12 (33) 15 (40) CUBIC 
400 11 (32) 15 (40) 

2 31 (82) 33 (53) 
200 18 (53) 22 (61) ROSEN 
400 18 (54) 22 (61) 
80 52 (117) 118(255) 

200 117 (240) 205 (427) POWELL 
400 52 (112) 405 (826) 
60 17 (49) 18 (53) 
80 15 (43) 25 (70) 

Non 
Diagonal 

100 17 (47) 22 (62) 
40 56 (155) 85 (238) 
60 56 (133) 65 (189) MIELE 

100 39 (101) 71 (199) 
4 23 (162) 25 (163) 

10 19 (92) 22 (135) CANTRAL 
400 14 (72) 22 (157) 
10 8(21) 8(19)  

SHALLOW 400 10(27) 8(19) 

Total 
NOI 

(NOF) 
603 (1676) 1225 (3120) 
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APPENDIX 
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