العلاقة بين انواع دوال الهوية
 [ارنا بهجتياسين
 رغدووميضفارسر
 اسيل علاء عوضر علي
 قسم الرياضيات-كلية التربية للبنات-جامعة تكريت

 The relationship between types of identifications

Rana B.t Yaseen

Raghad W. Faris

Assel A. Awad

Dep. of mathematics-College of education for women University of Tikrit.

في هذا البحث تستخدم تعاريف المجمو عات المفتوحة من انماط

$$
\begin{aligned}
& \text { (} \alpha \text { - open , pre - open , b-open , } \beta \text { - open) } \\
& \text { لتحديد تعاريف جديده لدو ال الهوية في الفضاءات اللثبولوجية, اسميناها } \\
& \alpha-\text { identification, pre - identification, } \mathrm{b}-\text { identification , } \beta \text { - identification } \\
& \text { وناقشثنا العلافة فيما بينهم . وايضـا "بعض صفات تلك الدو ال دُرست وبُر هنت . } \\
& \text { الدالة المفتاحية : }
\end{aligned}
$$

α - identification, pre - identification, $\mathbf{b}-$ identification , $\boldsymbol{\beta}$-identification

Abstract

In this paper , used the definitions of ($\alpha-$ open , pre - open , b- open, β - open) sets in order to limit the identifications in topological space namely (α - identification, pre-identification, b - identification , β - identification) functions and we discuss the relationship between them, as well as several properties of these functions are proved.

Keyword :
α - identification, pre - identification, b-identification
and β - identification
Introduction and Preliminaries:
The concept of continuous (α-continuous, pre - continuous
, b -continuous, β-continuous) function, irresolute(α - irresolute , pre - irresolute , $\mathrm{b}-$ irresoljute, β - irresolute)function and contra - continouous(contra $-\alpha-$
continouous, contra pre - continouous
, contra -b - continouous, contra $-\beta-$ continouous) have been introduced and investigated by Mashhour [12, 13],Andrjevic [3] ,El-Monsef [5],(Maheshwair and Thakur) [10], (Jafaris and Noiri) [7, 8] and Calda [4] respectively. By using" semi-, ($\alpha-$, pre,$- \beta-, b-$) open sets " have been introduced and investigated by Levine [9],Njasted [18], Mashhour [12,13], Andrjevic [3], El-Monsef [5] respectively.
AL-kutabi [1] in 1996 , introduces and studies some week identifications, the notion of semiidentification, Mazl [14] introduces the notion of b- identification. In this work, we study the concepts of types of identifications and discuss the relation between them .Also, we investigate it's relationship with other types of identifications.
" Throughout this paper \mathcal{H}, \mathcal{M} and $\boldsymbol{\aleph}$, will denote topological spaces for a subset \mathcal{A} of space $(\mathcal{H}, \mathfrak{J}), \operatorname{int}(\mathcal{A}), \operatorname{cl}(\mathcal{A})$, denoted the interior and closure of a set \mathcal{A}, respectively ", and we indicate them by the following symbols : gof $=\mathcal{W}, \mathfrak{f}^{-1}=\mathfrak{G}, g^{-1}=\mathfrak{h}, f\left(\mathfrak{f}^{-1}\right)=\mathcal{F}$.
" A subset \mathcal{A} of a space \mathcal{H} is said to be:

1. α-open set $[18]($ for short $\mathfrak{D}-)$ if $\mathcal{A} \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(\mathcal{A})))$. So \mathcal{A}^{c} called $\alpha-\operatorname{closed}$ (for short $\mathfrak{D}=$).
2. pre -open set [12] (for short $\mathfrak{p}-$) if $\mathcal{A} \subseteq \operatorname{int}(\operatorname{cl}(\mathcal{A}))$. So \mathcal{A}^{c} called pre - closed (for short $\mathfrak{p}=)$.
3. β-Open set $[5]$ (for short $\mathfrak{B}-$) if $\mathcal{A} \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mathcal{A})))$. So \mathcal{A}^{c} called $\beta-\operatorname{closed}$ (for short $\mathfrak{B}=$).
4. b -open set [3] (for short $\mathrm{b}-$) if $\mathcal{A} \subseteq\left(\operatorname{cl}(\operatorname{int}(\mathcal{A})) \cup \operatorname{int}(\operatorname{cl}(\mathcal{A}))\right.$. So \mathcal{A}^{c} called $\mathrm{b}-$ closed (for short $\mathfrak{b}=$)."

The relationship between types of identifications

The family of all $(\mathfrak{D}-, \mathfrak{p}-, \mathfrak{B}-, \mathfrak{b}-)$ sets is denoted by $\mathfrak{D O}(\mathcal{H}), \mathfrak{p O}(\mathcal{H}), \mathfrak{B O}(\mathcal{H}), \mathfrak{b O}(\mathcal{H})$.
Remark : the diagram below shows the relationship between open sets .
open $\rightarrow \mathfrak{D}-\longrightarrow \mathfrak{p}-\longrightarrow \mathfrak{b}-\longrightarrow \mathfrak{B}-$
figure (1)
" The converse of these implications are not true in general".
Example 1:
Let $\mathcal{H}=\{d, k, \mathfrak{p}, \mathcal{O}, \mathcal{C}\}$ on $\mathfrak{J}=\{\mathcal{H}, \varphi,\{p, \mathcal{O}\},\{d, k\},\{d, k, p, \mathcal{O}\}\}$.
Then

- A subset $\{d\}$ of \mathcal{H} is \mathfrak{p} - but it does not \mathfrak{D}-.
- A subset $\{d, k, \mathcal{C}\}$ of \mathcal{H} is $\mathfrak{b}-$ but it does not $\mathfrak{p}-$.
- A subset $\{p, \mathcal{C}\}$ of \mathcal{H} is \mathfrak{B}-but it does not \mathfrak{b} -
"The following definitions and results were introduced and studied ".
Definition 2: "Let a function of a space \mathcal{H} into a space \mathcal{M} then:
1- \mathfrak{f} is called open (closed) function if the image of each open (closed) set in \mathcal{H} is open(closed) set in \mathcal{M} [6].
2- \mathfrak{f} is called $\mathfrak{D}-(\mathfrak{D}=)$ function if the image of each $\alpha-$ open $(\mathfrak{D}=)$ set in \mathcal{H} is $\mathfrak{D}-(\mathfrak{D}=)$ set in \mathcal{M} [13].
3- \mathfrak{f} is called $\mathfrak{p}-(\mathfrak{p}=)$ function if the image of each $\mathfrak{p}-(\mathfrak{p}=)$ set in \mathcal{H} is $\mathfrak{p}-(\mathfrak{p}=)$ set in \mathcal{M} [12].
4- \mathfrak{f} is called $\mathfrak{b}-(b=)$ function if the image of each $\mathfrak{b}-(b=)$ set in \mathcal{H} is $\mathfrak{b}-(b=)$ set in \mathcal{M} [3].
5- \mathfrak{f} is called $\mathfrak{B}-(\mathfrak{B}=)$ function if the image of each $\mathfrak{B}-(\mathfrak{B}=)$ set in \mathcal{H} is $\mathfrak{B}-(\mathfrak{B}=)$ set in \mathcal{M} [5]. "
Remark : the diagram below holds for a functions .

$$
\text { open fun. } \rightarrow \mathfrak{D}-\text { fun. } \rightarrow \mathfrak{p}-\text { fun. } \rightarrow \mathfrak{b}-\text { fun. } \rightarrow \mathfrak{B}-\text { fun. }
$$

figure (2)
"Now by [3,5,12,13]and the following examples illustrate that The converse of these implication are not true in general" .
Definition 3: A function $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is called:
1- Acontinuous function if \mathfrak{H} of any open set in \mathcal{M} is a open set in \mathcal{H} [6].
2- α-continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{D}-set in \mathcal{H} [13].
3- pre - continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{p} - set in \mathcal{H} [12].
4- b-continuous function if \mathfrak{H} of any open set in \mathcal{M} is $\mathfrak{b}-$ in \mathcal{H} [2].
5- β-continuous function if \mathfrak{H} of any open set in \mathcal{M} is \mathfrak{B}-set in \mathcal{H} [5].
Remark: Mubarki in 2013 presented the following diagram that illustrates the relationship between the types of continuous functions. [15]

$$
\text { cont. } \rightarrow \alpha \text { - cont. } \rightarrow \text { pre }- \text { cont. } \rightarrow \mathrm{b}-\text { cont. } \rightarrow \beta \text { - cont. }
$$

figure (3)
"The converse of these implications are not true in general and the following examples" .
Example. 4:
Let $\mathcal{H}=\{d, k, p, \mathcal{O}, \mathcal{C}\} \quad$ on $\mathcal{J}=\{\mathcal{H}, \varphi,\{p, \mathrm{~d}\},\{d, k\},\{d, k, p, \mathrm{~d}\}\}$
1-Then $, \mathfrak{f}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $\mathfrak{f}(d)=k, \mathfrak{f}(k)=d, \mathfrak{f}(p)=p, \mathfrak{f}(\mathcal{O})=k, \mathfrak{f}(\mathcal{C})=\mathcal{C}$, is pre - continuous function but it is not $\alpha-$ cont.
2- Then, $\mathrm{f}: \mathcal{H} \rightarrow \mathcal{H}$ defined $\operatorname{byf}(d)=d, \mathfrak{f}(k)=k, \mathfrak{f}(p)=p, f(\mathcal{O})=\mathcal{O}, \mathfrak{f}(\mathcal{C})=k$, is $\mathrm{b}-$ cont. but it is not pre - cont.

3- Then, $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $\mathfrak{f}(d)=f, \mathfrak{f}(k)=\mathcal{C}, \mathfrak{f}(f)=d, \mathfrak{f}(\mathcal{O})=\mathcal{O}, \mathfrak{f}(\mathcal{C})=k$, is β-cont. but it is not $\mathrm{b}-$ cont.
Definition 5:
A mapping $f: \mathcal{H} \rightarrow \mathcal{M}$ is called irresolute function[10] (resp. α - irresolute [10], pre irresolute[13], b - irresolute [3] β - irresolute[5]) if $\mathfrak{H}(\mathrm{u})$ is open($\mathfrak{D}-, \mathfrak{p}-, \mathfrak{b}-, \mathfrak{B}-)$ in \mathcal{H} for each open $(\mathfrak{D}-, \mathfrak{p}-, \mathfrak{b}-, \mathfrak{B}-)$ in \mathcal{M}.
"Diagram (4)" :
irresol. $\rightarrow \alpha$-irresol. \rightarrow pre - irresol. $\rightarrow \mathrm{b}$ - irresol. $\rightarrow \beta$ - irresol.
generally speaking, the opposite of the implication s is not
necessarily true, as follows instance .
Example 6 :
Let $\mathcal{H}=\{d, k, p, \mathcal{O}, \mathcal{C}\} \quad$ on $\mathfrak{I}=\{\mathcal{H}, \varphi,\{p, \mathcal{O}\},\{d, k\},\{d, k, p, \mathcal{O}\}\}$
1- Then, the $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $\mathfrak{f}(d)=d, \mathfrak{f}(k)=p, f(p)=k, \mathfrak{f}(\mathcal{O})=\mathcal{O}, \mathfrak{f}(\mathcal{C})=\mathcal{C}$,is pre - irresol.and not α-irresol.
2- Then, the $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $\mathfrak{f}(d)=d, \mathfrak{f}(k)=k, \mathfrak{f}(\mathcal{p})=\mathcal{C}, \mathfrak{f}(\mathcal{O})=\mathcal{O}, \mathfrak{f}(\mathcal{C})=\mathcal{p}$, is b irresol. and not pre - irresol.
3- Then the $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $\mathfrak{f}(d)=\mathcal{p}, \mathfrak{f}(k)=k, \mathfrak{f}(\mathcal{p})=d, \mathfrak{f}(\mathcal{O})=\mathcal{C}, \mathfrak{f}(\mathcal{C})=\mathcal{O}$, is β irresol. and not b-irresol.
Definition 7 :
A function $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ is called contra - continouous (resp.contra $\alpha-$ continouous, contra pre - continouous [6,7], contrab-continouous [2]contra β continouous [4]), if $\mathfrak{H}(\mathrm{u})$ is closed $(\mathfrak{D}=, \mathfrak{p}=, \mathfrak{b}=, \mathfrak{B}=)$ in \mathcal{H}, for each open set u of \mathcal{M}.
."Diagram (5)" : contra - cont. \rightarrow contra α - cont. \rightarrow contra pre - cont. \rightarrow contrab-cot. \rightarrow contra β - cot.
The examples show that the reversal of the chart is incorrect.
Example 8:
Let $\mathcal{H}=\{d, k, p, \mathcal{O}, \mathcal{C}\}$ on $\mathfrak{J}=\{\mathcal{H}, \varphi,\{p, \mathcal{O}\},\{d, \mathrm{~b}\},\{d, k, p, \mathcal{O}\}\}$
1 -Then, $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{H}$ defined by $\mathfrak{f}(d)=\mathcal{C}, \mathfrak{f}(k)=k, \mathfrak{f}(\mathcal{p})=d, \mathfrak{f}(\mathcal{O})=\mathcal{O}, \mathfrak{f}(\mathcal{C})=p$.
Iscontra pre - cont.but it is not contra $\alpha-$ cont.
2- Then, $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $\mathfrak{f}(d)=p, f(k)=\mathcal{O}, \mathfrak{f}(\mathcal{p})=d, \mathfrak{f}(\mathcal{O})=k, \mathfrak{f}(\mathcal{C})=\mathcal{C}$.
Is contra b - cont but not contra pre - cont.
3-Then, $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{H}$ defined by $\mathfrak{f}(d)=d, \mathfrak{f}(k)=\mathcal{O}, \mathfrak{f}(\mathcal{p})=\mathfrak{p}, \mathfrak{f}(\mathcal{O})=k, \mathfrak{f}(\mathcal{C})=\mathcal{C}$.
Is contra β - cont.but not contra b-cont.
A Study of some new types of identifications:
In this section, we introduce new definitions of (α - identification, pre - identification, $b-$ identification, β - identification) functions by using ($\mathfrak{D}-, \mathfrak{p}-\mathfrak{b}-, \mathfrak{B}-$) sets and study the relations between them .
Definition 9:" A function $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is called α - identification Iff \mathfrak{f} is onto and one of the following condition satisfies "
$--U$ is $\mathfrak{D}-\operatorname{in} \mathcal{M}$ iff $\mathfrak{H}(\mathrm{u})$ is $\mathfrak{D}-\operatorname{in} \mathcal{H}$.
--U is $\mathfrak{D}=\operatorname{in} \mathcal{M}$ iff $\mathfrak{H}(\mathrm{u})$ is $\mathfrak{D}=\operatorname{in} \mathcal{H}$.

For example : Let $\mathcal{H}=\{d, k, p, \mathcal{O}\}$ and $\mathcal{M}=\{1,2,3\}$ be equipped with the topologies $\mathfrak{J}_{\mathcal{H}}=$ $\{\mathcal{H}, \varphi,\{k, \mathfrak{p}\},\{d, k\},\{k\}\}, \mathfrak{I}_{\mathcal{M}}=\{\varphi, \mathcal{M},\{1,2\},\{2,3\},\{2\}\}$
If $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ defined by $\mathfrak{f}(d)=1, \mathfrak{f}(k)=2, \mathfrak{f}(\mathfrak{p})=3, \mathfrak{f}(\mathcal{O})=3$.
we get \mathfrak{f} is α - identification.
Proposition 10 :

Every α - irresolute and $\mathfrak{D}-(\mathfrak{D}=)$ onto functions is α - identification.
Proof : A $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}, \mathfrak{f}(\mathrm{U})$ is \mathfrak{D} - since \mathfrak{f} is onto and $\mathfrak{D}-$,
so $(\mathcal{F}(\mathrm{U}))=\mathrm{U}$ is $\mathfrak{D}-$. and $\mathrm{U} \subseteq \mathcal{M}$.
is α - irresolute hanc $\mathfrak{y}(\mathrm{U})$ is $\mathfrak{D}-$ in \mathcal{H}, so \mathfrak{f} is α - identification. \mathfrak{f}
While if :
If $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is onto, $\mathfrak{D}=$ and $\alpha-$ irresolute,
Hence $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{D}-$, implies $(\mathfrak{H}(\mathrm{U}))^{\mathrm{c}}=\mathfrak{H}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\mathfrak{D}=$, which $\left(\mathcal{F}\left(\mathrm{U}^{\mathrm{c}}\right)\right)=\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\mathfrak{D}=$,
Since \mathfrak{f} is α - irresolute by def. so \mathfrak{f} is α - identification. \mathfrak{p}-in $\mathcal{H}^{\prime \prime}$.
Definition11 :
" A function $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ is called pre - identification if \mathfrak{f} is onto and U is $\mathfrak{p}-$ in \mathcal{M} iff $\mathrm{f}^{-1}(\mathrm{u})$ is $\mathfrak{p}-$ in $\mathcal{H}^{~ " .}$
Remark: from figure (1) we get every α - identification is pre - identification but the opposite is not true.
As follows instance.
$\mathcal{H}=\{d, k, \mathfrak{p}, \mathcal{O}, \mathcal{C}\}, \mathcal{M}=\{d, k, p, \mathcal{O}\}$ be equipped with topologies $\mathfrak{J}_{\mathrm{x}}=$ $\{\mathcal{H}, \varphi,\{p, \mathcal{O}\},\{d, k\},\{d, k, p, \mathcal{O}\}\}$ and $\Im_{\mathcal{M}}=\{\varphi, Y,\{d, k\},\{k, p\},\{k\}\}$.
If $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ defined by $\mathfrak{f}(d)=d, \mathfrak{f}(k)=k, \mathfrak{f}(p)=p$,
$\mathfrak{f}(\mathcal{O})=\mathcal{O}, \mathfrak{f}(\mathcal{C})=p$, we get \mathfrak{f} is pre - identification.
Lemma 12: A onto function $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is called pre-identification, U is $\mathfrak{p}=$ in \mathcal{M} iff $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{p}=$ in \mathcal{H}.
Proposition 13 :
Every pre - irresolute and $\mathfrak{p}-(\mathfrak{p}=)$ ontofunctions is pre - identification
Proof :
from " figure (1,4)" every \mathfrak{D} - function is \mathfrak{p}-function and α - irresolute is pre - irresolute, by Proposition 10, we get every $\mathfrak{f} \alpha$ - irresolute is pre - irresolute. Definition 14:
" A function $\mathrm{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is called b - identification if f is onto and one of the following condition satisfies "

1) U is $b-$ in \mathcal{M} iff $\mathfrak{H}(u)$ is $b-$ in \mathcal{H}.
2) U is $\mathfrak{b}=$ in \mathcal{M} iff $\mathfrak{H}(\mathrm{u})$ is $\mathfrak{b}=$ in \mathcal{H}. [3]
"from figure (1) every \mathfrak{p} - is \mathfrak{b} - then for each pre - identification is b-identification." We note from an example 1 :
be defined by $\mathfrak{f}(d)=d, \mathfrak{f}(k)=k, \mathfrak{f}(\mathcal{p})=\mathcal{C}, \mathfrak{f}(\mathcal{O})=\mathcal{O}, \mathfrak{f}(\mathcal{C})=\boldsymbol{p}, \quad$ A $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{H}$
then \mathfrak{f} is b - identification but not pre - identification, since $\mathfrak{S}\{d, k, p\}=\{d, k, \mathcal{C}\} \notin$ $\mathrm{PO}(\mathcal{H})$.
Proposition 15 :
If $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ is onto, $\mathfrak{b}-(b=)$ and $b-$ irresolute then f is b-identification. [3]. Proposition 16 :
The composition of two, α-identification (pre - identification, b - identification)
functions is α-identification(pre - identification, b - identification).
Proof :
Suppose that $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}, \mathcal{G}: \mathcal{M} \longrightarrow \mathcal{N}$ are α - identifications
"Whenever The compo. of two onto functions is onto ".
Now, if U be any \mathfrak{D}-in \mathcal{K}, by hypo. $\mathcal{G}, \mathfrak{f}$ are α - identifications then $\mathfrak{h}(U)$ is $\mathfrak{D}-$ in \mathcal{M} and we have $\mathfrak{H}(\mathfrak{h}(\mathrm{U}))=(\mathcal{W})^{-1}(\mathrm{U})$ is $\mathfrak{D}-\operatorname{in} \mathcal{H}$. implies U is $\mathfrak{D}-$ in \mathcal{H}, thus \mathcal{W} is $\alpha-$ identification.

Similarly ,to prove \mathcal{W} is (pre - identification, b-identification).
Proposition 17 :
$\mathrm{A} \mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ and $\mathcal{G}: \mathcal{M} \longrightarrow \mathcal{N}$ are functions and \mathfrak{f} is α - identification (pre-
identification, b - identification)
then the following statement are valid :
1- If \mathcal{W} is α - cont. (pre - cont., b - cont.)then \mathcal{G} is α - cont. (pre - cont., b cont.).
2- If \mathcal{W} is α-irresolute (pre - irresolute, b - irresolute .)then \mathcal{G} is α irresolute. (pre - irresolute , b-irresolute).
3- If \mathcal{W} is contra α - cont. (contra pre - cont., contra b-cont.)
then \mathcal{G} is contra $\alpha-$ cont. (contra pre - cont.,contra $\mathrm{b}-$ cont.).
Proof :

1) Let $\mathcal{W}: \mathcal{H} \longrightarrow \mathcal{N}$ is α - cont., Assume that k any an open set in \aleph, Let $\mathrm{V}=$ $\mathfrak{h}(\mathrm{k})$ and $\mathrm{U}=\mathfrak{G}(\mathrm{V})$, whenever $\mathcal{W}^{-1}(\mathrm{k})=\mathfrak{H}(\mathfrak{h}(\mathrm{k}))=\mathrm{U}$ is $\mathfrak{D}-$ in \mathcal{H}, then $\mathcal{W}^{-1}(\mathrm{k}) \quad \mathfrak{D}-$ in \mathcal{H}, but \mathfrak{f} is α - identif.
then V is $\mathfrak{D}-$ in \mathcal{M}. $\operatorname{So} \mathfrak{h}(\mathrm{k}) \mathfrak{D}-$ in \mathcal{M}, so \mathcal{G} is $\alpha-$ cont.
2) Assume that k any an $\mathfrak{D}-\operatorname{set}$ in \mathfrak{N}, Let $\mathrm{V}=\mathfrak{h}(\mathrm{k})$ and $\mathrm{U}=\mathfrak{H}(\mathrm{V})$, we have $\mathcal{W}^{-1}(\mathrm{k})=\mathfrak{H}(\mathfrak{h}(\mathrm{k}))=\mathrm{U}$, that is, U is $\mathfrak{D}-$ in \mathcal{H}, we get $\mathcal{W}^{-1}(\mathrm{k}) \quad \mathfrak{D}-$ in \mathcal{H}, but \mathfrak{f} is α-identif.
, then V is $\mathfrak{D}-\operatorname{in} \mathcal{M}$. whenever $\mathfrak{h}(\mathrm{k}) \mathfrak{D}-\mathrm{in} \mathcal{M}$.
So \mathcal{G} is α-irresolute.
3) Assume that k any an $\mathfrak{D}-$ set in Z, Let $V=\mathfrak{h}(k)$ and $U=\mathfrak{H}(V)$, we have $\mathcal{W}^{-1}(\mathrm{k})=\mathfrak{H}(\mathfrak{h}(\mathrm{k}))=\mathrm{U}$ is $\mathfrak{D}-$ in \mathcal{H}, then $\mathcal{W}^{-1}(\mathrm{k}) \quad \mathfrak{D}-$ in \mathcal{H}, but \mathfrak{f} is $\alpha-$ identif. , then $\mathrm{V}=\mathfrak{h}(\mathrm{k})$ is $\mathfrak{D}=$ in \mathcal{M}, thus \mathcal{G} is contra α - cont.
Definition 18 :
" A function $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ is called β - identification if \mathfrak{f} is onto and U is $\mathfrak{B}-$ in \mathcal{M} iff $\mathfrak{H}(\mathrm{u})$ is $\mathfrak{B}-$ in $\mathcal{H}^{\prime \prime}$.
" from figure (1) we get every b - identification is β - identification but the converse is not true". From instance 1 : let $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{H}$ be defined by $\mathfrak{f}(d)=d, \mathfrak{f}(k)=k, \mathfrak{f}(p)=$ $\mathcal{C}, \mathfrak{f}(\mathcal{O})=\mathcal{O}, \mathfrak{f}(\mathcal{C})=\mathcal{P}$
then \mathfrak{f} is b - identification but not pre - identification, since $\mathfrak{G}\{d, k, p\}=\{d, k, \mathcal{C}\} \notin$ $\mathfrak{p O}(\mathcal{H})$.
Proposition 19:
A onto function $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is called β - identification if U is $\mathfrak{B}=$ in \mathcal{M} iff $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}=$ in \mathcal{H}.
Proof : If U subset of $\mathcal{M}, \mathfrak{B}=$ then U^{c} is $\mathfrak{B}-\operatorname{in} \mathcal{M}$, since f is β - identification, so $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}=$ in \mathcal{H}, (by def. \mathfrak{f} is onto, $(\mathfrak{H}(\mathrm{U}))^{\mathrm{c}}=\mathfrak{H}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\mathfrak{B}-$ in \mathcal{H}. Similarly ,if $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}=$, in \mathcal{H}, we get $\mathfrak{H}(\mathrm{U})^{c}=\mathfrak{H}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\mathfrak{B}-$ in \mathcal{H} and \mathfrak{f} is β - identif., we get U is $\mathfrak{B}=$ in \mathcal{M}.
Assume that U be $\mathfrak{B}-$ in Y then U^{c} is $\mathfrak{B}=$ in \mathcal{M}, whenever $(\mathfrak{H}(\mathrm{U}))^{\mathrm{c}}=\mathfrak{H}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\mathfrak{B}=$ in \mathcal{H}, so $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}-$ in \mathcal{H}. Similarly,
if $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}=$ in \mathcal{H}, we get $(\mathfrak{H}(\mathrm{U}))^{\mathrm{c}}=\mathfrak{H}\left(\mathrm{U}^{\mathrm{c}}\right)$ is $\mathfrak{B}=$ in \mathcal{H},
and then U^{c} is $\mathfrak{B}=$, so U is $\mathfrak{B}-$.
proposition 20 :
If $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ is onto, $\mathfrak{B}-(\mathfrak{B}=)$ and β-irresolute then \mathfrak{f} is β - identification.

Proof :
Assume that U is $\mathfrak{B}=$ in $\mathcal{H}, \mathrm{U} \subseteq \mathcal{M}$, such that $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}=$ in \mathcal{H}. whenever $(\mathcal{F}(\mathrm{U}))=\mathrm{U}$, we get U is $\mathfrak{B}=$ in $\mathcal{H}($ Since $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}=$ in \mathcal{H}, and \mathfrak{f} is $\mathfrak{B}=$ in $\mathcal{H})$. ,so U^{c} is $\mathfrak{B}-$ in \mathcal{H}, and since \mathfrak{f} is β - irresolute then $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}-$ in \mathcal{H}, whenever \mathfrak{f} is onto $(\mathfrak{H}(\mathrm{U}))^{\mathrm{c}}=\mathfrak{H}\left(\mathrm{U}^{\mathrm{c}}\right) \quad$ imples $\mathfrak{H}(\mathrm{U})$ is $\mathfrak{B}-$ in \mathcal{H}, thus, by Proposition 19 , then \mathfrak{f} is β - identification.
Theorem 21: The below stated expressions are hold .
1 - every identification is α - identification.
2 - every α - identification is pre - identification.
3- every pre - identification is b - identification.
4- every b - identification is β - identification.
Proof : obvious.
Remark : " the above examples show that the inverse theorem is not necessarily true ."
Proposition 22 :
"The composition of two β - identification functions is β - identification".
Proof:
Let $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}, \mathcal{G}: \mathcal{M} \longrightarrow \mathcal{N}$ are β - identifications
"Whenever The compo. of two onto functions is onto".
,If U be any $\mathfrak{B}-$ in \mathcal{N}, by hypo. \mathcal{G}, \mathfrak{f} are β - identifications then $\mathfrak{h}(\mathrm{U})$ is $\mathfrak{B}-\mathrm{in} \mathcal{M}$ and we have $\mathfrak{H}(\mathfrak{h}(\mathrm{U}))=(\mathcal{W})^{-1}(\mathrm{U})$ is $\mathfrak{B}-$ in \mathcal{H}, implies U is $\mathfrak{B}-$ in \mathcal{H}, thus \mathcal{W} is $\beta-$ identification.
Proposition23:
$\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}, \quad \mathcal{G}: \mathcal{M} \longrightarrow \mathcal{N}$ be functions and \mathfrak{f} is β - identificationthen the following statement are valid:

1- If \mathcal{W} is β - cont. then \mathcal{G} is β - cont.
2- If \mathcal{W} is β-irresolute then \mathcal{G} is β-irresolute.
3- If \mathcal{W} is contra β - cont. then \mathcal{G} is contra β - cont.

Proof :

1) Let $\mathcal{W} \mathrm{f}: \mathcal{H} \longrightarrow \mathcal{N}$ is β - cont., Assume that k any an open set in \mathbb{N}, Let $\mathrm{V}=$ $\mathfrak{h}(\mathrm{k})$ and $\mathrm{U}=\mathfrak{H}(\mathrm{V})$, we have $\mathrm{W}^{-1}(\mathrm{k})=\mathfrak{H}(\mathfrak{h}(\mathrm{k}))=\mathrm{U}$ is $\mathfrak{B}-$ in \mathcal{H}, then $\mathcal{W}^{-1}(\mathrm{k}) \quad \mathfrak{B}-$ in \mathcal{H}, but \mathfrak{f} is β - identification , then V is $\mathfrak{B}-\operatorname{in} \mathcal{M} . \operatorname{So} \mathfrak{h}(\mathrm{k})$ $\mathfrak{B}-\operatorname{in} \mathcal{M}$, thus \mathcal{G} is β - cont.
2) Assume that k any an $\mathfrak{B}-$ set in \mathfrak{N}, Let $V=\mathfrak{h}(k)$ and $U=\mathfrak{G}(V)$, we have $\mathcal{W}^{-1}(\mathrm{k})=\mathfrak{H}(\mathfrak{h}(\mathrm{k}))=\mathrm{U}$, that is, $\mathrm{U} \mathfrak{B}-$ in \mathcal{H}, we get $\mathcal{W}^{-1}(\mathrm{k}) \quad \mathfrak{B}-$ in \mathcal{H}, but \mathfrak{f} is β - identif. , then V is $\mathfrak{B}-$ in \mathcal{M}, thus \mathcal{G} is β-irresolute.
3) Assume that k any an $\mathfrak{B}-$ set in \mathcal{K}, Let $\mathrm{V}=\mathfrak{h}(\mathrm{k})$ and $\mathrm{U}=\mathfrak{G}(\mathrm{V})$, we have $\mathcal{W}^{-1}(\mathrm{k})=\mathfrak{H}(\mathfrak{h}(\mathrm{k}))=\mathrm{U}$ is $\mathfrak{B}-$ in \mathcal{H}. So $\mathcal{W}^{-1}(\mathrm{k}) \quad \mathfrak{B}-$ in \mathcal{H}, but \mathfrak{f} is $\beta-$ identifi., , then $V=\mathfrak{h}$.
Remark : from the above discussion and known results we have the following implications.
identification $\rightarrow \alpha$ - identification \rightarrow pre - identification $\rightarrow \mathrm{b}$ - identification $\rightarrow \beta$ - identification
figure (6)

Definition 24 : " A space ($\mathcal{H}, \mathfrak{J}$) is said to be $\alpha-\mathfrak{J}_{1}$ (pre- $\mathfrak{I}_{1}, \mathrm{~b}-\mathfrak{I}_{1}, \beta-\mathfrak{J}_{1}$) [8,11,16, 18] iff for each a pair of distinct points $x, y \in \mathcal{H}$, each belongs to an $\mathfrak{D}-(\mathfrak{p}-\quad, \mathfrak{b}-, \mathfrak{B}-)$ sets which does not contain the other .
Theorem 25: A function $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ is α - identification and \mathcal{M} is $\alpha-\mathfrak{J}_{1}$, then \mathcal{H} is $\alpha-\mathfrak{J}_{1}$. Proof : let $\mathrm{x}, \mathrm{y} \in \mathcal{H}, \mathrm{x} \neq \mathrm{y}$, since \mathcal{M} is $\alpha-\mathfrak{J}_{1}$, there exist $\mathfrak{D}-\mathrm{s}$ ets M_{1} and M_{2}, Of \mathcal{M} such that $\mathfrak{f}(x) \in M_{1}$ and $\mathfrak{f}(y) \in M_{2}, f(y) \notin M_{1}$ and $f(x) \notin M_{2}$.
Since function $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is α - identification, we have

$$
\mathrm{x} \in \mathfrak{H}\left(\mathrm{M}_{1}\right), \mathrm{y} \in \mathfrak{H}\left(\mathrm{M}_{2}\right) \text { and } \mathrm{x} \notin \mathfrak{H}\left(\mathrm{M}_{2}\right), \mathrm{y} \notin \mathfrak{H}\left(\mathrm{M}_{1}\right)
$$

hence then \mathcal{H} is $\alpha-\mathfrak{J}_{1}$.
Theorem 26: A function $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is pre - identification and \mathcal{M} is pre $-\mathfrak{J}_{1}$,then \mathcal{H} is pre $-\mathfrak{J}_{1}$.
Proof : let $\mathrm{x}, \mathrm{y} \in \mathcal{H}, \mathrm{x} \neq \mathrm{y}$,since \mathcal{M} is pre $-\mathfrak{J}_{1}$, there exist $\mathfrak{p}-$ sets M_{1} and $\mathrm{M}_{2}, 0$ f \mathcal{M} such that $\mathfrak{f}(x) \in M_{1}$ and $\mathfrak{f}(y) \in M_{2}, \mathfrak{f}(y) \notin M_{1}$ and $\mathfrak{f}(x) \notin M_{2}$. Since function $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ is pre - identification, we have $x \in \mathfrak{H}\left(\mathrm{M}_{1}\right)$, $\mathrm{y} \in \mathfrak{H}\left(\mathrm{M}_{2}\right)$ and $\mathrm{x} \notin \mathfrak{H}\left(\mathrm{M}_{2}\right)$, y $\notin \mathfrak{H}\left(\mathrm{M}_{1}\right)$ hence then \mathcal{H} is pre $-\mathfrak{J}_{1}$.
Theorem 27: A function $\mathfrak{f}: \mathcal{H} \rightarrow \mathcal{M}$ is b - identification and \mathcal{M} is $\mathrm{b}-\Im_{1}$, then \mathcal{H} is $\mathrm{b}-$ \widetilde{J}_{1}.
Proof : letx, $\mathrm{y} \in \mathcal{H}, \mathrm{x} \neq \mathrm{y}$, since \mathcal{M} is $\mathrm{b}-\mathfrak{J}_{1}$, there exist $\mathrm{b}-$ sets M_{1} and M_{2},of \mathcal{M} such that $\mathfrak{f}(x) \in M_{1}$ and $\mathfrak{f}(y) \in M_{2}, \mathfrak{f}(y) \notin M_{1}$ and $f(x) \notin M_{2}$. Since function $f: \mathcal{H} \longrightarrow \mathcal{M}$ is $b-$ identification,
we have $\mathrm{x} \in \mathfrak{H}\left(\mathrm{M}_{1}\right), \mathrm{y} \in \mathfrak{H}\left(\mathrm{M}_{2}\right)$ and $\mathrm{x} \notin \mathfrak{H}\left(\mathrm{M}_{2}\right)$, $\mathrm{y} \notin \mathfrak{H}\left(\mathrm{M}_{1}\right)$
hence then \mathcal{H} is $\mathrm{b}-\mathfrak{J}_{1}$.
Theorem 28: A function $\mathfrak{f}: \mathcal{H} \longrightarrow \mathcal{M}$ is β - identification and \mathcal{M} is $\beta-\Im_{1}$ then \mathcal{H} is $\beta-$ \mathfrak{I}_{1}.
Proof : let $\mathrm{x}, \mathrm{y} \in \mathcal{H}, \mathrm{x} \neq \mathrm{y}$, since \mathcal{M} is $\beta-\mathfrak{J}_{1}$, there exist \mathfrak{B} - sets M_{1} and M_{2},of \mathcal{M} such that $\mathfrak{f}(x) \in M_{1}$ and $\mathfrak{f}(y) \in M_{2}, f(y) \notin M_{1}$ and $f(x) \notin M_{2}$. Since function $f: \mathcal{H} \longrightarrow \mathcal{M}$ is $\beta-$ identification, we have $x \in \mathfrak{H}\left(\mathrm{M}_{1}\right), y \in \mathfrak{H}\left(\mathrm{M}_{2}\right)$ and $\mathrm{x} \notin \mathfrak{H}\left(\mathrm{M}_{2}\right), \mathrm{y} \notin \mathfrak{H}\left(\mathrm{M}_{1}\right)$
hence then \mathcal{H} is $\beta-\mathfrak{J}_{1}$.

References:

[1] Al-kutaibi,S.H.,"on some types of identification"Dep. Of mathematics university of tikreet .Tikreet univ.J.Sci. Vol 4.No.3. pp.49-59.(1998).
[2] Al-omari,A. and Norrani,M.S., "some properties of contra - b-continuous and almost contra - b-continuous functions" Men.iac.sci.Kochi. univ. 22pp. 19-28 (2001).
[3] Andrijevic,D. "On b- open sets ", Mat. Bech., 48 ,pp.59-64 (1996).
[4] Caldas,M.,Jafari,S. "some properties of contra - β-continuous functions
"Men.iac.sci.Kochi. univ. 22,pp. 19-28 (2001).
[5] El-Monsef,M.E.and elat " β - open sets and β - Continuous mappings " Bull. Fac. Sci. Assiut. univ. Vol. 12, pp. 77-90,(1983).
[6] Jafari,.S., Noiri,T. " contra - Continuous functions between topological spaces "
Iranian-Int. ,J.Sci., Volume 2, pp. 153-167,(2001).
[7] Jafari,.S., Noiri,T. " on contra -pre Continuous functions " Bull.
Malaysian.Math.Sci.Soc. Volume 25, pp. 115-128,(2002).
[8] Kar,A., and Bhattacharyya,P., " Some weak separation axioms", Bull. Calcutta Math. Soc.Vol. 82,PP. 415-422, (1990).
[9]Levine, N. "Semi-open sets and semi - continuity in topological spaces", Amer. Math. Monthly, vol. 70, Pp.36-41,(1963).
[10] Maheshwair,S.N.,and Thakur ,S.S., " α-irresolute Mapping " Tamkang J. Math. Vol. 11, pp. 209 -214,(1980).
[11] Mahmoud , R.A .,and El-Monsef M.E.," β-irresolute and β-topological invariant"
Proc. Pakistan Acad. Sci., Vol. 27 ,pp. 285-296 (1990).
[12] Mashhour,A.S., Abd El-Monsef ,M.E. and El-Deeb,S.N.,"On precontinuous and weak precontinuous mappimgs "Pros.Math.
Science Egypt, Vol.53,pp.47-53,(1982).
[13] Mashhour,A.S., Hasonein,I.A., and El-Deeb,S.N.," α-Continuous and α-open Mapping)Acta. Math. Hunger Vol. 41, pp.213-218,(1983).
[14] Mez'l, A.K. ,"On b-identification" Journal of Kufa for Mathematics and Computer vol. 1,NO.3,pp.76-80,(2011).
[15] Mubarki ,A.M.,Al-rshudi ,M.,Al-juhani, M.A., "some properties of contra - β^{*} - open sets and β^{*}-continuity in topological spaces " Journal of Tabiah unive. For sci. Vol. 8 ,pp. 142-148 (2014).
[16] Mustafa J.M., "Some separation axioms by b- open sets", Mu'tah Lil- Buhuth wadDirasat, (20) (3), 57-63 (2005).
[17] Njastad,O. "On some classes of nearly open sets"Pacific.J.Math.,15, pp. 961-970(1965).
[18] Raman,T.C.,Vidyottama K., K. Sharma," α - Generalized \& α - Separation Axioms for Topological Spaces" IOSR Journal of Math. Vol. 10, Issue 3 Ver. VI., PP 32-36 (2014).

