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Abstract 

In this work, Variational  Iterational Method  ,which is a modified Lagrange 

Multiplier, was used to solve a nonlocal problems arising in thermoelastisity , where the one 

dimensional nonhomogeneous Heat equation was introduced together with the initial 

condition and the homogenous nonlocal conditions to reach the analytical solution.  
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 طريقة التكرار التغايري لحل بعض التطبيقات الحياتية

 علي عبد الكاظم رحيمة                                         دنيا محي حيدر            

 كلية مدينة العلم الجامعة                                              كلية النسور الجامعة

:الخلاصة  

تم في هذا العمل ، استخدام طريقة التكرار التغايري، والتي هي عبارة عن مضروب لاكرانج المطور، لحل 

اللا متناجسة ذات البعد   تظهر في مشاكل المرونة الحرارية، حيث تم تقديم معادلة الحرارة المسائل اللا محلية الشروط التي

 الواحد مع الشرط الابتدائي والشروط اللا محلية المتجانسة وصولا الى الحل التحليلي.

  طريقة التكرار التغايري ، مضروب لاكرانج ، الشرط اللا محلي: الكلمات المفتاحية 

Introduction 

                     

 The variational iteration method, 

which is a modified general Lagrange 

multiplier has been shown to solve 

effectively, easily, and accurately a large 

class of linear and nonlinear problems 

with approximation converging rapidly to 

accurate solutions [4], [7] recently 

introduced variational iteration method 

which gives rapidly convergent successive 

approximations of the exact solution if 

such a solution exists. This method has 

proved successful in deriving analytical 

solutions of linear and nonlinear 

differential equations. In their paper, 

Jafari, Hossinzadeh and Salehpoor solved  

 

Gas Dynamics Equation using variational 

iteration method, [4]. Variational iteration 

method was used to solve some types of 

Volterra's integro-differential equations[1]. 

In recent years, problems with integral 

conditions have received an increasing 

attention. The physical significance of 

integral conditions (mean, total flux, total 

energy, total mass, moments,…) has 

served as a fundamental reason for the 

interest carried to this type of problem [4]. 

1. The Variational Iteration Method [6]  

To illustrate the basic idea of this 

technique, we consider the following 

general nonlinear equation:  
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    ),(),(),( txgtxuNtxuL 
                       … (1)  

Where  L  is a linear operator, N  is a nonlinear operator, g  is a given function of x  and t  

and u  is the unknown function that must be determined for 0tt 
.                                                                                             

The basic character of the variational iteration method is to construct a correction function for 

equation (1) which reads  

  ,),(),(~),(),(),(

0

1 dssxgsxuNsxLutxutxu

t

t

iiii   

    … (2)   

Where    is a general Lagrange multiplier which can be identified optimally via variational 

theory, iu
 is the i th approximate solution, and iu~

  denotes a restricted variation, i.e., 

0~ iu
, [6]. Then we substitute   into the following iteration formula:  

  ,1,0,),(),(),(),(),(

0

1   idssxgsxNusxLutxutxu

t

iiii 

         … (3)   

Where 0u
 is the initial approximation to the solution of equation (1)  

2. The Variational Iteration Method for Solving Heat Equation with Homogeneous 

Nonlocal Conditions [6]   

 In this section, is used the variatianal iteration method for solving the one-

dimensional nonhomogeneous heat equation: 

Ttxtxf
x

txu

t

txu










0,0),,(

),(),(
2

2
2 

                                       … (4) 

together with the initial condition 

 xxrxu 0),()0,(                                                                                   … (5) 

the homogeneous  Neumann condition 

Tt
x

txu

x








0,0
),(

0                                                                                … (6) 

and the homogeneous nonlocal condition 

 



0

0,0),( Ttdxtxu

                                                                                 … (7) 
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 where   is a nonzero constant, 
f

is a known function of x  and t , and r  is a given function 

of x  that must satisfy the following compatibility conditions 

                                   
 


0

0)()0( dxxrr

 

 In order to use the variational iteration method to solve such type of nonlocal 

problems one must rewrite equation (4) as 

        ),(),(),( txftxuNtxuL   

where t
L






 and 
2

2
2

x
N




 

.  

Therefore equation (2) becomes: 
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               … (8) 

 Where   is the Lagrange multiplier. Thus by taking the variation of the above equation one 

can have:  
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Then by using the integration by parts one can obtain 
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The stationary conditions will be: 

 
  0)(1 

ts
s

                                   … (9) 

and  

                                         tss  0,0)(  

The solution of the above differential equation is 

    
At )(
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where A  is an arbitrary constant. To find the value of 
,A
 substitute   into equation (9) to 

get:  

    
01 

ts
A

 

Therefore 

    
1)(  As

 

By substituting 1  into equation (3) one can obtain the following iteration formula: 

dssxf
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t
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                           … (10) 

For simplicity, let  
)(),(0 xrtxu 

, then 

 xxrxu 0),()0,(0   

Ttrxr
x

txu
x

x
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0
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and 

Ttdxxrdxtxu   0,0)(),(

0 0

0

 

 

Therefore 
)(),(0 xrtxu 

 is the initial approximation of the solution of equation (4) that 

satisfies the initial condition, the Neumann condition and the nonlocal condition given by 

equation (5)-(7). 

Then by setting 0i  into equation (10) one can have: 
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t

dssxftxrxr
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2 ),()()( 

 

By setting 1i  in equation (10) and by substituting ),(1 txu in it, one can get ),(2 txu . By 

continuing in this manner one can get: 
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),(lim),( txutxu i

i 


 

is the solution of the nonlocal problem given by equations (4)-(7). 

Next, to show the convergence of the variational iteration method for solving the nonlocal 

problem given by equations (4)-(7), we gives the following theorem. This theorem is a special 

case of theorem (1) that appeared in [2, pp17]. 

Theorem 1: [3] 

        Let 
)(2 Cu

be the exact solution of the nonlocal problem given by equations (4)-(7) 

and
)(2 Cui , where

  Ttxtx  0,0, 
, be the obtained solution of the 

sequence defined by equation (2.10)  with 
)(),(0 xrtxu 

. If  
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, 

Then the sequence defined by equation (2.10) converges to u . 

Proof 

Since u  is the exact solution of equation (2.4), then  
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But  

                                

                                 
,1,0)0,()0,()0,(  ixuxuxE ii  
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Then  

   
0)()()0,()0,()0,( 00  xrxrxuxuxE

 

And from equation (2.10), one can have 
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Therefore 
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And this implies that  
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Thus, according to norm properties, we have   
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For 0i  one can have:                        
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By continuing in this manner one can have: 
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By letting i  one can obtain: 

                                      
0),(

2
sxEi   as i   

And this implies that  

                                     
0),( sxEi   as i  

Therefore  

                                     
0),(lim 


txEi

i  

Which gives  

),(),(lim txutxui
i




3. The Mathematical Modeling of the thermoelectricity Problem [3]: 

         In this section we describe the mathematical modeling for a thermoelasticity rod 

problem. Let us consider a rod 10  x , the temperature 
),( txvv 

 and the transverse 

displacement 
),( txzz 

. The thermoelasticity  rod problem can be described by the coupled 

partial differential equations  

,
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                                                              … (11) 
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                                                                                       … (12) 

where 


 is the thermal conductivity, k  is the specific heat at constant strain,   is the 

flexural rigidity, 


 is a measure of the cross-coupling between thermal and mechanical 

efforts, 0v
 is a uniform reference temperature. 
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If we suppose that the initial temperature of the rod  is 
)(xr

, and the initial displacement is 

)(xf
; the ends 0x  and 1x  are clamped. Then  

)()0,( xrxv 
                                                                                                           … (13) 

)()0,( xfxz 
                                                                                                          … (14) 

0
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                                                     … (15) 

Moreover if we assume that the average temperature in the rod 10  x  is equal to ).(1 tg  

That is  

)(),( 1

1

0

tgdxtxv 
                                                                                                   … (16) 

and the difference between the heat exchange of the atmosphere on the  end 0x  and the 

temperature on the end 1x  is equal to )(2 tg , then by using Newton's law one can have: 
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We reformulate the problem given by equation (11)-(17) into an equivalent form where the 

coupled partial differential equations (11)-(12) is reduced to one partial differential equation. 

To do this we introduce a new unknown function u  defined as follows: 

 
2

2

0

0

),(
),(),(),(

x

txz
txvtxv

v

k
txu




 

                                                          … (18) 

where u  is the entropy. Then 
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 By using equation (5), (11-12), one can get:  
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Therefore, the entropy u  is a solution of the heat equation: 

t

txu
vk

x

txu
















 ),(),( 2

02

2






                                                                       … (21) 

To deduce the initial condition on the entropy u , we use the conditions given by equations 

(13)-(14) to get: 
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0

0 xfvxr
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k
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                                                                             … (22) 

Then 

)()0,( 0 xuxu 
                                                                                                         … (23) 

To deduce the first boundary condition on the entropyu , we integrate u  with respect to x  

from 0x  to 1x  to get: 
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By using equation (15)-(16) one can have:  
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Let 
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v

k
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1

0
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which is the average entropy. To conclude the second boundary condition, we multiply 

equation (3.9) by the weight 
)1( x

 and we integrate the result over  1,0  with respect to x  

to obtain 
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                                                          … (26) 

which is the weight average entropy. Then, instead of searching for a pair of function
),( zv

, a 

solution of the problem given by equation (11)-(17), is made by searching for the function u , 

solution of problem given by equation (20)-(23), then the solution will be zuv  .

4. The Variational Iteration Method for Solving A Nonlocal Problem Arising in 

Thermoelasticity  [4] 

The variational iteration method will be used to solve the nonlocal problem arising in 

thermoelasticity. 

To do this considers the one-dimensional nonhomogeneous heat equation: 
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Together with initial condition  

10),()0,( 0  xxuxu
                                                                                    … (28) 

And the homogeneous nonlocal conditions: 
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                                                                       … (30) 

As mentioned above, this nonlocal problem is transformed to an equivalent one with 

homogeneous nonlocal conditions by using the transformation:     

                             Ttxtxztxutxv  0,10),,(),(),(  

where z is defined previously.  

Then the function v  is seen to be the solution of the partial differential equation: 
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together with initial condition  

10),()0,(  xxmxv                                                                                     … (32) 
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and the homogeneous nonlocal conditions: 
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According to the variational iteration method, we consider the correction functional in t  

direction for equation (31) in the following form: 
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where   is the generalized  Lagrange multiplier. Thus by taking the variation of above 

equation one can have:  
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Thus by using the integration by part, the above equation becomes:
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The stationary condition would be as follows: 
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Therefore the iterative formula for computing 
),( txvi  taking the form: 
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Then, any initial condition 
),(0 txv

 given by equation (32) must satisfy the homogeneous 

nonlocal conditions (33)-(34) help to starting with. Then by substituting 0i   into equation 

(36) one can get: 
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To illustrate this method, consider the following example: 

Example  

Consider the following one-dimensional nonhomogeneous heat equation: 
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Together with the initial condition:  
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and the nonhomogeneous nonlocal conditions 
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That is the compatibility conditions are satisfied. To solve such problem by using the 

variational iteration method, we must transform it into an equivalent problem given by 

equations (31)-(34) with homogeneous nonlocal conditions. 

In this case: 
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Therefore the nonlocal problem given by equation (37)-(40) becomes: 
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which is the exact solution for the original nonlocal problem. 

Example 

Consider the following one-dimensional nonhomogeneous heat equation: 
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together with the initial condition:  
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That is the compatibility conditions are satisfied. To solve such problem by using the 

variational iteration method, we must transform it into an equivalent problem  given by 

equations (31)-(34) with homogeneous nonlocal conditions. 
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It is clear that     
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In this case: 
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By continuing in this manner one can get 
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In this case 
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Which is the exact solution of the original problem. 
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Conclusions 

                  In the application of the 

Variational Iterational Method, it was 

noted that every initial approximation to 

the solution of the non-local problems 

must satisfy the local and non-local 

conditions that associated with these 

problems. So, one can easily use the 

Variational Iterational Method to solve the 

one dimensional non-homogeneous 

Laplace equation with nonhomogeneous 

nonlocal conditions.   
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