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ABSTRACT 

Engineering control problems include several types of nonlinear dynamics. 

This paper presents the stabilization design problem for the Single Input 

Single Output (SISO) nonlinear control system. A case study, which 

includes the stabilization problem of shunt-excited DC motor, is 

considered in this work by establishing the basic form of the nonlinear 

control law and applying four types of control techniques including 

diffeomorphisme and feedback linearization. The proposed controllers are 

two feedback controllers, zero dynamics controller and Lyapunov 

controller. Different initial conditions for each proposed controller are 

numerically simulated using MATLAB®\Simulink®. Consequently, the 

energy of each control signal and the corresponding energy of the state are 

computed and compared to evaluate each considered control technique. As 

a result, the zero dynamics controller has the advantage of being the 

simplest controller design and generate the minimum controller energy 

consumption relative to other proposed controllers. Moreover, the 

Lyapunov controller method leads to satisfactory behavior in means of 

minimum transient response of the dynamical system states comparing to 

other propose controllers. 
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 الخلاصة
تتضمن مشاكل التحكم الهندسي عدة أنواع من الانظمة الديناميكية غير الخطية. يقدم هذا البحث 

(. يتضمن نموذج SISOمشكلة تصميم استقرارية لنظام التحكم غير الخطي ذو المدخلات الفردية )

في هذا البحث من خلال  DCالدراسة مشكلة الاستقرارية لمحرك حثي من نوع التيار المستمر 

إلصيغة الأساسية لقانون السيطرة غير الخطي وتطبيق أربعة أنواع من المسيطرات بما في ذلك 

ة عن استخدام التحويل الجبري والتغذية الخطية الراجعة. وحدات السيطرة المقترحة عبار

مسيطرين من نوع التغذية الخطية الراجعة  ، وحدة سيطرة ديناميكية صفرية و مسيطر مبني على 

طريقة ليابانوف. يتم محاكاة الظروف الأولية المختلفة لكل وحدة تحكم مقترحة عدديًا باستخدام 

MATLAB® \ Simulink .® وبالتالي ، تم حساب ومقارنة طاقة كل إشارة تحكم والطاقة

قابلة للحالة لتقييم كل تقنية سيطرة مدروسة. نتيجة لذلك ، تتميز وحدة التحكم في الديناميكيات الم

الصفرية بأنها أبسط تصميم للسيطرة وتولد الحد الأدنى من استهلاك طاقة مقارنةً بوحدات التحكم 

ل الأخرى المقترحة. علاوة على ذلك ، تؤدي طريقة تحكم ليابانوف إلى سلوك مرضٍ من خلا

الحد الأدنى من الاستجابة العابرة لحالات النظام الديناميكي مقارنةً بوحدات التحكم المقترحة 

 الأخرى.

INTRODUCTION 

In this paper Shunt DC motor with an output function ℎ(𝑥) is 

adopted as a model of the study. The main theorem of this paper 

provides the nonlinear normal form for the shunt DC motor. 

Some numerical simulations are presented to demonstrate the 

behavior for the closed-loop system. In addition, some 

numerical results are computed to show the performance of the 

system with different controllers. 
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In [1], the parameter of a conventional PID controller was 

achieved by using the Ziegler–Nichols method.  In [2], a PID 

controller with optimal parameters was obtained by using a 

novel algorithm called gravitational search algorithm. In [3], a 

PID controller with optimal characteristics was proposed to 

control the speed shunt DC motor by using simulated annealing. 

Other types of controllers, such as adaptive neuro-fuzzy [4], B-

spline neural network-based adaptive [5], B-spline neural 

network [6], and Nonlinear Autoregressive Moving Average 

(NARMA) level-2 [7] controllers, were proposed in previous 

works. Several types of nonlinear controllers for nonlinear 

systems were also suggested. Examples of these methods 

include a fast integral terminal sliding mode control method [8], 

a neural-network-based adaptive gain scheduling back-stepping 

sliding mode control [9], generalization of the pointwise min-

norm controller [10], and fuzzy logic controller [11], [12]. 

In this paper, we mainly depend on feedback linearization 

method some basic notions such as the gradient, Lie derivative, 

Lie bracket and relative degree can be found in [14]-[16] to 

develope the theortical part for the porposed controllers. Using 

these concepts we will state and prove our main theorem and its 

corresponding corrolaries where each corollary represent a 

different controller, finally we will compaire the performance 
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of the control system under those controllers by figures and 

quadratic performance index function 𝐽. Comparative beween 

different controllers gives us the opportunity to have a deep look 

at the performance of the system with each controller. 

The paper is organized as follows: in Section two a 

mathematical model of Shunt-Excited DC Motor has been 

constructed. In Section three the design of different types of 

control signals based on different techniques presented in many 

corollaries. The numerical simulations of different initial 

conditions of the shunt DC motor model and their controllers 

are presented in section four supported by concluding remarks. 

Section five is the conclusions of the study. 

SYSTEM MODELING 

In this paper,  to present the statement of the problem 

consider the shunt-excited DC motor model [7] and [13] 

�̇� = [

−𝑎1𝑧1 − 𝑎2𝑧2𝑧3
−𝑎4𝑧2

−𝑎6𝑧3 + 𝑎7𝑧1𝑧2
] + [

𝑎3
𝑎5
0
] 𝑢                                                                                                                           

(1) 

𝑦 = 𝑧3, 

where 𝑧 = [

𝑧1
𝑧2
𝑧3
] is the state vector, and the parameters 𝑎𝑖 ∈

𝑅 , ∀𝑖 = 1,⋯ ,7 are defined in Table 1. 

. 
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TABLE 1. Model 

parameters 

 

Parameter Value 

𝑎1 50 

𝑎2 100 

𝑎3 83.3 

𝑎4 2 

𝑎5 0.01 

𝑎6 0.01 

𝑎7 1.2 

 

The linearization of the system (1) is as follows: 

�̇� = [

−𝑎1 0 0
0 −𝑎4 0
0 0 −𝑎6

] [

𝑧1
𝑧2
𝑧3
] + [

𝑎3
𝑎5
0
] 𝑢. 

The system in the nonlinear form of the system will be 

stabilized in this work. 

 

THE PROPOSED CONTROLLERS 

This subsection contain the most important part of the work, 

which represents the theorems related to the porposed 

controllers, theorem (1), followed by three corrolaries and a 

proposition each one gives us a different controller which able 

us to stabilize the system in different approach. The following 

theorem and related coroleries are stated and proved to be our 

main work to design different types of controller. 
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Theorem (1): 

Recall system (1) 

where 𝑧 = [

𝑧1
𝑧2
𝑧3
] is the state vector, and the parameters 𝑎𝑖 ∈

𝑅 , ∀𝑖 = 1,⋯ ,7 are defined in Table 1. 

If a scalar function is available, then 𝜔(𝑧) satisfies the 

following conditions: 

𝑧1
𝜕𝜔(𝑧)

𝜕𝑧1
≠ 𝑧2

𝜕𝜔(𝑧)

𝜕𝑧2
                                                                                                                                                  

(2) 

∇𝜔(𝑧) ∙ 𝑔(𝑧) = 0.                                                                                                                                                  

(3) 

Then, the nonlinear controller of the original system is 

defined as follows: 

𝑢 =
𝑣−(𝑎6

2𝑧3–𝑎7(𝑎1+𝑎4+𝑎6)𝑧1𝑧2– 𝑎2𝑎7𝑧2
2𝑧3)

(𝑎5𝑎7𝑧1+ 𝑎3𝑎7𝑧2)
                                                                                                                  

(4) 

Proof: 

Given that the output function ℎ(𝑧) = 𝑧3, if the derivative of 

𝑦 w.r.t. time is taken as 

�̇� = 𝐿𝑓ℎ(𝑋) + 𝐿𝑔ℎ(𝑋)𝑢    

because 𝐿𝑔ℎ(𝑋) = 0 , then  

�̇� = 𝐿𝑓ℎ(𝑋) = �̇�3 = −𝑎6𝑧3 + 𝑎7𝑧1𝑧2.                                                                                                               

(5) 

Considering that the input armature voltage 𝑢 = 𝑣𝑎 does not 

appear in (5), then the derivative is repeated to obtain the 

following: 

         �̈� = 𝐿𝑓
2ℎ(𝑋) + 𝐿𝑔𝐿𝑓ℎ(𝑋) ∙ 𝑢  

           =
𝑎6
2𝑧3–𝑎6𝑎7𝑧1𝑧2– 𝑎4𝑎7𝑧1𝑧2–𝑎1𝑎7𝑧1𝑧2– 𝑎2𝑎7𝑧2

2𝑧3 +
(𝑎5𝑎7𝑧1 + 𝑎3𝑎7𝑧2)𝑢 
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            = 𝑣 ,                                                                                                                                                        

(6) 

 where 𝐿𝑔𝐿𝑓ℎ(𝑋) ≠ 0. 

If the definition of the nonlinear diffeomorphism 𝑇(𝑧) = 𝜉 

𝑇 = (

𝑦
�̇�

 𝜔(𝑧)
) = (

𝜉1
𝜉2
𝜉3

),                                                                                                                                            

(7) 

then one should define the scalar function 𝜔(𝑧). 𝑇 must 

satisfy the diffeomorphism condition such that the Jacobian of 

the vector 𝑇 is linearly independent because 𝜔(𝑧) should be 

represented in terms of 𝑧. Thus, |∇𝑇| ≠ 0. This finding implies 

the following: 

|

0 0 1
𝑎7𝑧2 𝑎7𝑧1 −𝑎6
𝜕𝜔(𝑧)

𝜕𝑧1

𝜕𝜔(𝑧)

𝜕𝑧2

𝜕𝜔(𝑧)

𝜕𝑧3

| = 𝑎7 (𝑧2
𝜕𝜔(𝑧)

𝜕𝑧2
− 𝑧1

𝜕𝜔(𝑧)

𝜕𝑧1
)  

                                    ≠ 0    …by condition. (2) 

Meanwhile, the time derivative of 𝜔(𝑧) is 
𝑑𝜔(𝑧)

𝑑𝑡
= ∇𝜔 ∙ �̇�  

         = ∇𝜔𝑓(𝑧) + ∇𝜔𝑔(𝑧)𝑢. 

By condition (3), 

�̇� = ∇𝜔𝑓(𝑧).                                                                                                                                                          
(8) 

The last condition generates a partial differential equation. 

Checking the condition presented below is easy. 

𝜔(𝑧) = 𝑎5𝑧1 − 𝑎3𝑧2                                                                                                                                              
(9) 

is a solution of (8) and serves (7) as a diffeomorphism, where 

(

𝜉1
𝜉2
𝜉3

) = (

𝑧3
−𝑎6𝑧3 + 𝑎7𝑧1𝑧2
 𝑎5𝑧1 − 𝑎3𝑧2

)                                                                                                                               

(10) 
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With the inverse transformation 𝑧 = 𝑇−1(𝜉) defined as 

(

 

𝑧1

𝑧2

𝑧3)

 =

(

  
 

1

2𝑎5
 𝜉3 ∓√(

𝑎5𝑎6

𝑎3𝑎7
) 𝜉1 − (

𝑎5

𝑎3𝑎7
) 𝜉2 + (

1

𝑎5
) 𝜉3 + (

𝜉3

2𝑎3
)
2

−
1

2𝑎3
 𝜉3 ∓√(

𝑎5𝑎6

𝑎3𝑎7
) 𝜉1 − (

𝑎5

𝑎3𝑎7
) 𝜉2 + (

1

𝑎5
) 𝜉3 + (

𝜉3

2𝑎3
)
2

𝜉1 )

  
 
,                                                              

(11) 

the nonlinear transforms the original system (1) into the 

following form: 

(

�̇�1
�̇�2
�̇�3

) = (

𝜉2
𝑣

−(
𝑎1+𝑎4

2
) 𝜉3 +𝑁(𝜉; 𝑎1, ⋯ , 𝑎7)

),                                                                                                    

(12) 

where 𝑁(𝜉; 𝑎1, ⋯ , 𝑎7) is purely nonlinear term based on 𝜉 

and the parameters. Equation (6) provides the relationship 

between 𝑢 and 𝑣 defined as: 

𝑢 =
𝑣−(𝑎6

2𝑧3–𝑎7(𝑎1+𝑎4+𝑎6)𝑧1𝑧2– 𝑎2𝑎7𝑧2
2𝑧3)

(𝑎5𝑎7𝑧1+ 𝑎3𝑎7𝑧2)
, 

and this completes the proof. ∎ 

The signal 𝑣 in Equation (4) must be defined to design a 

control signal 𝑢 for the original system. Therefore, some 

corollaries of theorem (1), which will completely design the 

signal 𝑢, are introduced. Moreover, an additional controller 

based on Lyapunov function will be designed. 
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Corollary (1) (Feedback Linearization controller 1 

(FLC1)): Under the hypothesis theorem (1), system (1) could 

have the control law 

𝑢1 =
(𝑎6𝑘2−𝑘1−𝑎6

2)𝑧3+𝑎7(𝑎1+𝑎4+𝑎6−𝑘2)𝑧1𝑧2+ 𝑎2𝑎7𝑧2
2𝑧3

(𝑎5𝑎7𝑧1+ 𝑎3𝑎7𝑧2)
                                                                                             

(13) 

such that 𝑘1 and 𝑘2 satisfies the condition  

0 < 𝑘1 ≤ (
𝑘2

2
)
2
.                                                                                                                                                   

(14) 

Proof. 

Owing to the almost linear [17] system (12), then the 

approximate linearization of �̇�3 is defined as follows: 

�̇�3 = −(
𝑎1+𝑎4

2
) 𝜉3 ,                                                                                                                                             

(15) 

where 𝑎1 and 𝑎4 are both positive. Thus, the third branch in 

Equation (15) is stable and can be defined as follows:  

𝑣 = −𝐾 ∙ 𝜉 ,                                                                                                                                                        

(16) 

where 𝐾 is the gain vector 𝐾 = [𝑘1 𝑘2 0], and the other 

branches in (12) form a 2-dim Bronovsky form 

(
�̇�1
�̇�2
) = (

0 1
0 0

) ∙ (
𝜉1
𝜉2
) + (

0
1
)𝑣. 

The feedback form using (16) becomes 

(
�̇�1
�̇�2
) = (

 0  1
−𝑘1 −𝑘2

) ∙ (
𝜉1
𝜉2
). 

Considering that the matrix (
 0  1
−𝑘1 −𝑘2

) has a negative real 

part by condition (14), then system (12) is stable; thus, system 

(1) is. ∎ 
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Corollary (2) (Zero dynamics controller (ZDC)): Under 

the hypothesis theorem (1), system (1) could have the controller  

𝑢2 =
−𝑎6

2𝑧3+𝑎7(𝑎1+𝑎4+𝑎6)𝑧1𝑧2+ 𝑎2𝑎7𝑧2
2𝑧3

(𝑎5𝑎7𝑧1+ 𝑎3𝑎7𝑧2)
 .                                                                                                              

(17) 

Proof. 

The output function can be defined as 

ℎ(𝑧0) = 0 ,                                                                                                                                                         

(18) 

where 𝑧0 = (

𝑧1(0)
𝑧2(0)
𝑧3(0)

) . 

Then, 

�̈� = 𝑣 = 0 .                                                                                                                                                       

(19) 

Substituting Equation (19) in (4) implies (17). ∎ 

Remark on corollary (2): 

The output in Equation (18) is chosen because the voltage 

V(t) is maintained at the voltage reference VREF when the 

dynamical system started. Therefore, one can choose the output 

function as  

𝑦(𝑡) = ℎ(𝑧(𝑡)) = V(t) − 𝑉𝑅𝐸𝐹 = 0  , ∀𝑡 > 0. 

Initially, the satisfaction of the previous equation in practice 

is unknown. However, the assumption that the condition 

required to stabilize the output is also necessary to generate a 

small as possible quadratic performance index functional J is 

reasonable. This assumption provides two advantages: the 
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dynamical system is asymptotically stable, and the system 

output has optimal control characteristics. 

Corollary (3) (Feedback Linearization controller 3 

(FLC2)): Using the feedback linearization concept, the 

controller can be defined as follows: 

𝑢3 =
−𝜆1𝑧1−𝜆2𝑧2−(𝜆3+𝑎6

2)𝑧3+𝑎7(𝑎1+𝑎4+𝑎6)𝑧1𝑧2+ 𝑎2𝑎7𝑧2
2𝑧3

(𝑎5𝑎7)𝑧1+ (𝑎3𝑎7)𝑧2
                                                                                     

(20) 

for system (1). 

Proof. 

The essential concept of FL is to achieve a linear relationship 

between the suggested input 𝑣 and the output 𝑦 [18]–[20] by 

respectively recalling Equations (5) and (6): 

�̇� = �̇�3 = −𝑎6𝑧3 + 𝑎7𝑧1𝑧2   
and 

�̈� = 𝑎6
2𝑧3–𝑎6𝑎7𝑧1𝑧2–𝑎4𝑎7𝑧1𝑧2– 𝑎1𝑎7𝑧1𝑧2– 𝑎2𝑎7𝑧2

2𝑧3 +
(𝑎5𝑎7𝑧1 + 𝑎3𝑎7𝑧2)𝑢 . 

Using a PID controller, this relationship can be expressed as 

�̈� = 𝑣 = −𝜆1𝑧1 − 𝜆2𝑧2 − 𝜆3𝑧3.                                                                                                                      
(21) 

Substituting Equation (21) in (4) yields (20). ∎ 

 

Proposition (1) (Lyapunov controller (LC)) : Recall 

system (1) 

�̇� = [

−𝑎1𝑧1 − 𝑎2𝑧2𝑧3
−𝑎4𝑧2

−𝑎6𝑧3 + 𝑎7𝑧1𝑧2
] + [

𝑎3
𝑎5
0
] 𝑢 

𝑦 = 𝑧3, 

where 𝑧 = [

𝑧1
𝑧2
𝑧3
] is the state vector, and the parameters 𝑎𝑖 ∈

𝑅 , ∀𝑖 = 1,⋯ ,7 are defined in Table 1. 



 2220 الثلاثون و السابع  العدد                         مجلة كلية المأمون                            

 

530 

If the control signal 

𝑢4 =
−𝑘1𝑧1

2−𝑘2𝑧2
2−𝑘3𝑧3

2+(𝑎2−𝑎7)𝑧1𝑧2𝑧3

𝑎3𝑧1 +𝑎5𝑧2
                                                                                                                   

(22) 

then function 𝑉(𝑧) =
1

2
𝑍𝑇 ∙ 𝑍  defines a Lyapunov function 

for system (1) 

Proof: 

as 

𝑉(𝑧) =
1

2
𝑍𝑇 ∙ 𝑍  

         =
1

2
(𝑧1
2 + 𝑧2

2 + 𝑧3
2).                                                                                                                                    

(23) 

If the derivative of  𝑉(𝑧) w.r.t. time is taken, the following is 

obtained: 

�̇�(𝑧) = 𝑧1�̇�1 + 𝑧2�̇�2 + 𝑧3�̇�3 

�̇�(𝑧) = 𝑧1(−𝑎1𝑧1 − 𝑎2𝑧2𝑧3 + 𝑎3𝑢) + 𝑧2(−𝑎4𝑧2 + 𝑎5𝑢)
+ 𝑧3(−𝑎6𝑧3 + 𝑎7𝑧1𝑧2) 

�̇�(𝑧) = −𝑎1𝑧1
2 − 𝑎4𝑧2

2 − 𝑎6𝑧3
2 + (𝑎7 − 𝑎2)𝑧1𝑧2𝑧3 +

(𝑎3𝑧1 + +𝑎5𝑧2)𝑢.                                                         (24) 

If 𝑢 =
(𝑎2−𝑎7)𝑧1𝑧2𝑧3−𝑘1𝑧1

2−𝑘2𝑧2
2−𝑘3𝑧3

2

𝑎3𝑧1 +𝑎5𝑧2
 is set, 

then (24) becomes 

�̇�(𝑧) = −(𝑎1 + 𝑘1)𝑧1
2 − (𝑎4 + 𝑘2)𝑧2

2 − (𝑎6 + 𝑘3)𝑧3
2 < 0.                                                                          

(25) 

Therefore, the controller (22) stabilizes the system in terms 

of Lyapunov function. 

 

NUMERICAL SIMLUATION RESULTS 

This study aims to analyze the shunt DC motor system as a 

nonlinear dynamical control system. The main theorem in the 

paper, which establishes the basic form of the nonlinear control 
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law, is then presented and proven in subsection 3.1. Then a 

numerical simulations would be given in 3.2. to illustrate the 

performance well. 

All the numerical simulations are achieved using 

MATLAB®\Simulink® 2018b. in figure 1 , the block diagram 

of the shunt excieted DC motor is presented. Moreover, the 

block diagram of the proposed controllers is illustrated in figure 

2. 

 

 
FIGURE 1. The block diagram of the shunt excieted DC motor 
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FIGURE 2. The block diagram of the proposed controllers 

 

The following are the numerical simulations that illustrate the 

behavior of the uncontrolled (𝑢 = 0) (Figure 3) and the 

controlled shunt DC motor system by obtaining the parameters 

in Table 1 with a set of the following initial conditions: 𝑧1(0) =

0.05, 𝑧2(0) = 0.05, and 𝑧3(0) = 50; 𝑧1(0) = 0.1 , 𝑧2(0) =

0.1, and 𝑧3(0) = 100; and 𝑧1(0) = 0.2 , 𝑧2(0) = 0.2, and 

𝑧3(0) = 150. The plot of 𝑧1-, 𝑧2-, and 𝑧3-state versus time is 

computed based on the controllers in Equations (13), (17), (20), 

and (22) and shown in Figures 4, 5, 6, and 7, respectively.  
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(a) 

 
(b) 

 
(c) 

FIGURE 3. Response curves to the uncontrolled shunt DC motor system 

(u = 0) 

(a) 𝑧1vs. time, (b) 𝑧2 vs. time, and (c) 𝑧3 vs. time 
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(a) 

 

(b) 

 

(c) 
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(d) 

FIGURE 4. Response curves to the shunt DC motor system with FLC1 

(u1) 

(a) 𝑧1vs. time, (b) 𝑧2 vs. time, (c) 𝑧3 vs. time, and (d) 𝑢1 vs. time 

 

(a) 

 

(b) 
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(c) 

 

(d) 

FIGURE 5. Response curves to the shunt DC motor system with ZDC 

(u2) 

(a) 𝑧1vs. time, (b) 𝑧2 vs. time, (c) 𝑧3 vs. time, and (d) 𝑢2 vs. time 

 

 

(a) 
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(b) 

 
(c) 

 
(d) 

FIGURE 6. Response curves to the shunt DC motor system with FLC2 

(u3) 

(a) 𝑧1vs. time, (b) 𝑧2 vs. time, (c) 𝑧3 vs. time, and (d) 𝑢3 vs. time 
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(a) 

 
(b) 

 
(c) 
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(d) 

FIGURE 7. Response curves to the shunt DC motor system 

with LC (u4) 

(a) 𝑧1vs. time, (b) 𝑧2 vs. time, (c) 𝑧3 vs. time, and (d) 𝑢4 vs. 

time 

 

Remark: The zero initial condition may show a disturbance-

like behavior in 𝑧1-state due to the existence of near-zero values 

in the denominator. Figure 7 shows that the controllers dealt 

well with this phenomenon and regulated the state before 10 s 

for any given initial condition seconds. 

TABLE 2. Results of the numerical simulations 

 

𝒖𝒊 ∫ 𝒖𝒊
𝟐𝒅𝒕

∞

𝟎

 ∫ 𝒛𝟏
𝟐𝒅𝒕

∞

𝟎

 ∫ 𝒛𝟐
𝟐𝒅𝒕

∞

𝟎

 ∫ 𝒛𝟑
𝟐𝒅𝒕

∞

𝟎

 

 

𝑱 

𝑢 = 0 0.0000 95.08

75 

0.002

5 

494291.5

588 

494386.64

87 

𝑢1 42.198

6 

7.220

3 

0.004

26 

498328.2

408 

498377.66

40 

𝑢2 19.410

2 

70.13

68 

0.003

2 

495909.3

775 

495998.92

77 
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𝑢3 26.593

0 

55.77

77 

0.003

5 

496569.3

750 

496651.74

92 

𝑢4 68.799

4 
0.007

77 

0.004

9 

499920.3

326 

499989.14

47 

 

Energy of each control signal and the corresponding energy of 

the state variables with the quadratic performance index 

𝐽 = ∫ 𝑢𝑇 ∙ 𝑢 + 𝑍𝑇 ∙ 𝑍 𝑑𝑡
∞

0
. 

The ZDC 𝑢2 produces the minimum controller energy 

consumption relative to other proposed controllers 𝑢1 , 𝑢3 and 

𝑢4 . Moreover, it has the benefit of being the simplest controller 

design. However, the LC approach has a trial-and-error flavor 

but may actually lead to satisfactory behavior as presented in 

this research. This behavior is reflected on the value of 𝑧1 

transient response of the LC controller with respect to other 

propose controllers. 

 

Remark. All values in Table 2 are computed using the 

numerical integration method and approximated to four decimal 

places. 

CONCLUSION  

 Numerous forms of dynamics with nonlinearities are 

established in industrial control problems. The stabilization 

problem of shunt-excited DC motor as a SISO nonlinear control 

system is considered by establishing the control law in the 

nonlinear form with four types of control techniques, including 

diffeomorphism and feedback linearization. Consequently, 

different situations are numerically simulated with a set of 

initial conditions, and the energy of each signal of the state is 
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computed. In the second control technique, the third state, 

which represents the speed of the DC motor, is reduced to an 

exponentially stable state and need not be included in the linear 

control law. This condition reduces the energy of the control 

law. By contrast, the fourth control technique, a Lyapunov 

controller, is considered by all the states, including the control 

law and the absence of a reduction in the model. This condition 

leads to high energy in the control law. 
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