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Abstract  
In this study consideration is given to the hydrodynamic characteristics of a buoyancy-driven 

convection loop containing an electrically-conducting fluid in a transverse magnetic field in  

one-dimensional model. We study three problems. In problem one, we analyze the unsteady flow in 

closed loop in which the right side is isothermal heated and the left side is isothermal cooled, while 

the top and bottom regions are insulated. In problems two and three, we analyze the steady and 

unsteady flow in closed loop in which the bottom region is isothermal heated and the top region is 

isothermal cooled, while the right and left sides are insulated regions.  

The Laplace transformation technique is used to solve problems one and three, while in problem 

two we found an analytical solution. 

 

Keywords: Fluid Mechanic, Heat Transfer, Magnetofluiddynamics, Convection. 
 

1. Introduction 

Magnetofluiddynamics (MFD), [1], is that 

branch of applied mathematics which deal 

with the flow of electrically conducting fluids 

in electric and magnetic fields. It unifies in a 

common framework the electromagnetic and 

fluid-dynamic theories to yield a description of 

the concurrent effects of the magnetic field on 

the flow and the flow on the magnetic field. 

There are many natural phenomena and 

engineering problems susceptible to 

magnetofluiddynamic (MFD) analysis. It is 

useful in astrophysics because much of the 

universe is filled with widely spaced, charged 

particles and permeated by magnetic fields, 

and so the continuum assumption becomes 

applicable. Again geophysicists encounter 

MFD phenomena in the interactions of 

conducting fluids,[3], and magnetic fields that 

are present in and around heavenly bodies. 

Engineers employ MFD principles in the 

design of heat exchangers, pumps, and flow 

meters; in solving space vehicle propulsion, 

control, and reentry problems; in designing 

communications and radar system; in creating 

novel power generating system; and in 

developing confinement schemes for 

controlled fusion. 

Laminar natural convection flow in closed 

loops has been studied by many investigators 

since it has considerable number of practical 

applications in the design of thermal energy 

systems including thermosyphonic solar 

applications and nuclear technologies. When a 

transverse magnetic field is applied to an 

electrically conducting fluid in the loop, 

convective hydrodynamic motion is damped 

and an electric current is induced. Such a 

system has two principal applications: the first 

is in energy systems or industrial processes 

that require control of flow destabilization or 

prohibition of motion: the second interest lies 

in the possible use of the system for electricity 

generation. 

In (1983) Hart [4] studied two-dimensional 

convection in a horizontal cavity, driven by 

differential heating of the two vertical end 

walls. In his paper, he describes the 

development of the unicellular flow and 

secondary instability of the unicell for shallow 

cavities filled with a low Prandtl number 

liquid. He shows that for prandtl numbers less 

than about 0.1, and aspect ratios less than the 

same value, parallel flow core will exist with 

approximately unit non-dimensional amplitude 

(a1) up to the point (𝐺𝑟~800) where 

secondary vortices appear.  

 In (1986) Vives [7] studied the role of 

natural and damped during the thermally 

controlled solidification of tin and aluminum 

alloys in a toroidal mould. The damped 

convection was caused by a stationary and 

uniform magnetic field parallel to the gravity 

field. In his paper, Vives shows that the 
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evolution of the thermal phenomena with time 

(or with the position of the solidification front) 

and also their interactions on the crystal 

growth were examined, for various degrees of 

superheat, both in the absence and presence of 

an axial and a stationary magnetic field. 

N. Ghaddar in (1998) [2], studied the 

hydrodynamic characteristics of a buoyancy-

driven convection loop containing an 

electrically-conducting fluid in a transverse 

magnetic field analytically using a one-

dimensional model. One side of the loop is 

isothermally heated and the other side 

isothermally cooled, and the upper and lower 

sections are insulated. In her paper, the value 

of Prandtl number was taken from 0.003 to 7 

and the value of Reynolds number was taken 

from 10 to150. She concluded that the closed-

form solution of the flow velocity is used to 

predict the induced electric current of the 

system. And she found according to the 

solution there exist an optimal strength of the 

magnetic field that depends on the system flow 

and geometric parameters to maximize the 

induced electric current. 

In this paper we will consider three 

problems, the first one is the unsteady state of 

Ghaddar’s problem [2], the second and third 

are the steady and unsteady state respectively 

with the same loop as Fig. (1) with exception 

that the bottom part of the loop wall is 

isothermally heated to 𝑇𝐻 , the top part 

isothermally cooled to 𝑇𝐶  and the right and left 

side are insulated. 
 

2. Problems Statement 

A consideration is given to a loop 2L in 

height, an internal channel half width d. The 

upper and lower connecting portions of the 

vertical channel are semi-circular each of 

height 𝑙, see Fig.(1). The Boussinesg fluid 

contained in the loop is electrically conducting 

with an electrical conductivity σ, and a 

coefficient of thermal expansion 𝛽. The 

magnetic field B0 is applied perpendicular to 

gravity in the x-direction. The thermophysical 

properties of the fluid at a fixed temperature 

𝑇0 are assumed to be constant except for the 

mass density ρ which is related to temperature 

according to 

𝜌 = 𝜌0 1 − 𝛽 𝑇 − 𝑇0   ................................. (1) 

Assuming the channel width of the loop to 

be much smaller than its length 2L, i.e., 

2d < 2𝐿. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.(1) The essential features of the 

thermosyphonic side-heated 

closed loop. 

 

In all three problems, 𝑇𝐶  , was taken as the 

reference temperature, and we will write         

down the energy equation in term of the             

bulk temperature , 𝑇𝑏  , with this  

consideration equation (1) may be written as 

   𝜌 = 𝜌0 1 − 𝛽 𝑇𝑏 − 𝑇𝐶  . 
 

To simplify the coordinate system, circular 

ends at the top and bottom parts of the loop are 

considered to be straight and the origin of the 

y-axis placed at the top of the loop, parallel to 

the flow direction as it moves down with 

gravity along the cold side from 0 to +2L, and 

against gravity along the hot side from -2L to 

0, with motion being clockwise. 

 

3. Problem One 
In this problem, we study the unsteady state of 

Ghaddar’s problem [2], he study the steady 

state. Here, the left side of the loop wall is 

isothermally heated to 𝑇𝐻 and the right side 

isothermally cooled to 𝑇𝐶 . 
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3.1 The Continuity and Energy Equations 

The continuity and the energy equations 

will be written in terms of bulk temperature. 

Also, to simplify the problem, the following 

assumptions are made. 

1-The fluid velocity through the channel is 

constant and denoted by V0. 

2-The fluid is incompressible i.e. ρ=constant. 
 

Using the assumptions mentioned above 

the continuity and energy equations for the 

problem under consideration can be written as 

V0 = constant .................................................... (2) 

The energy equation for −2𝐿+𝑙 ≤ 𝑦 ≤ −𝑙 

and 𝑙 ≤ 𝑦 ≤ 2𝐿 − 𝑙  

𝜌𝐶𝑝  
𝜕𝑇𝑏

𝜕𝑡
+ V0

𝜕𝑇𝑏

𝜕𝑦
 =

ℎ

2𝑑
 𝑇𝑤 − 𝑇𝑏 + 

𝜍V0
2𝐵0

2  ....................................................... (3) 

And for the regions −𝑙 ≤ 𝑦 ≤ 𝑙 and 
2𝐿 − 𝑙 ≤ 𝑦 ≥ −2𝐿 + 𝑙 

𝜌𝐶𝑝  V0
𝜕𝑇𝑏

𝜕𝑦
 = 𝜍V0

2𝐵0
2  ............................(4) 

Where 𝑇𝑏  is the bulk temperature, 𝑇𝑤  is the 

loop wall temperature in the isothermal 

regions defined by: 

𝑇𝑤=𝑇𝐻 for −2𝐿 + 𝑙 ≤ 𝑦 ≤ −𝑙 ..................  (5 a)       

𝑇𝑤 = 𝑇𝐶  for 𝑙 ≤ 𝑦 ≤ 2𝐿 − 𝑙  .....................  (5 b) 

By introducing the following new 

quantities: 

 𝜃𝑏 =
𝑇𝑏−𝑇𝐶

𝑇𝐻−𝑇𝐶
 , 𝑦∗ =

𝑦

𝑑
 , 𝑡∗ =

𝑡V0

𝑑
 

The dimensionless form of equations (3) 

and (4) can be written as: 
𝜕𝜃𝑏

𝜕 𝑡∗
+

𝜕𝜃𝑏

𝜕𝑦∗ + 𝑚𝜃𝑏 = 𝑚 +
𝐻𝑎2𝐸𝑐

𝑅𝑒
  ...............(6) 

 for −2𝐿 + 𝑙 ≤ 𝑦 ≤ −𝑙 and for  
+𝑙 ≤ 𝑦 ≤ 2𝐿 − 𝑙 

𝜕𝜃𝑏

𝜕 𝑡∗
+

𝜕𝜃𝑏

𝜕𝑦∗ + 𝑚𝜃𝑏 =
𝐻𝑎2𝐸𝑐

𝑅𝑒
  ..........................(7) 

And the dimensionless form of the energy 

equations in the insulated region are 
𝜕𝜃𝑏

𝜕𝑦∗ =
𝐻𝑎2𝐸𝑐

𝑅𝑒
  .............................................(8) 

for – 𝑙 ≤ 𝑦 ≤ 𝑙 and for 2𝐿 − 𝑙 ≤ 𝑦 ≥ 

                                                  −2𝐿 + 𝑙   
𝜕𝜃𝑏

𝜕𝑦∗
=

𝐻𝑎2𝐸𝑐

𝑅𝑒
  .............................................(9) 

From which, by using the continuity 

condition, the boundary conditions that 

associated with the energy equations for the 

top and bottom regions are 

𝜃𝑏 𝑙 = 𝜃𝑏 −𝑙 + 2𝐻𝑎2𝐸𝑐(
𝑙

𝑑
)/𝑅𝑒  ........... (10)  

𝜃𝑏 −2𝐿 + 𝑙 = 𝜃𝑏 2𝐿 − 𝑙 + 𝐻𝑎2𝐸𝑐(
𝑙

𝑑
)/𝑅𝑒   

                               ........................................ (11) 

And the initial condition is given by 

  𝜃𝑏 𝑦
∗, 𝑡∗ = 0 at 𝑡∗ = 0  ..................... (12) 

Where m = 
𝑁𝑢

2𝑝𝑟𝑅𝑒
 = Stanton number,  

Re = 
v0𝑑𝜌

µ
 =Reynolds number, 𝐻𝑎 = 𝐵𝑑 

𝜍

𝜌𝜈
 = 

Hartmann number and 𝐸𝑐 =
v0

2

𝐶𝑝𝑇
 = Eckert 

number. 
 

3.2 Method of Solution 

The Laplace transformation technique,[6], 

is used to solve each of equations (6) and (7) 

and there analytic solution ,respectively, are 
𝜃𝑏(𝑦 ∗, 𝑡∗) = 

𝐾

𝑚
−

𝐾

𝑚
𝑒−𝑚𝑡∗ +  

1−𝑒
−2𝑚 

𝐿−𝑙
𝑑

 

𝑒−𝑚𝑏 −𝑒𝑚𝑎   𝑒−𝑚𝑦∗
 

−𝐷  
1+𝑒

−2𝑚 
𝐿−𝑙
𝑑

 

𝑒−𝑚𝑏 −𝑒𝑚𝑎  𝑒−𝑚𝑦∗
+  

1

2
 𝑒−𝑚𝑡∗  

− 2𝑒−𝑚𝑡∗  (𝑗𝑎𝑠𝑖𝑛

∞

𝑛=1+𝑟

 𝑎 − 𝑡∗ + 𝑦∗ 𝑗 

−𝑗𝑏𝑠𝑖𝑛(𝑏 + 𝑡∗ − 𝑦∗ )𝑗)/( 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏  
2
 

+(𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) )2 ) 

+2𝑒−𝑚𝑡∗
 (𝑚𝑏𝑐𝑜𝑠(𝑏 + 𝑡∗ − 𝑦∗ )𝑗

∞

𝑛=1+𝑟

 

+𝑚𝑎𝑐𝑜𝑠 𝑎 − 𝑡∗ + 𝑦∗  𝑗 − 𝑗𝑏𝑠𝑖𝑛 𝑏 + 𝑡∗ − 𝑦∗  𝑗 

+𝑗𝑎𝑠𝑖𝑛(𝑎 − 𝑡∗ + 𝑦∗)𝑗)/ 

( 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 + 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎 − 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 + 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎  
2
 

+(𝑚𝑎𝑠𝑖𝑛(𝑗𝑎) − 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑏𝑗𝑐𝑜𝑠(𝑗𝑏) − 𝑎𝑗𝑐𝑜𝑠(𝑗𝑎) )2 ) 

−2𝐷𝑒−𝑚𝑡∗
 (𝑚𝑏𝑐𝑜𝑠(𝑏 + 𝑡∗ − 𝑦∗)𝑗

∞

𝑛=1+𝑟

 

+𝑚𝑎𝑐𝑜𝑠 𝑎 − 𝑡∗ + 𝑦∗ 𝑗 − 𝑗𝑏𝑠𝑖𝑛 𝑏+𝑡∗ − 𝑦∗ 𝑗 

+𝑗𝑎𝑠𝑖𝑛(𝑎 − 𝑡∗ + 𝑦∗ )𝑗)/ 

( 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 + 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎 − 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 + 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎  
2
 

+(𝑚𝑎𝑠𝑖𝑛(𝑗𝑎) − 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑏𝑗𝑐𝑜𝑠(𝑗𝑏) − 𝑎𝑗𝑐𝑜𝑠(𝑗𝑎) )2 ) 

                              𝑟 = 0,2,4…  .................................. (13)  

 

     𝜃𝑏( 𝑦 ∗, 𝑡∗) = 
𝑄

𝑚
−

𝑄

𝑚
𝑒−𝑚𝑡∗ + 

 
1 − 𝑒−2𝑚 

𝐿−𝑙
𝑑

 

𝑒−𝑚𝑏 − 𝑒𝑚𝑎
  𝑒𝑚 𝑘1−𝑦∗ − 

𝐷  
1 + 𝑒

−2𝑚 
𝐿−𝑙
𝑑

 

𝑒−𝑚𝑏 − 𝑒𝑚𝑎  𝑒𝑚 𝑘1−𝑦∗ +  𝐷𝑒
𝑚 

𝑙
𝑑
−𝑦∗ 
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+𝑒
𝑚 

𝑙
𝑑
−𝑦∗ 

− 𝑒−𝑚𝑡∗ +  
1

2
 𝑒−𝑚𝑡∗  

− 2𝑒−𝑚𝑡∗  (𝑗𝑎𝑠𝑖𝑛∞
𝑛=1+𝑟 (𝑎 − 𝑘1 − 𝑡∗ + 𝑦∗ )𝑗 

−𝑗𝑏𝑠𝑖𝑛(𝑏 + 𝑘1 + 𝑡∗ − 𝑦∗)𝑗)/( 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏  
2
 

+(𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) )2 ) 

+2𝑒−𝑚𝑡∗
 (𝑚𝑏𝑐𝑜𝑠

∞

𝑛=1+𝑟

(𝑏 + 𝑘1 + 𝑡∗ − 𝑦∗ )𝑗 

+𝑚𝑎𝑐𝑜𝑠 𝑎 − 𝑘1 − 𝑡∗ + 𝑦∗ 𝑗 − 𝑗𝑏𝑠𝑖𝑛 𝑏+𝑘1 + 𝑡∗ − 𝑦∗ 𝑗 

+𝑗𝑎𝑠𝑖𝑛(𝑎 − 𝑘1 − 𝑡∗ + 𝑦∗ )𝑗)/ 

( 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 + 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎 − 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 + 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎  
2
 

+(𝑚𝑎𝑠𝑖𝑛(𝑗𝑎) − 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑏𝑗𝑐𝑜𝑠(𝑗𝑏) − 𝑎𝑗𝑐𝑜𝑠(𝑗𝑎) )2 ) 

−2𝐷𝑒−𝑚𝑡∗
 (𝑚𝑏𝑐𝑜𝑠

∞

𝑛=1+𝑟

(𝑏 + 𝑘1 + 𝑡∗ − 𝑦∗)𝑗 

+𝑚𝑎𝑐𝑜𝑠 𝑎 − 𝑘1 − 𝑡∗ + 𝑦∗ 𝑗 − 𝑗𝑏𝑠𝑖𝑛 𝑏+𝑘1 + 𝑡∗ − 𝑦∗ 𝑗 

+𝑗𝑎𝑠𝑖𝑛(𝑎 − 𝑘1 − 𝑡∗ + 𝑦∗)𝑗)/ 

( 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 + 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎 − 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 + 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎  
2
 

+(𝑚𝑎𝑠𝑖𝑛(𝑗𝑎) − 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑏𝑗𝑐𝑜𝑠(𝑗𝑏) − 𝑎𝑗𝑐𝑜𝑠(𝑗𝑎) )2 ) 

     𝑟 = 0,2,4…   ..................................... (14) 

Where 𝐷 =
2𝐻𝑎2𝐸𝑐(

𝑙

𝑑
)

𝑅𝑒
, 𝑗 =

𝜋𝑛𝑑

(2𝐿−2𝑙)
, 𝑎 =

2𝐿−𝑙

𝑑
, 

𝑏 =
2𝐿−3𝑙

𝑑
 and 𝑘1 = 2(

𝑙

𝑑
). 

 

4 Problem Two 

An analytical model of a side heated free 

convection loop place in a transverse magnetic 

field will be studied. In this problem, the 

bottom part of the loop wall is isothermally 

heated to 𝑇𝐻 and the top part isothermally 

cooled to 𝑇𝐶 . 
 

4.1 The Energy and Momentum Equations 

The continuity, energy and momentum 

equations for one dimensional are  

V0 = constant (15) 

The energy equation for −𝑙 ≤ 𝑦 ≤ +𝑙 and 
2𝐿 − 𝑙 ≤ 𝑦 ≥ −2𝐿 + 𝑙  

 𝜌𝐶𝑝  v0
𝜕𝑇𝑏

𝜕𝑦
 =

ℎ

2𝑑
 𝑇𝑤 − 𝑇𝑏 + 𝜍v0

2𝐵0
2  ..(16) 

And for the regions −2𝐿 + 𝑙 ≤ 𝑦 ≤ −𝑙 and 
𝑙 ≤ 𝑦 ≤ 2𝐿 − 𝑙 

𝜌𝐶𝑝  v0
𝜕𝑇𝑏

𝜕𝑦
 = 𝜍v0

2𝐵0
2   .........................(17) 

The momentum equation for the problem 

under consideration is 

  0 = −
𝜕𝑝

𝜕𝑦
+ 𝜌𝑔 − 𝜍v0𝐵0

2 − 
𝜏

𝑑
  ................(18) 

𝑇𝑤  is the loop wall temperature in the 

isothermal regions defined by: 

  𝑇𝑤= 𝑇𝐻 for 2𝐿 − 𝑙 ≤ 𝑦 ≥ −2𝐿 + 𝑙  ...... (19 a) 

 𝑇𝑤=𝑇𝐶 for −𝑙 ≤ 𝑦 ≤ 𝑙  ........................... (19 b) 

We can write down the energy equations 

(16) and (17) in non-dimensional form through 

using scaling and order of magnitude analysis. 

This can be done through introducing the 

following new quantities: 

𝜃𝑏 =
𝑇𝑏−𝑇𝐶

𝑇𝐻−𝑇𝐶
 ,  𝑦∗ =

𝑦

𝑑
 

The substituting of these quantities into 

equations (16) and (17) gives the energy 

equations in dimensionless form and they are: 

   
𝜕𝜃𝑏

𝜕𝑦∗ + 𝑚𝜃𝑏 = 𝑚 +
𝐻𝑎2𝐸𝑐

𝑅𝑒
  (20) 

for 2𝐿 − 𝑙 ≤ 𝑦 ≥ −2𝐿 + 𝑙 and for  
−𝑙 ≤ 𝑦 ≤ +𝑙 

𝜕𝜃𝑏

𝜕𝑦∗ + 𝑚𝜃𝑏 =
𝐻𝑎2𝐸𝑐

𝑅𝑒
   ................................ (21) 

And the dimensionless form of the           

energy equations for the insulated region, 

−2𝐿 + 𝑙 ≤ 𝑦 ≤ −𝑙, is 
𝜕𝜃𝑏

𝜕𝑦∗ =
𝐻𝑎2𝐸𝑐

𝑅𝑒
 ............................................. (22) 

and for 𝑙 ≤ 𝑦 ≤ 2𝐿 − 𝑙 is  
𝜕𝜃𝑏

𝜕𝑦∗ =
𝐻𝑎2𝐸𝑐

𝑅𝑒
 ............................................. (23) 

From which, by using the continuity 

condition, the boundary conditions that 

associated with the energy equations for the 

right and left sides are 

𝜃𝑏 −𝑙 = 𝜃𝑏 −2𝐿 + 𝑙 + 2𝐻𝑎2𝐸𝑐(
𝐿−𝑙

𝑑
)/𝑅𝑒  

 .............................. (24) 

𝜃𝑏 2𝐿 − 𝑙 = 𝜃𝑏 𝑙 + 2𝐻𝑎2𝐸𝑐(
𝐿−𝑙

𝑑
)/𝑅𝑒  

 .............................. (25) 

Where m , Re , Ha and Ec are same as in 

problem one. 
 

4.2 Method of Solution 

The governing equations for this problem 

are solved analytically.  

Equations (20) and (21) are linear 

differential equation of first order and their 

solutions, respectively, are 

𝜃𝑏 = 1 + 𝐴𝑒−
𝑚𝑦

𝑑 +
2𝐻𝑎2𝐸𝑐𝑃𝑟

𝑁𝑢
 for  

2𝐿 − 𝑙 ≤ 𝑦 ≥ −2𝐿 + 𝑙  .................... (26)  
 

𝜃𝑏 = 𝐵𝑒−
𝑚𝑦

𝑑 +
2𝐻𝑎2𝐸𝑐𝑃𝑟

𝑁𝑢
 for −𝑙 ≤ 𝑦 ≤ +𝑙  

 ........................................... (27)  

Where the dimensionless parameter 𝑚 is a 

form of Stanton number given by St= 
ℎ

2𝜌𝐶𝑝 V0
=

 
𝑁𝑢

2𝑅𝑒𝑃𝑟
 . The other parameters in equations (26) 

and (27) are the Reynolds number based on the 

induced velocity, 𝑅𝑒 =
V0𝑑

𝜈
; the Nusselt 
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number, 𝑁𝑢 =
ℎ𝑑

𝐾 
 ; the Prandtl number, 𝑃𝑟 =

𝜈

𝛼
; 

the Eckert number, 𝐸𝑐 =
V0

2

𝐶𝑝𝑇
 ; the 

temperature difference between hot and the 

cold side walls, 𝑇 = 𝑇𝐻 − 𝑇𝐶; and the 

Hartmann number, 𝐻𝑎 = 𝐵0𝑑 
𝜍

𝜌𝜈
 . Solution of 

equations (22) and (23) in the insulated 

sections give a linearly increasing bulk 

temperature due to Joulean heating in each 

segment. Therefore, the bulk temperature in 

those segments are given in equations 

(24)and(25). Using equations (24) and (25) 

one can find the constants 𝐴 and 𝐵 in 

equations, (26) and (27), these constants are 

𝐴 =
[1 − 𝑒−2

𝑚𝑙
𝑑 ]

[𝑒𝑚(
2𝐿−3𝑙

𝑑
) − 𝑒−𝑚(

2𝐿−𝑙
𝑑

)]

− 

2𝐻𝑎2𝐸𝑐(
𝐿−𝑙

𝑑
)

𝑅𝑒
[

1+𝑒
−2

𝑚𝑙
𝑑

𝑒
𝑚 (

2𝐿−3𝑙
𝑑

)
−𝑒

−𝑚 (
2𝐿−𝑙
𝑑

)
]  .................. (28) 

𝐵 = 𝑒−𝑚
𝑙

𝑑 + 𝐴𝑒𝑚(
2𝐿−2𝑙

𝑑
) + 2𝑒−𝑚

𝑙

𝑑
𝐻𝑎2𝐸𝑐(

𝐿−𝑙

𝑑
)

𝑅𝑒
  

 ...............................(29) 

The momentum equation (18) which is 
𝜏

𝑑
+ 𝜍v0𝐵0

2 = −
𝜕𝑝

𝜕𝑦
+ 𝜌𝑔  .........................(30) 

Since 𝜌 = 𝜌0(1 − 𝛽 𝑇𝑏 − 𝑇𝐶 ), substitute 

the value of 𝜌 into equation (30) we get 
𝜏

𝑑
+ 𝜍v0𝐵0

2 = −
𝜕𝑝

𝜕𝑦
+ 𝜌0𝑔 − 𝜌0𝛽 𝑇𝑏 − 𝑇𝐶 𝑔       

 ...............................(31) 

and using  

𝜃𝑏𝑇 = 𝑇𝑏 − 𝑇𝐶   ....................................(32) 

Substituting from equation (32) into 

equation (30) we get  
𝜏

𝑑
+ 𝜍v0𝐵0

2 = −
𝜕𝑝

𝜕𝑦
+ 𝜌0𝑔 − 𝜌0𝑔𝛽𝑇𝜃𝑏   

 ...............................(33) 

Integrated equation (33) around the loop 

we get 

   
𝜏

𝑑
+ 𝜍v0𝐵0

2 𝑑𝑦
2𝐿

−2𝐿
=   −

𝜕𝑝

𝜕𝑦
+ 𝜌0𝑔 −

2𝐿

−2𝐿

𝜌0𝑔𝛽𝑇𝜃𝑏𝑑𝑦  

4
𝜏𝐿

𝑑
+ 4𝜍v0𝐵0

2𝐿 =

𝜌0𝑔𝛽𝑇[+  𝜃𝑏𝑑𝑦 +  𝜃𝑏𝑑𝑦 +
−𝑙

−2𝐿+𝑙

−2𝐿+𝑙

−2𝐿

−𝑙0𝜃𝑏𝑑𝑦−0𝑙𝜃𝑏𝑑𝑦−𝑙2𝐿−𝑙𝜃𝑏𝑑𝑦  

− 𝜃𝑏𝑑𝑦
2𝐿

2𝐿−𝑙
]  .......................................... (34)  

Where the pressure variations in the loop are 

only due to gravity. The negative and positive 

signs of the buoyant terms are related to 

gravity direction which is positive for the 

upward going flow and negative for the 

downward going flow. In each integral 

segment, the respective bulk temperature are 

used the isothermal region and insulated 

region. The flow in the channel is assumed 

fully developed and the solution of Hartmann 

[5] for MHD plane-Poiseuille flow with a 

transverse magnetic field is used to correlate 

the walls shear stress force to the mean flow 

velocity v0 by: 

𝜏 =
µV0

𝑑
𝐻𝑎2 tanh ⁡(𝐻𝑎)

𝐻𝑎−tanh ⁡(𝐻𝑎)
 .......................... (35) 

Using the value of 𝜏 in equation (35) and 

evaluating the integral of the buoyancy term 

using the temperature distribution obtained in 

equations (26) and (27), reduces equation (34) 

to the following: 

 
4µV0Ha 2tanhHa

𝑑2 𝐻𝑎−𝑡𝑎𝑛 ℎ𝐻𝑎 
+ 4𝜍V0𝐵0

2 = 

𝜌0𝑔𝛽𝑇[
−𝐴

𝑚 
𝐿

𝑑
 
𝑒
𝑚 

2𝐿−𝑙

𝑑
 

+
𝐴

𝑚 
𝐿

𝑑
 
𝑒2𝑚

𝐿

𝑑  

+
𝐵

𝑚 
𝑙

𝑑
 
𝑒𝑚

𝑙

𝑑  

+
𝐵

𝑚 
𝐿

𝑑
 
𝑒−𝑚

𝑙

𝑑 +
𝐴

𝑚(
𝐿

𝑑
)
𝑒−2𝑚

𝐿

𝑑 −
𝐴

𝑚(
𝐿

𝑑
)
𝑒
𝑚 

−2𝐿+𝑙

𝑑
 
−

2
𝐵

𝑚(
𝑙

𝑑
)
     .............................................................. (36) 

Equation (36) gives a correlation between 

the induced flow velocity v0 and the other 

flow and geometric parameters in the system 

and can then be reduced to the following  

non-dimensional correlation: 

 𝐺𝑟 =
4𝑅𝑒𝐻𝑎2[1+

𝑡𝑎𝑛 ℎ𝐻𝑎

𝐻𝑎 −𝑡𝑎𝑛 ℎ𝐻𝑎
]

2𝑃𝑟𝑅𝑒 {𝐹}

 
𝐿
𝑑
 𝑁𝑢

  .................... (37) 

Where 𝐺𝑟 is the Grashof number,  

𝐺𝑟 =
𝑔𝛽𝑇𝑑3

𝜈2 , the parameter 𝐹 is defined as 

 𝐹 = −𝐴 𝑒
𝑚 

2𝐿−𝑙

𝑑
 

+ 𝑒
𝑚 

−2𝐿+𝑙

𝑑
 
 +

  𝐴  𝑒2𝑚
𝐿

𝑑 + 𝑒−2𝑚
𝐿

𝑑 + 𝐵  𝑒𝑚
𝑙

𝑑 + 𝑒−𝑚
𝑙

𝑑 −  

  2𝐵  ............................................................. (38) 

𝐴 and 𝐵 are the dimensionless terms defined in 

equations (28) and (29).  
 

5 Problem Three 

In this problem, we study the unsteady 

state of problem two. Where the bottom part of 

the loop wall is isothermally heated to 𝑇𝐻 and 

the top part isothermally cooled to 𝑇𝐶 . 
 

5.1 The Continuity and Energy Equations   

The continuity equation for one 

dimensional can be written as: 

V0 = constant  ........................................ (39) 
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The energy equation for 2𝐿 − 𝑙 ≤ 𝑦 ≥
−2𝐿 + 𝑙 and −𝑙 ≤ 𝑦 ≤ +𝑙  

𝜌𝐶𝑝  
𝜕𝑇𝑏

𝜕𝑡
+ v0

𝜕𝑇𝑏

𝜕𝑦
 =

ℎ

2𝑑
 𝑇𝑤 − 𝑇𝑏 + 𝜍v0

2𝐵0
2  

 .................................. (40)  

And for the regions −2𝐿 + 𝑙 ≤ 𝑦 ≤ −𝑙 and 
+𝑙 ≤ 𝑦 ≤ 2𝐿 − 𝑙  

   𝜌𝐶𝑝  v0
𝜕𝑇𝑏

𝜕𝑦
 = 𝜍v0

2𝐵0
2  .......................(41) 

in the above equations, we assume that the 

fluid is incompressible, i.e (ρ=constant), where 
𝐽2

𝜍
= 𝜍v0

2𝐵0
2 defined in problem one, 𝑇𝑏  is the 

bulk temperature, 𝑇𝑤  is the loop wall 

temperature in the isothermal regions defined 

by: 

𝑇𝑤=𝑇𝐻 for 2𝐿 − 𝑙 ≤ 𝑦 ≥ −2𝐿 + 𝑙  ............. (42) 

𝑇𝑤=𝑇𝐶  for −𝑙 ≤ 𝑦 ≤ +𝑙   .........................(43) 
 

5.2 Non-dimensional Form of Energy 

Equation 

We can write down the energy equation for 

both regions, the insulated and isothermal, 

with exception we will add the unsteady term 

and as follows 
𝜕𝜃𝑏

𝜕 𝑡∗
+

𝜕𝜃𝑏

𝜕𝑦∗ + 𝑚𝜃𝑏 = 𝑚 +
𝐻𝑎2𝐸𝑐

𝑅𝑒
 for  

      2𝐿 − 𝑙 ≤ 𝑦 ≥ −2𝐿 + 𝑙  ............................... (44) 

  
𝜕𝜃𝑏

𝜕 𝑡∗
+

𝜕𝜃𝑏

𝜕𝑦∗ + 𝑚𝜃𝑏 =
𝐻𝑎2𝐸𝑐

𝑅𝑒
 for 

−𝑙 ≤ 𝑦 ≤ +𝑙  ...........................................(45) 

and the dimensionless form of the energy 

equations for the insulated regions are 

 
𝜕𝜃𝑏

𝜕𝑦∗ =
𝐻𝑎2𝐸𝑐

𝑅𝑒
 for −2𝐿 + 𝑙 ≤ 𝑦 ≤ −𝑙  .......... (46) 

 
𝜕𝜃𝑏

𝜕𝑦∗ =
𝐻𝑎2𝐸𝑐

𝑅𝑒
 for 𝑙 ≤ 𝑦 ≤ 2𝐿 − 𝑙  ............. (47) 

From which, by using the continuity 

condition, the boundary conditions that 

associated with the energy equations for the 

right and left sides are the same as in equations 

(24) and (25). And the initial condition is 

given by equation (12). 
 

5.3 Solution of Problem Three 

To solve this problem, the Laplace 

transformation is used on both side of the 

energy equation (44) and (45).It is found that 

there solution, respectively is given by 

 𝜃𝑏( 𝑦 ∗, 𝑡∗) = 
𝐾

𝑚
−

𝐾

𝑚
𝑒−𝑚𝑡∗ 

+  
1−𝑒

−2𝑚 
𝑙
𝑑
 

𝑒𝑚𝑎 −𝑒−𝑚𝑏   𝑒−𝑚𝑦∗
−

𝑙

2(𝐿−𝑙)
𝑒−𝑚𝑡∗ −

𝐷  
1+𝑒

−2𝑚 
𝑙
𝑑
 

𝑒𝑚𝑎 −𝑒−𝑚𝑏  𝑒
−𝑚𝑦∗

 + 

𝑒−𝑚𝑡 ∗
 (𝑗𝑎𝑠𝑖𝑛

∞

𝑛=1

  𝑡∗ − 𝑦∗ − 𝑎 𝑗 + 𝑗𝑏𝑠𝑖𝑛  𝑡∗ − 𝑦∗ + 𝑏 𝑗 

− 𝑚𝑎𝑐𝑜𝑠  𝑎 − 𝑡∗ + 𝑦∗  𝑗  

−𝑚𝑏𝑐𝑜𝑠((𝑏 + 𝑡∗ − 𝑦∗ )𝑗))/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 − 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑚𝑎𝑠𝑖𝑛(𝑗𝑎)) 2) 

(−𝑗𝑎𝑠𝑖𝑛((𝑡∗ − 𝑘2 − 𝑦∗ − 𝑎)𝑗) − 𝑗𝑏𝑠𝑖𝑛  𝑡∗ − 𝑘2 − 𝑦∗ + 𝑏 𝑗  

+𝑚𝑎𝑐𝑜𝑠  𝑎 − 𝑡∗ + 𝑘2 + 𝑦∗ 𝑗  

+𝑚𝑏𝑐𝑜𝑠((𝑏 + 𝑡∗ − 𝑘2 − 𝑦∗)𝑗))/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 − 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑚𝑎𝑠𝑖𝑛(𝑗𝑎))2 ) 

−𝑒−𝑚𝑡∗
 (𝑗𝑏𝑠𝑖𝑛

∞

𝑛=1

(𝑡∗ − 𝑦∗ + 𝑏)𝑗) 

+𝑗𝑎𝑠𝑖𝑛  𝑡∗ − 𝑦∗ − 𝑎 𝑗 − 𝑗𝑏𝑠𝑖𝑛  𝑡∗ − 𝑘2 − 𝑦∗ + 𝑏 𝑗  

−𝑗𝑎𝑠𝑖𝑛((𝑡∗ − 𝑘2 − 𝑦∗ − 𝑎)𝑗))/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) )2 ) 

                 −𝐷𝑒−𝑚𝑡∗
 (𝑗𝑎𝑠𝑖𝑛∞

𝑛=1   𝑡∗ − 𝑦∗ − 𝑎 𝑗  

+𝑗𝑏𝑠𝑖𝑛  𝑡∗ − 𝑦∗ + 𝑏 𝑗 − 𝑚𝑎𝑐𝑜𝑠  𝑎 − 𝑡∗ + 𝑦∗  𝑗  

−𝑚𝑏𝑐𝑜𝑠((𝑏 + 𝑡∗ − 𝑦∗ )𝑗))/((𝑗𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑗𝑎𝑠𝑖𝑛(𝑗𝑎) 

−𝑚𝑏𝑐𝑜𝑠(𝑗𝑏) − 𝑚𝑎𝑐𝑜𝑠(𝑗𝑎) )2 

+ 𝑗𝑏𝑐𝑜𝑠 𝑗𝑏 + 𝑗𝑎𝑐𝑜𝑠 𝑗𝑎 + 𝑚𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑚𝑎𝑠𝑖𝑛 𝑗𝑎 )2   + 

 (+𝑗𝑎𝑠𝑖𝑛((𝑡∗ − 𝑘2 − 𝑦∗ − 𝑎)𝑗) + 𝑗𝑏𝑠𝑖𝑛((𝑡∗ − 𝑘2 − 𝑦∗ + 𝑏)𝑗) 

−𝑚𝑎𝑐𝑜𝑠  𝑎 − 𝑡∗ + 𝑘2 + 𝑦∗  𝑗  

−𝑚𝑏𝑐𝑜𝑠((𝑏 + 𝑡∗ − 𝑘2 − 𝑦∗ )𝑗))/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 − 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑚𝑎𝑠𝑖𝑛(𝑗𝑎))2) 

    𝑛 = 1,2,3,…  ........................................................... (48) 
 

𝜃𝑏( 𝑦 ∗, 𝑡∗) = 
𝑄

𝑚
−

𝑄

𝑚
𝑒−𝑚𝑡∗ 

+  
1 − 𝑒

−2𝑚 
𝑙
𝑑
 

𝑒𝑚𝑎 − 𝑒−𝑚𝑏   𝑒𝑚 𝑘3−𝑦∗ − 

2𝐻𝑎2𝐸𝑐  
𝐿 − 𝑙
𝑑

 

𝑅𝑒
 
1 + 𝑒

−2𝑚 
𝑙
𝑑
 

𝑒𝑚𝑎 − 𝑒−𝑚𝑏  𝑒
𝑚 𝑘3−𝑦∗  

− 
𝑙

2(𝐿 − 𝑙)
 𝑒−𝑚𝑡∗ + 𝑒

−𝑚 
𝑙
𝑑

+𝑦∗ 
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+𝐷𝑒
−𝑚 

𝑙
𝑑

+𝑦∗ 
− 𝑒−𝑚𝑡∗ − 

𝑒−𝑚𝑡∗
 (𝑗𝑏𝑠𝑖𝑛

∞

𝑛=1

 𝑡∗ + 𝑘3 − 𝑦∗ + 𝑏 𝑗 

+𝑗𝑎𝑠𝑖𝑛 𝑡∗ + 𝑘3 − 𝑦∗ − 𝑎 𝑗 − 𝑗𝑏𝑠𝑖𝑛 𝑡∗ + 𝑘3 − 𝑘2 − 𝑦∗ + 𝑏 𝑗 

−𝑗𝑎𝑠𝑖𝑛(𝑡∗ + 𝑘3 − 𝑘2 − 𝑦∗ − 𝑎)𝑗)/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) )2 ) 

+𝑒−𝑚𝑡∗
 (𝑗𝑎𝑠𝑖𝑛

∞

𝑛=1

  𝑡∗ + 𝑘3 − 𝑦∗ − 𝑎 𝑗  

+𝑗𝑏𝑠𝑖𝑛  𝑡∗ + 𝑘3 − 𝑦∗ + 𝑏 𝑗 

− 𝑚𝑎𝑐𝑜𝑠  𝑎 − 𝑡∗ − 𝑘3 + 𝑦∗  𝑗  

−𝑚𝑏𝑐𝑜𝑠((𝑏 + 𝑡∗ + 𝑘3 − 𝑦∗ )𝑗))/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 − 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑚𝑎𝑠𝑖𝑛(𝑗𝑎))2 ) 

+(−𝑗𝑎𝑠𝑖𝑛((𝑡∗ + 𝑘3 − 𝑘2 − 𝑦∗ − 𝑎)𝑗) 

−𝑗𝑏𝑠𝑖𝑛  𝑡∗ + 𝑘3 − 𝑘2 − 𝑦∗ + 𝑏 𝑗  

+𝑚𝑎𝑐𝑜𝑠  𝑎 − 𝑡∗ − 𝑘3 + 𝑘2 + 𝑦∗ 𝑗  

+𝑚𝑏𝑐𝑜𝑠((𝑏 + 𝑡∗ + 𝑘3 − 𝑘2 − 𝑦∗ )𝑗))/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 − 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑚𝑎𝑠𝑖𝑛(𝑗𝑎))2 ) 

−𝐷𝑒−𝑚𝑡∗
 (𝑗𝑎𝑠𝑖𝑛

∞

𝑛=1

  𝑡∗ + 𝑘3 − 𝑦∗ − 𝑎 𝑗  

+𝑗𝑏𝑠𝑖𝑛  𝑡∗ + 𝑘3 − 𝑦∗ + 𝑏 𝑗  

−𝑚𝑎𝑐𝑜𝑠  𝑎 − 𝑡∗ − 𝑘3 + 𝑦∗  𝑗  

−𝑚𝑏𝑐𝑜𝑠((𝑏 + 𝑡∗ + 𝑘3 − 𝑦∗ )𝑗))/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 − 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑚𝑎𝑠𝑖𝑛(𝑗𝑎))2 ) 

+(+𝑗𝑎𝑠𝑖𝑛((𝑡∗ + 𝑘3 − 𝑘2 − 𝑦∗ − 𝑎)𝑗) 

+𝑗𝑏𝑠𝑖𝑛  𝑡∗ + 𝑘3 − 𝑘2 − 𝑦∗ + 𝑏 𝑗  

−𝑚𝑎𝑐𝑜𝑠  𝑎 − 𝑡∗ − 𝑘3 + 𝑘2 + 𝑦∗  𝑗  

−𝑚𝑏𝑐𝑜𝑠((𝑏 + 𝑡∗ + 𝑘3 − 𝑘2 − 𝑦∗ )𝑗))/ 

( 𝑗𝑏𝑠𝑖𝑛 𝑗𝑏 − 𝑗𝑎𝑠𝑖𝑛 𝑗𝑎 − 𝑚𝑏𝑐𝑜𝑠 𝑗𝑏 − 𝑚𝑎𝑐𝑜𝑠 𝑗𝑎  
2
 

+(𝑗𝑏𝑐𝑜𝑠(𝑗𝑏) + 𝑗𝑎𝑐𝑜𝑠(𝑗𝑎) + 𝑚𝑏𝑠𝑖𝑛(𝑗𝑏) − 𝑚𝑎𝑠𝑖𝑛(𝑗𝑎))2 ) 

   𝑛 = 1,2,3,… ............................................ (49) 

Where =
𝜋𝑛𝑑

(2𝐿−2𝑙)
 , 𝐷 =

2𝐻𝑎2𝐸𝑐(
𝐿−𝑙

𝑑
)

𝑅𝑒
 , 

𝑘2 = (
𝑙

𝑑
), 𝑘3 = 2(

𝐿−𝑙

𝑑
), 𝑎 =

2𝐿−3𝑙

𝑑
 and 𝑏 =

2𝐿−𝑙

𝑑
 . 

 

6. Results and Discussion (Problem One) 

In this section we will study the effect of 

the time, Reynolds and Prandtl numbers on the 

dimensionless bulk temperature distribution, 

equations (13) and (14), along the loop at 

𝐿

𝑑
= 20, 

𝑙

𝑑
= 2, 𝑁𝑢 = 1.86, 𝐻𝑎 = 1 and 

𝐸𝑐 = 0, as given by [2]. 
 

6.1 Effect of Time 

To study the effect of time ( 𝑡∗) on the 

temperature, we keep Reynolds and Prandtl 

numbers are fixed, while time is varied from 

π/6 to π. We will take Reynolds number is 

equal 50 and Prandtl number was set into 7, 

see Figs. (2-6).The following results were 

observed 

1-For the same points, we note that as 

𝑡∗ increases the bulk temperature   

increases. 

2-The bulk temperature varied between 

-0.015 to 0.02 as 𝑡∗ increases. 
 

6.2 Effect of Reynolds Number 

To study the effect of Reynolds number on 

the temperature, we have set 𝑡∗ is equal to π/3 

and Prandtl is equal to 1, while Reynolds is 

varied from 5 to 150, see Figs. (7-11). The 

following results were observed  

1-For the same points, as Reynolds number 

increases the bulk temperature  decreases. 

2-When Reynolds number, 𝑅𝑒 ≤ 10, there  

exist a gradually translate in the bulk 

temperature. 

3-When Reynolds number, 𝑅𝑒 > 10, we  note 

that the transition in the bulk temperature is 

more rapid from the case of  𝑅𝑒 ≤ 10.  

(increasing in the curvature of the 𝜃𝑏  

curve). 
 

6.3 Effect of Prandtl Number 

To study the effect of Prandtl number on 

the temperature, we have set 𝑡∗ is equal to π/4 

and Reynolds number is equal to 50, while 

Prandtl number varied from 0.003 to 7, as 

shown in Figs. (3) and (12-16). The following 

results were observed  

1-For the same points, as Prandtl number 

increases the bulk temperature decreases. 

2-When Prandtl number, 𝑃𝑟 < 0.05, there 

exist a sharper translate in the bulk 

temperature. 

3-When Prandtl number,0.05 < 𝑃𝑟 < 1, there 

exist a gradually translate in the bulk 

temperature. 

4-When Prandtl number, 𝑃𝑟 ≥ 1, the 

translation in the bulk temperature becomes 

faster. 
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7. Results and Discussion (Problem Two) 

 In this section, we will study the effect of 

the Reynolds and Prandtl numbers on the 

dimensionless bulk temperature distribution, 

equations (26) and (27), along the loop at 
𝐿

𝑑
= 20, 

𝑙

𝑑
= 2, 𝑁𝑢 = 1.86, 𝐻𝑎 = 1 and 

𝐸𝑐 = 0. Also, we find the effect of Reynolds 

and Prandtl numbers on the parameter 𝐹. 

7.1 Effect of Reynolds Number 

To study the effect of Reynolds number on 

the temperature, we keep Prandtl number fixed 

and is equal to 1, while Reynolds number 

varied from 10 to 150, see Figs. (17-21). The 

following results were observed 

1-For the same points, as Reynolds number 

increases the bulk temperature increases. 

2-When Reynolds number increases the range 

of the bulk temperature decreases. 
 

7.2 Effect of Prandtl Number  
To study the effect of Prandtl number on 

the temperature, we keep Reynolds number 

fixed and is equal to 50, while Prandtl number 

varied from 0.003 to 7, as shown in Figs. (22-

26). The following results were observed.  

1-For the same points, as Prandtl number 

increases the bulk temperature increases. 

2-When Prandtl number, 𝑃𝑟 < 1, the bulk 

temperature between zero and one. 

3-When Prandtl number, 𝑃𝑟 ≥ 1, the bulk 

temperature exceed the one by small  

amount. 
 

7.3 Effect of Reynolds and Prandtl 

Numbers on Parameter 𝑭 

The effect of Reynolds and Prandtl 

numbers on the parameter 𝐹, equation,(37), is 

analyzed through plotting many cases for the 

parameter 𝐹, as shown in Figs. (27-30). The 

following results were noted. 

1-For all values of Reynolds and Prandtl  

numbers the parameter 𝐹 is bounded below 

and goes to zero. 

2-For low to moderate Reynolds number and 

as Prandtl number increases the range of the 

parameter 𝐹 decreases. 
 

8. Results and Discussion (Problem Three) 

In this section, we will study the effect of 

the time, Reynolds and Prandtl numbers on the 

dimensionless bulk temperature distribution, 

equations, (48) and (49), along the loop at 

𝐿

𝑑
= 20, 

𝑙

𝑑
= 2, 𝑁𝑢 = 1.86, 𝐻𝑎 = 1 and 

𝐸𝑐 = 0.  
 

8.1 Effect of Time  

To study the effect of time ( 𝑡∗) on the 

temperature, we keep Reynolds and Prandtl 

numbers are fixed, while time is varied from 

π/6 to π. We have set Reynolds number is 

equal to 50 and Prandtl number was set into 

0.1, as shown in Figs. (31-35). The following 

results were observed  

1-For the same points, we not that as 𝑡∗  
increases the bulk temperature increases. 

2-Obviously from the graphs and since the 

slop of the vertical part from the curve is 

small then the change of the bulk 

temperature is small too. 
 

8.2 Effect of Reynolds Number 

To study the effect of Reynolds number on 

the temperature, we have set 𝑡∗ equal to π/6 

and Prandtl number is equal to 1, while 

Reynolds number is varied from 10 to 150, see 

Figs. (36-40). The following results were 

observed.  

1-For the same points, as Reynolds number 

increases the bulk temperature increases. 

2-When Reynolds number increases, there 

exist a small change in the bulk 

temperature. 
 

8.3 Effect of Prandtl Number 

To study the effect of Prandtl number on 

the temperature, we have set 𝑡∗ equal to π/3 

and Reynolds number is equal 50, while 

Prandtl number varied from 0.003 to 7, as 

shown in Figs. (41-44). The following results 

were observed.  

1-For the same points, as Prandtl number 

increases the change of the bulk temperature 

decreases, and the amount of the change is 

small, since there exist a small slop in the 

vertical part. 

 
Fig. (2) The dimensionless bulk temperature 

distribution,𝜽𝒃,along. 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0 

𝒕∗=π/6. 

y L  

θb 
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Fig. (3) The dimensionless bulk temperature 

distribution,𝜽𝒃,along  

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0 

𝒕∗=π/4 .  

 
Fig. (4) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0&𝒕∗=π/3. 

 
Fig. (5) The dimensionless bulk temperature 

distribution,𝜽𝒃,along  

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0 

𝒕∗=π/2. 

 
Fig. (6) The dimensionless bulk temperature 

distribution,𝜽𝒃,along the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, 

Re=50,Pr=7,Ha=1,Ec=0 &𝒕∗=π. 

 
Fig. (7) The dimensionless bulk temperature 

distribution,𝜽𝒃,along  

 the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, Re=5,Pr=1,Ha=1,Ec=0, 

𝒕∗=π/3. 

 
 

 

Fig. (8) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=10,Pr=1,Ha=1, 

Ec=0, 𝒕∗=π/3. 

 
 

Fig. (9) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=80,Pr=1,Ha=1,Ec=0, 𝒕∗=π/3 

 
Fig.(10) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, 

Nu=1.86,Re=130,Pr=1,Ha=1,Ec=0&𝒕∗=π/3. 

 
Fig.(11)The dimensionless bulk temperature 

distribution,𝜽𝒃,along 

the loop  

for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=150,Pr=1,Ha=1,Ec=0, 𝒕∗=π/3. 

 
 

Fig.(12) The dimensionless bulk temperature distribution,𝜽𝒃,along  

theloop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
=,Nu=1.86,Re=50, 

Pr=.003,Ha=1,Ec=0, 𝒕∗=π/4. 

y L  
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Fig.(13) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loopfor
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=.05,Ha=1,Ec=0&𝒕∗=π/4. 

 
 

Fig.(14)The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=.1,Ha=1,Ec=0&𝒕∗=π/4. 

 
 

Fig.(15) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, e=50, 

Pr=1,Ha=1,Ec=0&𝒕∗=π/4. 

 
 

Fig.(16) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=5,Ha=1,Ec=0, 𝒕∗=π/4. 

 
 

Fig.(17) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=10, 

Pr=1,Ha=1&Ec=0. 

 
 

Fig.(18) The dimensionless bulk temperature distribution 𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, Re=30, 

Pr=1,Ha=1&Ec=0. 

 
 

Fig.(19) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=80, 

Pr=1,Ha=1&Ec=0. 

 
 

Fig.(20) The dimensionless bulk temperature 

distribution,𝜽𝒃,along  the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, 

Re=130,Pr=1,Ha=1&Ec=0. 

 
 

Fig.(21) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, Re=150, 

Pr=1,Ha=1&Ec=0. 

 
 

Fig.(22) The dimensionless bulk temperature distribution,𝜽𝒃,along  

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, Nu=1.86,Re=50,Pr=0.003, 

Ha=1&Ec=0. 
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Fig.(23) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, Nu=1.86,Re=50 

,Pr=0.08,Ha=1&Ec=0. 

 
Fig.(24) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, Re=50, 

Pr=1,Ha=1&Ec=0. 

 
 

 

Fig.(25) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, Re=50, 

Pr=5,Ha=1&Ec=0. 

 
Fig.(26) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=7,Ha=1&Ec=0. 

 
 

Fig.(27) Aplot of the 𝑭 parameter as a function of Grashof 

number for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Ha=5, 

Ec=0 & Pr=0.003 . 

 
 

Fig.(28) Aplot of the 𝑭 parameter as a function of Grashof number 

for 
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86, 

Ha=5,Ec=0 & Pr=1. 

 
 

Fig.(29) Aplot of the 𝑭 parameter as a function of Grashof 

number for 
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Ha=5,Ec=0 & Pr=5. 

 
 

Fig.(30) Aplot of the 𝑭 parameter as a function of Grashof number 

for 
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Ha=5,Ec=0 & Pr=7. 

 

 
 

Fig.(31) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, Nu=1.86,Re=50, 

 Pr=.1,Ha=1,Ec=0&𝒕∗=π/6. 

 
Fig.(32) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=.1,Ha=1,Ec=0&𝒕∗=π/4. 
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Fig.(33)The dimensionless bulk temperature distribution,𝜽𝒃,along  

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, 

Nu=1.86,Re=50,Pr=.1,Ha=1,Ec=0&𝒕∗=π/3. 

 

Fig.(34) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, Nu=1.86,Re=50, 

Pr=.1,Ha=1,Ec=0&𝒕∗=π/2. 

 
 

Fig.(35) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=0.1,Ha=1,Ec=0&𝒕∗=π. 

 
Fig.(36) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, 

Nu=1.86,Re=10,Pr=1,Ha=1,Ec=0&𝒕∗=π/6. 

 
Fig.(37) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=1,Ha=1,Ec=0&𝒕∗=π/6. 

 
Fig.(38) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=80, 

Pr=1,Ha=1,Ec=0&𝒕∗=π/6. 

 
 

Fig.(39)The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loopfor
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=130, 

Pr=1,Ha=1,Ec=0&𝒕∗=π/6. 

 
 

Fig.(40) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, Nu=1.86,Re=150, 

Pr=1,Ha=1,Ec=0&𝒕∗=π/6. 

 
Fig.(41) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loopfor
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐, 

Nu=1.86,Re=50,Pr=.003,Ha=1,Ec=0,𝒕∗=π/3. 
 

 
 

Fig.(42) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=.08,Ha=1,Ec=0, 𝒕∗=π/3. 
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Fig.(43) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=1,Ha=1,Ec=0&𝒕∗=π/3. 

 
Fig.(44) The dimensionless bulk temperature distribution,𝜽𝒃,along 

the loop for
𝑳

𝒅
= 𝟐𝟎,

𝒍

𝒅
= 𝟐,Nu=1.86,Re=50, 

Pr=7,Ha=1,Ec=0&𝒕∗=π/3. 
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 الخلاصة
تقدم ىذهِ الدراسة مميزات ىيدروديناميكيو حمقة مغمقو 

ِِ انتقال  تحتوي عمى سائل موصل كيربائيا في مجالِ
في :درسنا ثلاث مشاكل. مغناطيسي في نموذج ذو بعد واحد

المشكمو الاولى درسنا الجريان اللامستقر في حمقو مغمقو 
وفييا الجانب الأيمن متماثل حرارياً والجانب الأيسر متماثل 

في . في البرودهِ، بينما المناطق العميا والسفمى معزولو
المشكموِ الثانيو والثالثو درسنا الجريان المستقر واللامستقر في 

حمقو مغمقو وفييا المنطقو السفمى متماثمو حرارياً والمنطقو 
العميا متماثمو في البرودهِ، بينما الجانب الأيمن والأيسر ذو 

 .مناطق معزولو
لقد استخدمنا تحويلات لابلاس لحل المشكمتين الاولى  

  .والثالثو، بينما في المشكموِ الثانيو تم إيجاد الحل لتحميمي
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