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Abstract

In this study consideration is given to the hydrodynamic characteristics of a buoyancy-driven
convection loop containing an electrically-conducting fluid in a transverse magnetic field in
one-dimensional model. We study three problems. In problem one, we analyze the unsteady flow in
closed loop in which the right side is isothermal heated and the left side is isothermal cooled, while
the top and bottom regions are insulated. In problems two and three, we analyze the steady and
unsteady flow in closed loop in which the bottom region is isothermal heated and the top region is
isothermal cooled, while the right and left sides are insulated regions.

The Laplace transformation technique is used to solve problems one and three, while in problem

two we found an analytical solution.
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1. Introduction

Magnetofluiddynamics (MFD), [1], is that
branch of applied mathematics which deal
with the flow of electrically conducting fluids
in electric and magnetic fields. It unifies in a
common framework the electromagnetic and
fluid-dynamic theories to yield a description of
the concurrent effects of the magnetic field on
the flow and the flow on the magnetic field.

There are many natural phenomena and
engineering  problems  susceptible  to
magnetofluiddynamic (MFD) analysis. It is
useful in astrophysics because much of the
universe is filled with widely spaced, charged
particles and permeated by magnetic fields,
and so the continuum assumption becomes
applicable. Again geophysicists encounter
MFD phenomena in the interactions of
conducting fluids,[3], and magnetic fields that
are present in and around heavenly bodies.
Engineers employ MFD principles in the
design of heat exchangers, pumps, and flow
meters; in solving space vehicle propulsion,
control, and reentry problems; in designing
communications and radar system; in creating
novel power generating system; and in
developing  confinement  schemes  for
controlled fusion.

Laminar natural convection flow in closed
loops has been studied by many investigators
since it has considerable number of practical
applications in the design of thermal energy

systems including thermosyphonic solar
applications and nuclear technologies. When a
transverse magnetic field is applied to an
electrically conducting fluid in the loop,
convective hydrodynamic motion is damped
and an electric current is induced. Such a
system has two principal applications: the first
is in energy systems or industrial processes
that require control of flow destabilization or
prohibition of motion: the second interest lies
in the possible use of the system for electricity
generation.

In (1983) Hart [4] studied two-dimensional
convection in a horizontal cavity, driven by
differential heating of the two vertical end
walls. In his paper, he describes the
development of the unicellular flow and
secondary instability of the unicell for shallow
cavities filled with a low Prandtl number
liquid. He shows that for prandtl numbers less
than about 0.1, and aspect ratios less than the
same value, parallel flow core will exist with
approximately unit non-dimensional amplitude
(@a=1) up to the point (Gr~800) where
secondary vortices appear.

In (1986) Vives [7] studied the role of
natural and damped during the thermally
controlled solidification of tin and aluminum
alloys in a toroidal mould. The damped
convection was caused by a stationary and
uniform magnetic field parallel to the gravity
field. In his paper, Vives shows that the
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evolution of the thermal phenomena with time
(or with the position of the solidification front)
and also their interactions on the crystal
growth were examined, for various degrees of
superheat, both in the absence and presence of
an axial and a stationary magnetic field.

N. Ghaddar in (1998) [2], studied the
hydrodynamic characteristics of a buoyancy-
driven convection loop containing an
electrically-conducting fluid in a transverse
magnetic field analytically using a one-
dimensional model. One side of the loop is
isothermally heated and the other side
isothermally cooled, and the upper and lower
sections are insulated. In her paper, the value
of Prandtl number was taken from 0.003 to 7
and the value of Reynolds number was taken
from 10 to150. She concluded that the closed-
form solution of the flow velocity is used to
predict the induced electric current of the
system. And she found according to the
solution there exist an optimal strength of the
magnetic field that depends on the system flow
and geometric parameters to maximize the
induced electric current.

In this paper we will consider three
problems, the first one is the unsteady state of
Ghaddar’s problem [2], the second and third
are the steady and unsteady state respectively
with the same loop as Fig. (1) with exception
that the bottom part of the loop wall is
isothermally heated to Ty, the top part
isothermally cooled to T, and the right and left
side are insulated.

2. Problems Statement

A consideration is given to a loop 2L in
height, an internal channel half width d. The
upper and lower connecting portions of the
vertical channel are semi-circular each of
height [, see Fig.(1). The Boussinesg fluid
contained in the loop is electrically conducting
with an electrical conductivity o, and a
coefficient of thermal expansion B. The
magnetic field B, is applied perpendicular to
gravity in the x-direction. The thermophysical
properties of the fluid at a fixed temperature
T, are assumed to be constant except for the
mass density p which is related to temperature
according to

P =po(1 =BT =Tp)) e (1)
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Assuming the channel width of the loop to
be much smaller than its length 2L, i.e.,
2d < 2L.
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Fig.(1) The essential features of the
thermosyphonic side-heated
closed loop.

In all three problems, T, , was taken as the
reference temperature, and we will write
down the energy equation in term of the
bulk  temperature  ,T,, with  this
consideration equation (1) may be written as

p = po(1—B(T, = T¢)).

To simplify the coordinate system, circular
ends at the top and bottom parts of the loop are
considered to be straight and the origin of the
y-axis placed at the top of the loop, parallel to
the flow direction as it moves down with
gravity along the cold side from 0 to +2L, and
against gravity along the hot side from -2L to
0, with motion being clockwise.

3. Problem One

In this problem, we study the unsteady state of
Ghaddar’s problem [2], he study the steady
state. Here, the left side of the loop wall is
isothermally heated to Ty and the right side
isothermally cooled to T.
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3.1 The Continuity and Energy Equations
The continuity and the energy equations

will be written in terms of bulk temperature.

Also, to simplify the problem, the following

assumptions are made.

1-The fluid velocity through the channel is
constant and denoted by V.

2-The fluid is incompressible i.e. p=constant.

Using the assumptions mentioned above
the continuity and energy equations for the
problem under consideration can be written as

Vi = CONSEANT c.cererererererarerarenenenerenenaes 2

The energy equation for —2L+l <y < —I
andl <y <2L-1

aT, aT, h
pC, [a—:+voa—y” =57 T —Th}+

UVOZBOZ ....................................................... (3)

And for the regions—I<y<Il and
2L—-1<y>-2L+1
aT
pCy [Vo a—yb] A5 : T I (4)

Where T, is the bulk temperature, T,, is the
loop wall temperature in the isothermal
regions defined by:

T,=Tyfor —2L+ 1<y < —l.nne. (5a)
T, =Tcforl <y < 2L —1 .. (5b)
By introducing the following new

quantities:
- =2 =N
eb_TH o'V =at d

The dimensionless form of equations (3)
and (4) can be written as:

29 | 26, = 4 BB

at*+ay*+m9b_m+ R e (6)

for —2L+1l<y<-I and for
+tl<y<2L-1

96, 06, __ Ha’Ec

ﬁ+a—y*+m9b— Re e (7)

And the dimensionless form of the energy
equations in the insulated region are

26, _ Ha’Ec
Byt T Re s (8)
for-l<y<landfor2L—-1<y>
—2L +1
26, _ Ha’Ec
Byt T Re s 9

From which, by using the continuity
condition, the boundary conditions that
associated with the energy equations for the
top and bottom regions are

6, (D) = 6, (1) + 2Ha*Ec(5)/Re ... (10)
6, (=2L +1) = 0,(2L — I) + Ha’Ec(3)/Re
........................................ (11)
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And the initial condition is given by

O,y t") =0att™ =0 .cooeevvreiennnn 12)
Where m = 2;‘;’;6 — Stanton number,

Re = Vojp =Reynolds number, Ha = Bd\% =

2
Hartmann number and Ec = ——= Eckert

Cp AT

number.

3.2 Method of Solution

The Laplace transformation technique,[6],
is used to solve each of equations (6) and (7)
and there analytic solution ,respectively, are

O, (y " t") =

K K . 1— -2m (57) .
2 _Lemtt 4 l-e a7 e~ my

e—mb _pma

Com (L

-D [He : )] e ™ + G) e mt’

o g
— 2e™mt" Z (asin(a—t" +y")j
n=1+r
—jbsin(b + t* = y*)j)/(jasin(ja) = jbsin(jb))”
+(jacos(ja) + jbcos(jb) )?)

Z (mbcos(b +t* —y*)j
n=1+r

+macos(a —t* + y* )j — jbsin(b + t* — y*)j

+2e~mt’

+jasin(a —t* + y*)j)/
((mbcos(jb) + macos(ja) — jbsin(jb) +jasin(ja))2
+(masin(ja) — mbsin(jb) — bjcos(jb) — ajcos(ja) )?)

—2De ™t Z (mbcos(b + t* — y*)j

n=l+r
+macos(a — t* + y*)j — jbsin(b+t* — y*)j
+jasin(a —t* +y*)j)/
((mbcos(jb) + macos(ja) — jbsin(jb) +jasin(ja))2
+(masin(ja) — mbsin(jb) — bjcos(jb) — ajcos(ja) )?)
7= 0,24 e coreeneeeeeeeeesieeeseesin (13)

By (¥t == e +

m m

e
[1_6—(‘1)] emei—y") _

e—mb — ema

1+ e_zm(LT_l)

l *
— em(kl_y*)+ Dem(g_y)
e—mb — ema
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+em(é—y*) _ e—mt* + (%) e—mt*

— 267 B, Gasin (a — ky — 7+ ")
—jbsin(b + k; + t* —y")))/((jasin(a) — jbsin(jb))
+(jacos(ja) + jbcos(jb) )?)

+2e™ Mt Z (mbcos (b + ki +t* —y*)j

n=1+r
+macos(a — ky —t* + y*)j — jbsin(b+k, +t* —y*)j
+jasin(a—ky —t* +y*)j)/
((mbcos(jb) + macos(ja) — jbsin(jb) +jasin(ja))2
+(masin(ja) — mbsin(jb) — bjcos(jb) — ajcos(ja) )?)

Z (mbcos (b + ky +t* —y*)j

n=1+r

—2Demt’

+macos(a — k; — t* + y*)j — jbsin(b+ky + t* —y*)j
+jasin(a —ky —t* + y™)j)/
((mbcos(jb) + macos(ja) — jbsin(jb) +jasin(ja))2
+(masin(ja) — mbsin(jb) — bjcos(jb) — ajcos(ja) )?*)

T =024 . trvernierrnrern s (14)
2Ha2EC(é) ) nnd 2L—1
Where D = — )= PTT a=-—,
b="andk, =2(3).

4 Problem Two

An analytical model of a side heated free
convection loop place in a transverse magnetic
field will be studied. In this problem, the
bottom part of the loop wall is isothermally
heated to Ty and the top part isothermally
cooled to T¢.

4.1 The Energy and Momentum Equations

The continuity, energy and momentum
equations for one dimensional are

V, = constant (15)

The energy equation for -l <y < +![ and
2L-1<y>=-2L+1

pC, [VO aaTb] = %{Tw — T} + 0vy?B,” ..(16)

And for the regions —2L+1 <y < -l and

The momentum equation for the problem
under consideration is

T, is the loop wall temperature in the
isothermal regions defined by:
T,=Tyfor2L—1<y>=-2L+1 ... (19 a)
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T,=Tefor =l <y <1l ., (19 b)
We can write down the energy equations
(16) and (17) in non-dimensional form through
using scaling and order of magnitude analysis.
This can be done through introducing the

following new quantities:
_ Ty T¢ « _ Y

b= ry-1" T d
The substituting of these quantities into
equations (16) and (17) gives the energy

equations in dimensionless form and they are:

aeb >+ ml, =m+ Ha’Ee (20)
for 2L-1<y> 2L+l and  for
—-l<y<+l
a0, HaEc
FIT Op =~ e (21)

And the dimensionless form of the
energy equations for the insulated region,
—2L+1<y<-l,is

46, _ Ha’Ec

o T s (22)
andfori<y<2L-1lis

46, _ Ha’Ec

o T s (23)

From which, by using the continuity
condition, the boundary conditions that
associated with the energy equations for the
right and left sides are

8, (—1) = 6,(~2L + 1) + 2Ha’Ec(“)/Re
6, (2L — 1) = 6,(1) + 2Ha’Ec(“)/Re
.............................. (25)

Where m , Re , Ha and Ec are same as in
problem one.

4.2 Method of Solution

The governing equations for this problem
are solved analytically.

Equations (20) and (21) are linear
differential equation of first order and their
solutions, respectively, are

2
0, =1+Ae " d + SR for
2L —1<y>=2L41 v, (26)
2Ha EcPr

0, = Be~ T for—l<y <+l
Where the dimensionless parameter m is a

form of Stanton number given by St= 2 Chv
0

. The other parameters in equations (26)

2RePr
and (27) are the Reynolds number based on the
induced velocity, Re= VVLd the Nusselt
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number, Nu = };(—d : the Prandtl number, Pr = %;
_ A

the Eckert number, Ec= CaT the

temperature difference between hot and the
cold side walls, AT =Ty —T;; and the

Hartmann number, Ha = Bod\/% . Solution of

equations (22) and (23) in the insulated
sections give a linearly increasing bulk
temperature due to Joulean heating in each
segment. Therefore, the bulk temperature in
those segments are given in equations
(24)and(25). Using equations (24) and (25)
one can find the constants A and B in
equations, (26) and (27), these constants are

ml

[1-e"d]
A= ES &
[e™ a7 —eT ]
2Ha?Ec(-T) 1ee~ S
.................. 28
Re [em(ngsl)_[m(%fl)] ( )
l 2L-21 | Ha2Ec =t
B=e i+ A" ) 4 2ema T
e
............................... (29)
The momentum equation (18) which is
z 2__0%
~+0ovoBy” = 5y T PG (30)

Since p =py(1—B(T, —T)), substitute
the value of p into equation (30) we get

9
Z+0ovoBy® = —£+Pog = poB(Ty —Tc)g

and using

Gb AT = Tb - TC .................................... (32)

Substituting from equation (32) into
equation (30) we get

T 0

Z+0ovoBy® = —ﬁ +Pog — PogBATE,

Integrated equation (33) around the loop
we get
2L 2L a
5 ( 2 + UVOBOZ) dy=[7, (‘% + pog —
POgLANTEbdY
4%+ 40vyBy’L =

—2L+1 -1
PogBAT[+ [, Opdy + [, ., 0pdy +

— 065y 0l6bdy— 2L [6bdy

— [2E05aY] e (34)
Where the pressure variations in the loop are
only due to gravity. The negative and positive
signs of the buoyant terms are related to
gravity direction which is positive for the
upward going flow and negative for the
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downward going flow. In each integral
segment, the respective bulk temperature are
used the isothermal region and insulated
region. The flow in the channel is assumed
fully developed and the solution of Hartmann
[5] for MHD plane-Poiseuille flow with a
transverse magnetic field is used to correlate
the walls shear stress force to the mean flow
velocity v, by:
\% tanh i{Ha
A s
Using the value of 7 in equation (35) and
evaluating the integral of the buoyancy term
using the temperature distribution obtained in
equations (26) and (27), reduces equation (34)
to the following:

T =

4uV0Ha2tanhHa 2
d?(Ha—tan hHa) +40VoBo” =
_ 2L L
pogB AT e () 4 Aot
m() m(3)
+ B emé
I
m(E) ! L 2L+l
—2L+
+— e Ma+ AL e 2Mma AL ( d )—
m(3) @ m@)
B
o et be e 36
m) (36)

Equation (36) gives a correlation between
the induced flow velocity v, and the other
flow and geometric parameters in the system
and can then be reduced to the following
non-dimensional correlation:

hHa
4ReHa?[14 212
— Ha —tan hHa
Gr - 2PrRe {F} .................... (37)

(@)
Where Gr is

_ gpATd®
=S=

the Grashof number,

Gr the parameter F is defined as

2L-1

F=-4 (em(T) + em(%ﬂ)) +

2m£ —2m£ mi —mi
Ale“"d+e d|+Ble d+e "d|—

A and B are the dimensionless terms defined in
equations (28) and (29).

5 Problem Three

In this problem, we study the unsteady
state of problem two. Where the bottom part of
the loop wall is isothermally heated to Ty and
the top part isothermally cooled to T.

5.1 The Continuity and Energy Equations
The continuity equation for one
dimensional can be written as:
Vo =constant ........ccoceveeevveceniieseecen (39)
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The energy equation for 2L—-I1<y>

—2L+land -l <y < +I

aT aT h
pCp [a—tb + Vo 0_yb] = E{Tw — Tb} + O'VOZBO2

And for the regions —2L+1 <y < —I[ and
+l<y<2L-1
aT

pCp [VO 3_yb] = O'VOZBOZ ....................... (41)

in the above equations, we assume that the
fluid is incompressible, i.e (p=constant), where
2
L = 6v,2B,* defined in problem one, T, is the
bulk temperature, T,, is the loop wall
temperature in the isothermal regions defined
by:
T,=Tyfor2L—1<y>-=2L+1 ............ (42)
T, =T for =l <y <+l v, (43)

5.2 Non-dimensional
Equation

We can write down the energy equation for

both regions, the insulated and isothermal,

with exception we will add the unsteady term

and as follows
96, 06, Ha’Ec

Form of Energy

ﬁ+a—y*+m9b=m+ o for
2L—=1<y=>=2L+1 i, (44)
30, = 06, __ Ha%Ec

ﬁ+a—y*+m9b = for

LS Y S FH] (45)

and the dimensionless form of the energy
equations for the insulated regions are

20, _ HaEc . _

3 = R for —2L+1<y<—I..... (46)
86, _ Ha’Ec _

iy forl<y<2L—1 ... 47)

From which, by using the continuity
condition, the boundary conditions that
associated with the energy equations for the
right and left sides are the same as in equations
(24) and (25). And the initial condition is
given by equation (12).

5.3 Solution of Problem Three

To solve this problem, the Laplace
transformation is used on both side of the
energy equation (44) and (45).1t is found that
there solution, respectively is given by

K K *
Op(y " t) =———e™

D [1+e_2m (5)
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ema _g—mb

]e_my* +

e mt’ Z(jasin ((t" = y" = a)j) + jbsin((¢* — y* + b)j)
n=1

—macos((a—t*+y*)j)
—mbcos((b +t* —y*)j))/

((jbsin(jb) — jasin(ja) — mbcos(jb) — macos(ja))2
+(jbcos(jb) + jacos(ja) + mbsin(jb) — masin(ja)) ?)
(—jasin((t” — ko = y* — @)j) — jbsin((t* — ky — y* + b)j)
+macos((a —t* + k, +y)j)
+mbcos((b +t* —k, —y™))))/

((jbsin(jb) — jasin(ja) — mbcos(jb) — macos(ja))2
+(jbcos(jb) + jacos(ja) + mbsin(jb) — masin(ja))?)

_emmt’ Z(jbsin " —y* + b))
n=1

+jasin((t* —y* — a)j) — jbsin((t* — k; = y* + b)j)
—jasin((t* = ky —y* = a)j))/
((jbsin(jb) —jasin(ja))2
+(jbcos(jb) + jacos(ja) )?)
—De ™" ¥%_, (jasin ((t* — y* — a)j)
+jbsin((t* —y* + b)j) — macos((a —t* + y*)j)
—mbcos((b + t* —y*)j))/((jbsin(jb) — jasin(ja)
—mbcos(jb) — macos(ja) )?
+(jbcos(jb) + jacos(ja) + mbsin(jb) — masin(ja))? ) +
(Hjasin((t* — ky —y* —a)j) + jbsin((t* — k, —y* + b)j)
—macos((a—t* +ky +y)j)
—mbcos((b +t* =k, —y*)j))/
((jbsin(jb) — jasin(ja) — mbcos(jb) — macos(ja))2
+(jbcos(jb) + jacos(ja) + mbsin(jb) — masin(ja))?)
M= 1,2,3, s corvvvieesesseessesseese s (48)

* g%k _g_g —mt*
Op(y " t)=———e
l
1—e_2m(3) .
+ _— em(k3_y)_
ema _e—mb

2Ha’Ec (L - l)
Re
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L, . X
+De_m(3+y ) —emt

e~mt’ Z(jbsin (t*+ ks —y*+Db)j
n=1
+jasin(t* + ks —y* — a)j — jbsin(t* + k3 — k, —y* + b)j
—jasin(t* + ks —ky; —y* —a)j)/
((jbsin(jb) —jasin(ja))2
+(jbcos(jb) + jacos(ja) )?)

+e Mt Z(jasin ((t"+ ks —y* — @)j)
n=1

+jbsin((t* + ks —y* + b)j)
—macos((a—t* — ks +y")j)
—mbcos((b +t* + ks —y*)j))/
((jbsin(jb) — jasin(ja) — mbcos(jb) — macos(ja))2
+(jbcos(jb) + jacos(ja) + mbsin(jb) — masin(ja))?)
+(—jasin((t” + k3 =k, —y* — a)j)
—jbsin((t* + k3 — k; — y* + b)j)
+macos((a —t* — ks + ky +y)j)
+mbcos((b +t* + ks —ky —y*)j))/
((jbsin(jb) — jasin(ja) — mbcos(jb) — macos(ja))2
+(jbcos(jb) + jacos(ja) + mbsin(jb) — masin(ja))?)

—De™ ™t Z(jasin ((t"+ ks —y" — @)j)
n=1

+jbsin((t* + ks —y* + b)j)
—macos((a—t* — ks +y)j)

—mbcos((b +t* + ks —y*)j))/
((jbsin(jb) — jasin(ja) — mbcos(jb) — macos(ja))2
+(jbcos(jb) + jacos(ja) + mbsin(jb) — masin(ja))?)

+(+Hjasin((t* + k3 — ky, — y* — a)j)
+jbsin((t* + k3 — k; — y* + b)j)
—macos((a—t* — ks + ko +y*)j)
—mbcos((b +t* + ks —ky, —y*)j))/
((jbsin(jb) — jasin(ja) — mbcos(jb) — macos(ja))2
+(jbcos(jb) + jacos(ja) + mbsin(jb) — masin(ja))?)

I 17X JO (49)
2Ha?Ec(:=L
Where =—"_  p=22¢ AR ,
(2L-21) Re
_ L o ol 2L-31 _ 2Ll
ky =) k3 =2() a==—andb=—"—.

6. Results and Discussion (Problem One)

In this section we will study the effect of
the time, Reynolds and Prandtl numbers on the
dimensionless bulk temperature distribution,
equations (13) and (14), along the loop at
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L=2, Nu=186, Ha=1 and

= 20, y
Ec = 0, as given by [2].
6.1 Effect of Time
To study the effect of time (t*) on the
temperature, we keep Reynolds and Prandtl
numbers are fixed, while time is varied from
/6 to . We will take Reynolds number is
equal 50 and Prandtl number was set into 7,
see Figs. (2-6).The following results were
observed
1-For the same points, we note that as
t*increases the  bulk  temperature
increases.
2-The bulk temperature varied between
-0.015t0 0.02 as t* increases.

6.2 Effect of Reynolds Number
To study the effect of Reynolds number on

the temperature, we have set t* is equal to n/3

and Prandtl is equal to 1, while Reynolds is

varied from 5 to 150, see Figs. (7-11). The

following results were observed

1-For the same points, as Reynolds number
increases the bulk temperature decreases.

2-When Reynolds number, Re < 10, there
exist a gradually translate in the bulk
temperature.

3-When Reynolds number, Re > 10, we note
that the transition in the bulk temperature is
more rapid from the case of Re < 10.
(increasing in the curvature of the 6,
curve).

6.3 Effect of Prandtl Number
To study the effect of Prandtl number on

the temperature, we have set t* is equal to n/4

and Reynolds number is equal to 50, while

Prandtl number varied from 0.003 to 7, as

shown in Figs. (3) and (12-16). The following

results were observed

1-For the same points, as Prandtl number
increases the bulk temperature decreases.

2-When Prandtl number, Pr < 0.05, there
exist a sharper translate in the bulk
temperature.

3-When Prandtl number,0.05 < Pr < 1, there
exist a gradually translate in the bulk
temperature.

4-When  Prandtl number, Pr>1, the
translation in the bulk temperature becomes
faster.

Q|
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7. Results and Discussion (Problem Two)

In this section, we will study the effect of
the Reynolds and Prandtl numbers on the
dimensionless bulk temperature distribution,
equations (26) and (27), along the loop at

gzza ézz Nu=186 Ha=1 and

Ec = 0. Also, we find the effect of Reynolds
and Prandtl numbers on the parameter F.
7.1 Effect of Reynolds Number
To study the effect of Reynolds number on
the temperature, we keep Prandtl number fixed
and is equal to 1, while Reynolds number
varied from 10 to 150, see Figs. (17-21). The
following results were observed
1-For the same points, as Reynolds number
increases the bulk temperature increases.
2-When Reynolds number increases the range
of the bulk temperature decreases.

7.2 Effect of Prandtl Number
To study the effect of Prandtl number on
the temperature, we keep Reynolds number
fixed and is equal to 50, while Prandtl number
varied from 0.003 to 7, as shown in Figs. (22-
26). The following results were observed.
1-For the same points, as Prandtl number
increases the bulk temperature increases.
2-When Prandtl number, Pr <1, the bulk
temperature between zero and one.
3-When Prandtl number, Pr > 1, the bulk
temperature exceed the one by small
amount.

7.3 Effect of Reynolds and Prandtl
Numbers on Parameter F
The effect of Reynolds and Prandtl
numbers on the parameter F, equation,(37), is
analyzed through plotting many cases for the
parameter F, as shown in Figs. (27-30). The
following results were noted.
1-For all values of Reynolds and Prandtl
numbers the parameter F is bounded below
and goes to zero.
2-For low to moderate Reynolds number and
as Prandtl number increases the range of the
parameter F decreases.

8. Results and Discussion (Problem Three)
In this section, we will study the effect of
the time, Reynolds and Prandtl numbers on the
dimensionless bulk temperature distribution,
equations, (48) and (49), along the loop at

Ahmed Jameel Kadhim

§=2Q ézl Nu =186, Ha=1 and

Ec=0.

8.1 Effect of Time
To study the effect of time (t*) on the
temperature, we keep Reynolds and Prandtl
numbers are fixed, while time is varied from
/6 to m. We have set Reynolds number is
equal to 50 and Prandtl number was set into
0.1, as shown in Figs. (31-35). The following
results were observed
1-For the same points, we not that as t*
increases the bulk temperature increases.
2-Obviously from the graphs and since the
slop of the vertical part from the curve is
small then the change of the bulk
temperature is small too.

8.2 Effect of Reynolds Number
To study the effect of Reynolds number on
the temperature, we have set t* equal to 7/6
and Prandtl number is equal to 1, while
Reynolds number is varied from 10 to 150, see
Figs. (36-40). The following results were
observed.
1-For the same points, as Reynolds number
increases the bulk temperature increases.
2-When Reynolds number increases, there
exist a small change in the bulk
temperature.

8.3 Effect of Prandtl Number
To study the effect of Prandtl number on
the temperature, we have sett* equal to m/3
and Reynolds number is equal 50, while
Prandtl number varied from 0.003 to 7, as
shown in Figs. (41-44). The following results
were observed.
1-For the same points, as Prandtl number
increases the change of the bulk temperature
decreases, and the amount of the change is
small, since there exist a small slop in the
vertical part.
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Fig. (2) The dimengiénless bulk temperature
distribution,8,,along.
the loop for% = 20,2 = 2,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0
t"=n/6.
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Fig. (4) The dimensionless bulk l)e%perature distribution,8,,along
the loop for% = 20,5 = 2,Nu=1.86,Re=50,Pr=7,Ha=1,Ec=0&t"=n/3.
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Fig. (9) The dimensionless bulk temperature distribution,8,,along
the loop forg = 20,5 = 2,Nu=1.86,Re=80,Pr=1,Ha=1,Ec=0, t*=n/3
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Fig.(10) The dimensionless bulk tgn/merature distribution,8,,along
the loop for§ = 20,& =2,
Nu=1.86,Re=130,Pr=1,Ha=1,Ec=0&t"=r/3.
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distribution,8,along
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Fig.(12) The dimensionless bulk temperature distribution,8,,along
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Fig.(13) The dimensionless bulk temperature distribution,8,,along
the loopfor = 20,2 = 2,Nu=186,Re=50,
Pr=.05,Ha=1,Ec=0&t"=n/4.
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Fig.(14)The dimensionless bulk t}e]r/nlf)erature distribution,8,,along
the loop fori = 20,5 = 2,Nu=1.86,Re=50,
Pr=.1,Ha=1,Ec=0&t"=n/4.
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Fig.(17) The dimensionless bulk temperature distribution,8,,along
the loop for= = 20,5 = 2,Nu=1.86,Re=10,
Pr=1,Ha=1&Ec=0.
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Fig.(18) The dimensionless bulk temperature distribution 8,,along
the loop for& = 20,5 = 2,Nu=1.86, Re=30,
Pr=1,Ha=1&Ec=0.
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Fig.(19) The dimensionless bulk temperature distribution,8,,along
the loop for% = 20,3 = 2,Nu=1.86,Re=80,
Pr=1,Ha=1&Ec=0.
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Fig.(20) The dimensionless bulk temperature
distribution,8,,along the loop for§ = 20,5 = 2,Nu=1.86,
Re=130,Pr=1,Ha=1&Ec=0.
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Fig.(21) The dimensionless bulk tg’n4perature distribution,8,,along

the loop fors = 20,5 = 2,Nu=1.86, Re=150,
Pr=1,Ha=1&Ec=0.
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Fig.(22) The dimensionless bulk temperature distribution,8,,along
the loop for% = 20,3 = 2, Nu=1.86,Re=50,Pr=0.003,
Ha=1&Ec=0.
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Fig.(23) The dimensionless bulk temperature distribution,8,,along
the loop fori = 20,5 = 2, Nu=1.86,Re=50
,Pr=0.08,Ha=1&Ec=0.
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Fig.(24) The dimensionless bulk tg]réperature distribution,8,,along
the loop for: = 20, = 2,Nu=1.86, Re=50,
Pr=1,Ha=1&Ec=0.
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Fig.(25) The dimensionless bulk temperature distribution,8,,along
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Pr=5,Ha=1&Ec=0.
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Fig.(26) The dimensionless bulk temperature distribution,8,,along
the loop forg = 20,5 = 2,Nu=1.86,Re=50,
Pr=7,Ha=1&Ec=0.
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Fig.(27) Aplot of the F parameter as a function of Grashof
number f0r§ = 20,5 = 2,Nu=1.86,Ha=5,
Ec=0 & Pr=0.003.
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Fig.(28) Aplot of the F parameter as a function of Grashof number
for = = 20,5 = 2,Nu=186,
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Fig.(29) Aplot of the F parameter as a function of Grashof

number forg = 20,3 = 2,Nu=1.86,Ha=5,Ec=0 & Pr=5.

0.o0s

0025 -

[ER==3 8

oos |

ool -

0.00s |- A

o g
10 10 10 10 10

Gr

Fig.(30) Aplot of the F parameter as a function of Grashof number
for = = 20, = 2,Nu=1.86,Ha=5,Ec=0 & Pr=7.
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Fig.(31) The dimensionless bulk temperature distribution,8,,along
the loop fors = 20,7 = 2, Nu=1.86,Re=50,
Pr=.1,Ha=1,Ec=0&t"=n/6.
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Fig.(32) The dimensionless bulk té%perature distribution,8,,along
the loop for= = 20,5 = 2,Nu=1.86,Re=50,
Pr=.1,Ha=1,Ec=0&t"=n/4.
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Fig.(33)The dimensionless bulk temperature distribution,8,,along
the loop for% = 20,3 =2,
Nu=1.86,Re=50,Pr=.1,Ha=1,Ec=0&t"=n/3.
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Fig.(34) The dimensionless bulk temperature distribution,8,,along

the loop for% = 20,2 = 2, Nu=1.86,Re=50,
Pr=.1,Ha=1,Ec=0&t"=n/2.
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Fig.(35) The dimensionless bulk temperature distribution,8,,along
the loop for% = 20,5 = 2,Nu=1.86,Re=50,
Pr=0.1,Ha=1,Ec=0&t"=x.
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Fig.(36) The dimensionless bulk teymperature distribution,8,,along
the loop for% = 20,5 =2,
Nu=1.86,Re=10,Pr=1,Ha=1,Ec=0&t*=n/6.
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Fig.(37) The dimensionless bulk tgn/wperature distribution,8,,along
the loop for= = 20,5 = 2,Nu=1.86,Re=50,
Pr=1,Ha=1,Ec=0&t"=n/6.
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Fig.(38) The dimensionless bulk te%perature distribution,8,,along
the loop for= = 20,> = 2,Nu=1.86,Re=80,
Pr=1,Ha=1,Ec=0&t"=r/6.
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Fig.(39)The dimensionless bulk temperature distribution,8,,along

the Ioopfor% = 20% = 2,Nu=1.86,Re=130,
Pr=1,Ha=1,Ec=0&t"=r/6.
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Fig.(40) The dimensionless bulk te}r,nperature distribution,8,,along
the loop for; = 20,3 = 2, Nu=1.86,Re=150,
Pr=1,Ha=1,Ec=0&t"=n/6.
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Fig.(41) The dimensionless bulk temperature distribution,8,,along
the Ioopfor% = 20,5 =2,
Nu=1.86,Re=50,Pr=.003,Ha=1,Ec=0,t"=n/3.

0.4

oat B
oz} B
o
0 or ]
b
o
ozt B

ool B

g 10 20 ER a6 50 &0 70 a0
y/L
Fig.(42) The dimensionless bulk temperature distribution,8,,along
the loop forg = 20,5 = 2,Nu=1.86,Re=50,
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Fig.(43) The dimensionless bulk temperature distribution,8,,along
the loop for% = 20,5 = 2,Nu=1.86,Re=50,
Pr=1,Ha=1,Ec=0&t"=nr/3.
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