
1 
 

Deterministic Observer of Direct Field 
Orientation Control Induction Motor Drive  

  
Mohammed Khalil Hussain 

Assistant Lecturer 
Engineering Affairs Department, University of Baghdad 

Email: mohammedkhalilhussain@yahoo.com 
 

ABSTRACT 
When driven by a filed oriented 

controller, an induction motor behaves like a 
separately excited DC machine where the 
torque and the flux are controlled 
independently. Based on the direct field 
orientation control induction motor 
(DFOCIM) model, the stator current ,rotor 
flux and rotor speed of induction motor are 
estimated simultaneously using linear 
Luenberger observer for stator current and 
rotor flux and Adaptive linear luenberger 
observer for stator current ,rotor flux and 
rotor speed. The salient advantage of the 
linear Luenberger observer is the accuracy 
of the observed stator current and rotor flux 
and that of Adaptive linear luenberger 
observer is the accuracy of the stator current, 
rotor flux and rotor speed observation. The 
validity of the proposed method is verified 
by the simulation results using matlab 
software. 
 
Keyword: Induction Motor, Field Orientation 
Control, linear Luenberger observer, Adaptive linear 
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INTRODUCTION  

Over the last few years, the 
increasing availability of low cost digital 
processing hardware has arisen great interest 
in the application of field oriented control to 
induction motors, which, in consequence, 
behave like direct current motors. However, 
the full advantages of field orientation are 
obtained only if the instantaneous magnitude 

and orientation of the rotor flux vector is 
defined as accurately as possible. This 
information can be obtained by a direct or an 
indirect measurement procedure [1].  In 
most speed and torque controlled drive 
systems; closed loop control is based on the 
measurement of speed or position of the 
motor using a shaft encoder. However, in 
some cases it is difficult (e.g. a compact 
drive system) or extremely expensive (e.g. 
submarine applications) to use sensors for 
speed measurement. Eliminating the speed 
sensor and measurement cables results in a 
lower cost, and at the same time increases 
the reliability and ruggedness of the overall 
drive system. Over the past decade, speed 
sensorless control strategies have aroused 
great interest among induction motor control 
researchers. In these strategies, the motor 
speed is estimated and used as a feedback 
signal for closed-loop speed control [2]. In 
this paper, is proposed a stator current and 
rotor flux observer based on the linear 
luenberger observer and Adaptive linear 
luenberger observer to estimate the stator 
current, rotor flux and rotor speed.  

A review of previous work  
There are a lot of papers dealing with 

luenberger observer. R. Bojoi et al. [3] 
presents a Rotor Field Oriented Control 
(RFOC) of a low-voltage, high-current dual-
three phase induction machine and a 
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Luenberger observer has been used for rotor 
flux estimation. T. Kulworawanichpong  [4] 
proposes algorithm development of a speed 
observer for single-phase induction motor 
drives by using  a full-order extended 
Luenberger observer. Kyo-Beum Lee et al.  
[5] Presents a new sensorless vector control 
system for high-performance induction 
motor drives fed by a matrix converter with 
nonlinearity compensation and  a reduced-
order extended Luenberger observer is 
employed to bring better response in the 
whole speed operation range, and a method 
to select the observer gain is presented. 
Zhang Yongchang et al. [6] proposes an 
Extended Luenberger Observer (ELO) for 
speed sensorless vector control of induction 
motor drive fed by a three-level neutral 
point clamped (NPC) inverter. Tae-Sung 
Kwon et al. [7] investigates the problem of a 
conventional speed sensorless SFO system 
due to the delay of the estimated speed in 
the field weakening region and proposes a 
method to estimate exactly speed by using 
Luenberger observer. S. M. Nayeem Hasan 
et al. [8] proposes a novel Luenberger–
sliding mode observer with parameter 
adaptation algorithm to compensate for the 
parameter variation effects. T. Pană et al. 
presents [9] a method of choosing the 
proportionality coefficient between the 
eigenvalues of the motor and the 
eigenvalues of the Luenberger Observer. 
T.C. Pana et al. [10] presents the asymptotic 
stability of a vector control system for a 
squirrel-cage induction motor that contains 
in its loop an extended Luenberger observer. 
In the present work, two schemes of 
estimators have been used in direct field 
orientation control induction motor 
(DFOCIM), linear luenberger observer and 
Adaptive linear luenberger observer for 
estimating stator current, rotor flux and rotor 
speed. 
Dynamic Model of IM  

To establish a good compromise 
between the stability and the simplicity of 

the observer, it is appropriate to take a stator 
reference frame (  , ). Then, the position 
of rotor flux is calculated in a direct way 
starting from the observation of its 
components in a stator reference frame and 
its determination by using the integration of

s  [11, 12].  
1 - Linear discrete state 

In what follows, the mathematical 
model for discrete and continuous is 
presented in matrix form [11-14]: 
1-1 discrete model: 
     The discrete model of the IM results 
from the continuous model [11] 
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One can discretize Eq (1) to give  
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Where  

kA  and kB  are  matrices of the discrete 

system  and can be given by [11,12] 
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eT  being the period of sampling; the 

variables with the indices (k) and (k+1) 
respectively express the values of these 
variables at the moments )( kt  and )1( kt . 

1-2 Non linear discrete model  
This model is deduced from the nonlinear 

continuous model .This model is given by 
the system of equation according to [11, 14]: 
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If the nonlinear model is given by  

)5(
)(

),(










eXHeY

eUeXFeX
 

Where: 































































0

1

1

11

11

),(
















r
r

rPsI
r

M

rPr
r

sI
r

M

sV
Rr

rR
rK

r
rR

rK
sI

sV
RrP

R
rK

r
rR

rK
sI

eUeXF

           ,   

















sI
sIeXH )(  

The discrete model of state nonlinear is 
summarized in matrix form as 
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The step of the linearization has been used 
since the suggested observer only tackles 
with linear model  
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The discrete models of state of the IM, in the 
stator reference frame (  , ), are used as a 
basis for construction of the observers of 
state (the observer of Luenberger), for the 
estimate stator current, rotor flux and speed. 
 

Deterministic Observer of Luenberger 
The deterministic observer of 

Luenberger, makes it possible to reconstitute 
the state of an observable system starting 
from the measurement of the entries and the 
exits. It is used when whole or part of the 
vector of state cannot be measured. It allows 
the estimate of the variable or unknown 
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parameters of a system. The theory of this 
observer, for the linear models, was 
presented by David G Luenberger. Wide 
versions were proposed to be applied to the 
asynchronous motor (IM) [15, 16]. 

Luenberger Observant in discrete time 
In what follows two types of observers of 

Luenberger in discrete time will be 
represented: a linear observer of Luenberger 
(estimate of  ,sI and  ,s ) and a linear 

observer of Luenberger with adaptation for 
(estimate of  ssI , , and  ) [15,16] . 

1 - Observant of linear Luenberger in 
discrete time  

To simulate the linear observer of 
Luenberger in discrete time shown in Eq. (2 
and 3). The estimate can take the form of 
corrector. If a correct observer is considered, 
the moment 1kt , must be available to 

correct the state at the same moment: 
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The estimate 1
ˆ
kY  is supposed the best that 

one can obtain at the moment 1kt  , starting 

from the prediction of the state 1,
ˆ

kpX . 

The matrix of transition from the observer is

kAkKCkA  . The observation is made, 

therefore, in two phases; the two terms of 
the error in estimation are given by 
Error of prediction  

)9(1,
ˆ

1,1 kkAkpXkpXk    

Error of correction 
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11 kkAkKCIkXkXk    
 
If the equation of state is exact and stable, 
and if the initial state is perfectly known, the 
exact estimate of the state of the process will 

be possible. However when the initial state 
is not known, but that the model is stable, 
one limited period related to the dynamics of 
the model is present on the estimate. If the 
conditions of observability are checked, the 
dynamics of the observation is determined 
by the choice of the matrix of profit K  
which defines the Eigen values of the matrix 
of transition from the observer. To ensure 
the stability of the observation, it should be 
calculated the profit K  so that the Eigen 
values of the matrix kAkKCkA   remain in 

the unit circle. In this case, the error in 
estimation converges asymptotically 
towards zero, when time tends towards the 
infinite one. With regard to the matrix of 
profit K, this one is obtained by placement 
of the poles of the discrete observer in the 
unit circle dP  according to the following 

equation: 

)11()4(1
ˆ

11 kkAkKCIkXkXk    
2-  Observer of linear Luenberger in 

discrete time with estimate speed 
    When the speed is not measured, it is 
regarded as an unknown parameter in the 
system of equations of the observer.  In 
order to estimate speed of machine rotor, an 
adaptive mechanism will be derived based 
on Lyapunov theory .the observer model in 
continuous form is given by [6, 17]. 
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The error in estimation on the stator current 
and the rotor flux which is not other than the 
difference between the observer and the 
model of the IM. 
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To establish the algorithm of speed 
estimation, one can define the Lyapunov 
function:  

                       )15(2)ˆ(
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Where  
  is a positive constant. 
Taking the derivative of the above function 
with respect to time yield  
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Substituting expression (13) in (16), one can 
obtain the following expression:  
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Finally derived it from the function of 
Lyapunov can be expressed as follows: 

 

)18(
)ˆ()ˆ(2

)ˆˆ)(ˆ(2

)ˆˆ)(ˆ(2

)()(

dt

d

rr

riri
rLsL

M

KCATKCAT
dt

dV


















 

To guarantee system stability according to 
Lyapunov theory, one should ensure that Eq. 
(18) must be at least negative definite. 
Supposing zero error of rotor flux, then the 
third terms can be set to zero. Therefore, the 
adaptation law of speed estimator can be 
obtained by equating the second and forth 
term to obtain: 
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If it is supposed that speed estimated ̂  
changes much, more quickly than . Then 
the adaptive mechanism is further simplified 
as;  
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Where   :         sIsIisIsIi
ˆ,ˆ    

The law of speed matching is deduced under 
the condition that speed remains constant, 
but in practice it changes rather quickly. In 
order to improve the algorithm of speed 
matching, a term proportional can be added. 
The law of speed matching becomes then  
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The diagram block of the observer with the 
adaptive mechanism is given by [6, 18] 
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 Block diagram (1) the observer with the adaptive 
mechanism 
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Structure of the DFOC IM  provided with an observer of Luenberger 
   In figure (1) structure of Direct field orientation control induction motor (DFOCIM) with 
linear luenberger observer to estimate stator Current and rotor flux [12, 15] 
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ŝ

ŝ

ŝ



Figure (1) structure of Direct field orientation control induction motor (DFOCIM) with linear luenberger observer 
 

In figure (2) structure of Direct field orientation control induction motor (DFOCIM) with 
Adaptive linear luenberger observer. to estimate stator Current, rotor Flux and  rotor 
speed[12,15] 
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Figure (2) structure of Direct field orientation control induction motor (DFOCIM) with Adaptive linear luenberger observer 
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لمحرك الحثي ذو سيطرة توجيه المجال التخمين الجبري  لمسوق ا
  المغناطيسي المباشر

   
  المدرس المساعد
  محمد خليل حسين

  جامعة بغداد /قسم الشؤون الھندسية
 

  الخلاصة: 
عندما يكون مسوق المحرك الحثي ذو سيطرة توجيه المجال المغناطيسي المباشر يتصرف المحرك 
الحثي مثل محرك التيار المستمر ذو التغذية المنفصلة اي تكون سيطرة كل من العزم والفيض مستقلة . 

ثابت،فيض الجزء بالاستناد على نموذج المحرك الحثي ذو سيطرة المجال المغناطيسي المباشر تيار الجزء ال
 Linear Luenberger(الدوار وسرعة الجزء الدوار للمحرك الحثي يمكن ان تخمن اي يمكن استخدام 

Observer(  لتخمين تيار الجزء الثابت وفيض الجزء الدوار للمحرك الحثي وايضا يمكن استخدام

)Adaptive  Linear  Luenberger  Observer (  لتخمين تيار الجزء الثابت ،فيض الجزء الدوار

 )Linear Luenberger Observer(وسرعة الجزء الدوار للمحرك الحثي . ان الفائدة البارزة لاستخدام 

 Adaptive(ھي دقة  التخمين لتيار الجزء الثابت و فيض الجزء الدوار بينما الفائدة البارزة لاستخدام 

Linear Luenberger Observer(  ھي دقة  التخمين لتيار الجزء الثابت ، فيض الجزء الدوار وسرعة
الجزء الدوار للمحرك الحثي . ان صلاحية الطريقة المقترحة محققة بأستخدام نتائج المحاكاه لبرنامج 

  الماتلاب.

 
 


