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ABSTRACT

When driven by a filed oriented
controller, an induction motor behaves like a
separately excited DC machine where the
torque and the flux are controlled
independently. Based on the direct field
orientation  control  induction = motor
(DFOCIM) model, the stator current ,rotor
flux and rotor speed of induction motor are
estimated simultaneously using linear
Luenberger observer for stator current and
rotor flux and Adaptive linear luenberger
observer for stator current ,rotor flux and
rotor speed. The salient advantage of the
linear Luenberger observer is the accuracy
of the observed stator current and rotor flux
and that of Adaptive linear luenberger
observer is the accuracy of the stator current,
rotor flux and rotor speed observation. The
validity of the proposed method is verified
by the simulation results using matlab
software.

Keyword: Induction Motor, Field Orientation
Control, linear Luenberger observer, Adaptive linear
luenberger observer

INTRODUCTION
Over the last few years, the

increasing availability of low cost digital
processing hardware has arisen great interest
in the application of field oriented control to
induction motors, which, in consequence,
behave like direct current motors. However,
the full advantages of field orientation are
obtained only if the instantaneous magnitude

and orientation of the rotor flux vector is
defined as accurately as possible. This
information can be obtained by a direct or an
indirect measurement procedure [1]. In
most speed and torque controlled drive
systems; closed loop control is based on the
measurement of speed or position of the
motor using a shaft encoder. However, in
some cases it is difficult (e.g. a compact
drive system) or extremely expensive (e.g.
submarine applications) to use sensors for
speed measurement. Eliminating the speed
sensor and measurement cables results in a
lower cost, and at the same time increases
the reliability and ruggedness of the overall
drive system. Over the past decade, speed
sensorless control strategies have aroused
great interest among induction motor control
researchers. In these strategies, the motor
speed is estimated and used as a feedback
signal for closed-loop speed control [2]. In
this paper, is proposed a stator current and
rotor flux observer based on the linear
luenberger observer and Adaptive linear
luenberger observer to estimate the stator
current, rotor flux and rotor speed.

A review of previous work

There are a lot of papers dealing with
luenberger observer. R. Bojoi et al. [3]
presents a Rotor Field Oriented Control
(RFOC) of a low-voltage, high-current dual-
three phase induction machine and a



Luenberger observer has been used for rotor
flux estimation. T. Kulworawanichpong [4]
proposes algorithm development of a speed
observer for single-phase induction motor
drives by using a full-order extended
Luenberger observer. Kyo-Beum Lee et al.
[5] Presents a new sensorless vector control
system for high-performance induction
motor drives fed by a matrix converter with
nonlinearity compensation and a reduced-
order extended Luenberger observer is
employed to bring better response in the
whole speed operation range, and a method
to select the observer gain is presented.
Zhang Yongchang et al. [6] proposes an
Extended Luenberger Observer (ELO) for
speed sensorless vector control of induction
motor drive fed by a three-level neutral
point clamped (NPC) inverter. Tae-Sung
Kwon et al. [7] investigates the problem of a
conventional speed sensorless SFO system
due to the delay of the estimated speed in
the field weakening region and proposes a
method to estimate exactly speed by using
Luenberger observer. S. M. Nayeem Hasan
et al. [8] proposes a novel Luenberger—
sliding mode observer with parameter
adaptation algorithm to compensate for the
parameter variation effects. T. Pand et al.
presents [9] a method of choosing the
proportionality —coefficient between the
eigenvalues of the motor and the
eigenvalues of the Luenberger Observer.
T.C. Pana et al. [10] presents the asymptotic
stability of a vector control system for a
squirrel-cage induction motor that contains
in its loop an extended Luenberger observer.
In the present work, two schemes of
estimators have been used in direct field
orientation  control  induction = motor
(DFOCIM), linear luenberger observer and
Adaptive linear luenberger observer for
estimating stator current, rotor flux and rotor
speed.
Dynamic Model of IM

To establish a good compromise
between the stability and the simplicity of

the observer, it is appropriate to take a stator
reference frame («, ). Then, the position

of rotor flux is calculated in a direct way
starting from the observation of its
components in a stator reference frame and
its determination by using the integration of
wg [11, 12].
1 - Linear discrete state

In what follows, the mathematical
model for discrete and continuous is
presented in matrix form [11-14]:
1-1 discrete model:

The discrete model of the IM results
from the continuous model [11]

X = A(PQ)X + BU }(1)
Y =CX

Where X, U and Y are state vector, input
vector and output vector and they are given
by
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One can discretize Eq (1) to give

X =P X By Y k}(z)

Where

Ak and Bk are matrices of the discrete

system and can be given by [11,12]

2
A= exp(ACPQT ) =1 1+ APQ) + @

A(PQ)T o )B

By = (A(PQ)) (A, ~1 B Te(l 4+ 3)

Te being the period of sampling; the
variables with the indices (k) and (k+1)
respectively express the values of these
variables at the moments (tk) and (tk +1).

1-2 Non linear discrete model

This model is deduced from the nonlinear
continuous model .This model is given by
the system of equation according to [11, 14]:
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If the nonlinear model is given by
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The discrete model of state nonlinear is
summarized in matrix form as

€ _ € €
X =X U0
e, =H (X%)
The step of the linearization has been used

since the suggested observer only tackles
with linear model

(6)
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The discrete models of state of the IM, in the
stator reference frame («, f), are used as a

basis for construction of the observers of
state (the observer of Luenberger), for the
estimate stator current, rotor flux and speed.

Deterministic Observer of Luenberger

The deterministic observer of
Luenberger, makes it possible to reconstitute
the state of an observable system starting
from the measurement of the entries and the
exits. It is used when whole or part of the
vector of state cannot be measured. It allows
the estimate of the variable or unknown




parameters of a system. The theory of this
observer, for the linear models, was
presented by David G Luenberger. Wide
versions were proposed to be applied to the
asynchronous motor (IM) [15, 16].

Luenberger Observant in discrete time

In what follows two types of observers of
Luenberger in discrete time will be
represented: a linear observer of Luenberger
(estimate of | s B and(DSa,ﬂ) and a linear

observer of Luenberger with adaptation for
(estimate of | Saﬂ’(DSaﬂ’ and Q) [15,16].

1 - Observant of linear Luenberger in
discrete time

To simulate the linear observer of
Luenberger in discrete time shown in Eq. (2
and 3). The estimate can take the form of
corrector. If a correct observer is considered,
the momentt, ., must be available to

correct the state at the same moment:
X p k=P X kctB Yy

Y C

ke =Ck X p ok ®)

k=X p,k+1+K(Y k™" kst

The estimate Y K+l is supposed the best that

A

X

one can obtain at the moment tk e starting

from the prediction of the state X DK+

The matrix of transition from the observer is
Ak -KC kAk . The observation is made,

therefore, in two phases; the two terms of
the error in estimation are given by

Error of prediction
Ea= X p k% prar=Pk k@)
Error of correction

E =Xk X k= T4~ KC A £10)

If the equation of state is exact and stable,
and if the initial state is perfectly known, the
exact estimate of the state of the process will

be possible. However when the initial state
is not known, but that the model is stable,
one limited period related to the dynamics of
the model is present on the estimate. If the
conditions of observability are checked, the
dynamics of the observation is determined
by the choice of the matrix of profit K
which defines the Eigen values of the matrix
of transition from the observer. To ensure
the stability of the observation, it should be
calculated the profit K so that the Eigen
values of the matrix Ak —KCkAk remain in

the unit circle. In this case, the error in
estimation converges asymptotically
towards zero, when time tends towards the
infinite one. With regard to the matrix of
profit K, this one is obtained by placement
of the poles of the discrete observer in the
unit circle P, according to the following
equation:
E =X ki K= (4~ KC DA £, D)

2- Observer of linear Luenberger in
discrete time with estimate speed

When the speed is not measured, it is

regarded as an unknown parameter in the
system of equations of the observer. In
order to estimate speed of machine rotor, an
adaptive mechanism will be derived based
on Lyapunov theory .the observer model in
continuous form is given by [6, 17].

)A( = Af( +BU + K(Y -Y) (12)
Y =CX

The error in estimation on the stator current
and the rotor flux which is not other than the

difference between the observer and the
model of the IM.

%: d(xdt—X) = (A-KC)(A-A)X = (A-KC)s—AAX (13)
Where
. 0 —(Q-0)J M
A =A-A= oLsLy ((14)
0 (Q-0Q)J
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To establish the algorithm of speed

estimation, one can define the Lyapunov
function:

V = ng+%(§)—9)2(15)

Where

A is a positive constant.

Taking the derivative of the above function
with respect to time yield

(T) A o2
dv _|dle g+8T{E}+ld(Q—Q) 16)
dt | dT dt] 4 dt

Substituting expression (13) in (16), one can
obtain the following expression:
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Finally derived it from the function of

Lyapunov can be expressed as follows:
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If it is supposed that speed estimated QO
changes much, more quickly thanQ . Then
the adaptive mechanism is further simplified
as;

dQ M

) 20
dt O'le_r( |a rﬂ g|ﬂ ra)( )
Where

i) Sa_l Sa,giﬂ=l S,B_I sp
The law of speed matching is deduced under
the condition that speed remains constant,
but in practice it changes rather quickly. In
order to improve the algorithm of speed
matching, a term proportional can be added.
The law of speed matching becomes then

Q=K p(g;,,® 5 Iﬂc1>,r0()+l< [(gj,® 5 Iﬂd)m)dt(ﬂ)
Where:
AM
Kp>0 , Ki= C , )0
Str

The diagram block of the observer with the
adaptive mechanism is given by [6, 18]

M
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20-0) d(Q-Q)
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(18)

To guarantee system stability according to
Lyapunov theory, one should ensure that Eq.
(18) must be at least negative definite.
Supposing zero error of rotor flux, then the
third terms can be set to zero. Therefore, the
adaptation law of speed estimator can be
obtained by equating the second and forth
term to obtain:

4| Observer of luenberger }#ﬂf

Induction Motor > Y

[0

Q Adaptive
Mechanism

Block diagram (1) the observer with the adaptive
mechanism



Structure of the DFOC IM provided with an observer of Luenberger
In figure (1) structure of Direct field orientation control induction motor (DFOCIM) with

linear luenberger observer to estimate stator Current and rotor flux [12, 15]
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Figure (1) structure of Direct field orientation control induction motor (DFOCIM) with linear luenberger observer

In figure (2) structure of Direct field orientation control induction motor (DFOCIM) with
Adaptive linear luenberger observer. to estimate stator Current, rotor Flux and rotor

speed[12,15]
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Figure (2) structure of Direct field orientation control induction motor (DFOCIM) with Adaptive linear luenberger observer



Simulated Result
1 -No load
Figure (3) present the actual, estimated
and error in stationary reference frame (
a, ) for stator current and rotor flux at the

reference speed 1000 tr/min. It is seen that
the rotor flux estimate by linear Luenberger
observer “measured speed” has an
advantage over Adaptive linear luenberger
observer “Estimated speed”. This advantage
materializes by a better convergence and a
perfect continuation in amplitude and time
of estimate of the first values of the
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components of the vector of state. In the
same way for the stator current the
amplitude as well as the extent of the
oscillation of the estimated values, at the
starting time strongly depends on the initial
values of the components of the state vector.
In any way the Luenberger observer (linear
Luenberger observer and Adaptive linear
luenberger observer) is good observation in
stator current and rotor flux.
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Actual and Estimated Flux and Emor in DFOCIM
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Fig.(3) Results of simulation obtained with the two observers of Luenberger for a speed of reference 1000 tr/min (No-load)
A- Linear Luenberger observer
B- Adaptive linear luenberger observer

2 -With Load

Figure (4) shows the actual, estimated
and error of stator current and rotor flux, in
stationary reference frame («, ), produced

by two observers as load of 50 Nm is
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exerted at time 1.5 Sec. It has been shown
observer
Luenberger observer and Adaptive linear
luenberger observer) give satisfactory robust

that the Luenberger

characteristics.
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AmaT and Esarmaad Flux and Error in DFOCIM
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Fig.(4) Results of simulation obtained with the two observers of Luenberger (load of 50 Nm to T =1.5s).
A- Linear Luenberger observer
B- Adaptive linear luenberger observer

3 Tracking Performance

Figure (5) shows that inversion of the
direction of rotation of 1000 tr/min with -
1000 tr/min to t=1.5 sec. . It is noted that
linear Luenberger observer is most robust
with respect to the abrupt variation the speed
of reference. The peak of the rotor flux
associated with the linear Luenberger

Actual and Estimated Stator Current and Ermor in DFOCIM
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observer is lower compared to that
associated the Adaptive linear luenberger
observer. In any way the Luenberger
observer (linear Luenberger observer and
Adaptive linear luenberger observer) is high
performance in Tracking Performance.
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Fig (5) Results of simulation obtained with the two observers of Luenberger (inversion of the direction of rotation of 1000 tr/min to
-1000 tr/min to t=1.5s)
A- Linear Luenberger observer
B- Adaptive linear luenberger observer

4 Noise Injection g ) . It is clear from fig. (6) that the flux

In fig (6) at reference flux 0.85 Wb ,
the noise rejection capabilities of suggested
observers have been examined by injecting
noise of variance 3A in stator current (Ig,

estimate resulting from Luenberger observer
is more sensitive to such noise then adaptive
Luenberger observer.
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Fig (6) Comparison of the model of the rotor flux estimated by the two observers of Luenberger with the injection of a noise of
measurement of variance of 3A
A- Linear Luenberger observer

B- Adaptive linear luenberger observer

5- Speed Estimation

In order to check the behavior of the
linear observer of Luenberger with
adaptation for the estimate speed (Adaptive
linear luenberger observer), figures (7-1,2,3)
At no load , it is clear from (Fig. 7-1) that
the estimation error is finally vanishes as
time goes beyond steady state .similarly ,
the same result can be obtain when one
exerts load of high 50 Nm after 1.5 sec. of
starting . It is evident from (fig. 7-2) that the
estimation error will grow at time of load
exertion and then would finally die out to
reach zero value therefore the Adaptive
linear luenberger observer is very sensitive
to change of system parameter (load). The
same of argument as above can be
concluded in (fig. 7-3) where tracking
situation has been considered. The observer
could successfully track the actual speed
inversion and finally gives zero steady state
estimation error
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Actual and Estimated Speed and Eror in DFOCIM
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(Fig. 7-1), No load for a speed of reference 1000 tr/min

Actual and Estimated Toque and Error in DFOCIM
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Actual and Estimated Speed and Eror in DFOCIM
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(Fig. 7-3), Inversion of the direction of rotation of 1000
tr/min with -1000 tr/min with t=1.5s

CONCLUSIONS

In this paper, a method for the direct field
oriented control and two observers (linear
Luenberger observer and Adaptive linear
luenberger observer) have been presented.
Based on simulation results, one can
highlight the following conclusion:

1- The direct field orientation control
could decouple the coupling between
torque and flux to give high
current/torque capabilities.

2- The results showed  that linear
Luenberger observer and Adaptive
linear luenberger observer yield good

estimation and observation
characteristics , but linear
Luenberger observer is more

advantage in transient state than
Adaptive linear luenberger observer
due to estimate of first values of the
components of the vector of state.

3- The Adaptive linear luenberger
observer showed high performance
in speed estimation.

4- The noise rejection due to Adaptive
linear luenberger observer is higher
than its counterpart linear
Luenberger observer
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Appendix I ( The Information and
Parameters of IM)

The model of the induction motor (IM) is

elaborate on

1- The air-gap of the IM is thickness
uniform, thus neglecting the effect of
the notches.

2- the magnetic circuit unsaturated and
with a constant permeability, the
hysteresis and the eddy currents his
negligible

3- Neglecting the effect of skin and the
iron losses.

4- Three-phase  winding  of
induction motor is symmetrical.

the

Parameters of IM are listed in Table (1)

Table 1: Parameters of IM

Nominal power P, 7,5 Kw
Nominal speed Q, | 1450 tr/min
Nominal torque T 50 Nm
Number of pole Paris P 2 p.
Stator resistance R 0,63 Q
Rotor resistance Rr 0,4 (@)
Stator inductance L, 0,097 H
Rotor inductance L, 0,091 H
Mutual inductance M | 0.091 H
moment of inertia J 0,22 Kg.m




List of Symbols

Symbol Description

A The state matrix.
B The input matrix.
C The output matrix.
E Expected value.
& Error.

Identity matrix.

& -axis ( ﬂ -axis) of Stator current.

D-axis (g-axis) of rotor current.

D-axis (g-axis) of stator current.

Integral gain

Proportional gain

Magnetizing inductance.

i E IS
el

-

Rotor self inductance.

—

n

Stator self inductance.

Number of motor pole pairs.

2|0

-

Rotor resistance.

0

n

Stator resistance.

Input vector.

=
£

D-axis (g-axis) of stator voltage.

(n<
N
—
m<
ASY
ST

O -axis ( ,3 -axis) of stator voltage.

Electrical speed.

State vector.

State vector at index k.

Output.

Angle (rad).

Stator angle.

-

Flux in rotor

R
—_—
S
)
S—]

& -axis ( ﬂ -axis) of rotor flux.

Mechanical speed

A Superscript indicates to Transpose.

20| &S| <| X %X

Derivative.

=~

A subscript indicates to the index of sampling

time.

™

A Superscript indicates to Extended Vector.

>

A Superscript indicates to estimation.
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