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Abstract: 
           In this paper, many modified and new algorithms have been proposed for 

training feed-forward neural networks; many of them having a very fast convergence 

rate for reasonable size networks. 

We examine the similarities and differences between different training 

methods and compare the performance of training with each representation applied to 

the approximation problem.  

            In all of these algorithms we use the gradient of the performance function 

(energy function, error function) to determine how to adjust the weights such that the 

performance function is minimized, where the back propagation algorithm has been 

used to increase the speed of training. The above algorithms have a variety of 

different computation and thus different type of form of search direction and storage 

requirements; however none of the above algorithms has a global properties which 

suited to all problems. 

 

1. Introduction  
      Back propagation (BP) process can train multilayer Feed Forward Neural 

Networks (FFNN’s). With differentiable transfer functions, to perform a function 

approximation to continuous function fRN, pattern association and pattern 

classification. The term of back propagation to the process by which derivatives of 

network error with respect to network weights and biases, can be computed. This 

process can be used with a number of different optimization strategies. 

2. Training Algorithms for Neural Networks 

        Any non-linear optimization method, a local or global one, can be applied to the 

optimization of feed-forward neural networks weights. Naturally, local searches are 

fundamentally limited to local solutions, while global ones attempt to avoid this 

limitation. The training performance varies depending on the objective function 

(energy function or error function) and underlying error surface for a given problem 

and network configuration. 

        Since the gradient information of error surface is available for the most widely 

applied network configurations, the most popular optimization methods have been 

variants of gradient based back-propagation algorithms. Of course, this is sometimes 

the result of an inseparable combination of network configuration and training 

algorithm which limits the freedom to choose the optimization method. 

Widely applied methods are, for example, modified back-propagation [1], back 

propagation using the conjugate-gradient approach [2], scaled conjugate-gradient and 

its stochastic counterpart [3], the Marquadt algorithm [4], and a concept learning 
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based back-propagation [5]. Many of these gradient based methods are studied and 

discussed even for large networks in [6]. Several methods have been proposed for 

network configurations where the gradient information is not available, such as 

simulated annealing for networks with non-differentiable transfer functions [7]. 

         In many studies only small network configurations are considered in training 

experiments. Many gradient based methods and especially the Levenberg-Marquadt 

method are extremely fast for small networks (few hundreds of parameters), thus, 

leaving no room or motivation for discussion of using evolutionary approaches in the 

cases where the required gradient information is available. The problem of local 

minima can be efficiently avoided for small networks by using repeated trainings and 

randomly initialized weight values. Nevertheless, evolutionary based global 

optimization algorithms may be useful for validation of an optimal solution achieved 

by a gradient based method.  

        For large FFNNs, consisting of thousands of neurons, the most efficient training 

methods (Levenberg-Marquadt, Quasi –Newton, etc.) demand an unreasonable 

amount of computation due to their computational complexity in time and space. One 

possibility could be a hybrid of traditional optimization methods and evolutionary 

algorithms as studied in [8]. Unfortunately, it seems that none of the contemporary 

methods can offer superior performance over all other methods on all problem 

domains. It seems that no single solution appears to be available for the training of 

artificial neural networks. 

Now, we introduce training rules (algorithms) for FFNN:  

2.1.Gradient (Steepest) Descent (taringd) 

A standard back propagation algorithm is a gradient descent algorithm (as in 

the Widrow-Hoff learning rule) .For the basic steepest (gradient) descent algorithm, 

the weights and biases are moved in the direction of the negative gradient of the 

performance function.  

For the method of gradient descent, the weight update is given by :   

                          Wk+1= Wk + αk(gk) ……………………….….(1) 

where αk is a parameter governing the speed of learning, named learning rate, 

controlling the distance between Wk+1 and Wk and gk is the gradient of the error 

surface at Wk, Wk is the weight at iteration k .[9 ],[10]  

The convergence condition is satisfied by choosing: 0 < αk < 

.max2

1


 where max. is 

the largest eigenvalue of weight matrix. 

2.2.Gradient Descent With Momentum (traingdm) [11] 

There is another training algorithm for FFNN that often provides faster 

convergence. The weight update formula for gradient descent with momentum is 

given by:          Wk+1=Wk + αk(gk) + (Wk Wk-1) 

That is:               Wk+1=Wk + αk(gk) + Wk  

 i.e.                    ∆Wk+1=αk(gk) + Wk      ……….……………(2) 
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Where the momentum parameter  is constrained to be in the range (0 , 1). 

Momentum allows the ANN to make reasonably large weight adjustments, while 

using a smaller learning rate to prevent a large response to the error from any one of 

training pattern. 

The gradient is constant ( gk = const ). Then, by applying iteratively (2) : 

                                ∆W = - αgk (1+ μ + μ2 + …) –   - kg
-1

α
 

   ( because μЄ(0,1) and then lim
∞→n

0n  ), i.e. the learning rate effectively increases    

from α to 
)-1(

α


. 

Remark  

There are several issues on gradient descent training algorithms: 

1. When the learning rate α is too small, the learning algorithm converges very 

slowly. However, when α is too large, the algorithm becomes unstable and 

diverges. 

2. Another peculiarity of the error surface that impacts the performance of the 

gradient descent training algorithm is the presence of local minima [12]. It is 

undesirable that the learning algorithm stops at a local minimum if it is 

located far above a global minimum. 

3. Neural network may be over-trained by using gradient descent algorithms and 

obtain worse generalization performance. Thus, validation and suitable 

stopping methods are required in the cost function minimization procedure. 

4. Gradient-based training is very time-consuming in most applications. 

The aim of this paper is to solve the above issues related with gradient-based 

algorithms and propose an efficient training algorithm for FFNNs 

3. Faster Trining 

            In this section, we will discuss several high performance algorithms fall into 

two main categories. The first category uses heuristic techniques, which were 

developed from an analysis of the performance of the standard gradient descent 

algorithm. Another heuristic modification is the momentum technique, variable 

learning rate and resilient back propagation. The second category of fast algorithms 

uses standard numerical optimization techniques such as: conjugate gradient, quasi-

Newton and Levenberg-Marquardt . 

3.1.Variable Learning Rate 

           With standard gradient descent, the learning rate is held constant 

through out training. The performance of the algorithm is very sensitive to the proper 

setting of the learning rate. If the learning rate is set too high, the algorithm becomes 

unstable. If the learning rate is too small, the algorithm will take too long to converge. 

Our numerical results and [13] shows that it is not practical to determine the optimal 

setting for the learning rate before training and, in fact, the optimal learning rate 

changes during the training process, as the algorithm moves across the performance 

surface.   
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D. G. Luenberger, 1991 shows that the optimal learning rate for quadratic 

error surface :                                                               

                ηk  
kk

T

k

k

T

k

ρE′′ρ

E′E
      , where k is the search direction. 

        The performance of the steepest descent algorithm can be improved if we allow 

the learning rate to change during the training process. Back propagation training 

with an adaptive learning rate is implemented with the function 'traingda'. The 

function 'traingdx' combines adaptive learning rate with momentum training. [13] 

3.2.Resilient Back Propagation (trainrp) [14] 

The resilient back propagation training algorithm eliminates the harmful 

effect of having a small slope at the extreme ends of sigmoid transfer functions in 

hidden layers. Only the sign of the derivative of the transfer function is used to 

determine the direction of the weight update: the magnitude value of the derivative 

has no effect on the weight update. Our results show the resilient back propagation is 

generally much faster than the standard gradient descent algorithm. Also it has a nice 

property that it requires only a modest increase in memory requirements, and thus we 

do need to store the update values for each weight and bias. 

3.3.Quasi-Newton Algorithms [16] 

Quasi-Newton (or secant) methods are based on Newton’s method but we 

require calculation of second derivatives (Hessian matrix) at each step. They update 

an approximate Hessian matrix at each iteration of the algorithm. 

The optimum weight value can be computed in an iterative manner by writing: 

         Wk+1  Wk  ηkH1gk      ……...…...  ( 3) 

where ηk is the learning rate, gk is the gradient of the error surface with respect to the 

Wk and H is the Hessian matrix (second derivatives of the error surface with respect 

to the Wk) [15]. We can show that the Quasi-Newton’s method converges to the 

optimal weight W*. Now rewrite the equation of Newton’s method as:    

                         W*  Wk  
1

2
H1gk        …………………………..….(4) 

Therefore, from equations  ( 3) and (4), we get : 

                    Wk+1  Wk  2ηk(Wk  W*)  Wk(1  2ηk) + 2ηkW* 

Starting with an initial weight of W0 , we get :  

                    W1 = W0(1 2ηk) + 2ηk W*  W* + (1  2ηk)(W0 W*) 

          W2 = W1(1 2ηk) + 2ηkW*  W0(1 2ηk)
2 + 2ηk W*(1 2ηk) + 2ηk W* 

      = W* + (1 2ηk)
2(W0 W*) 

          Wk = W* + (1 2ηk)
m(W0  W*) 
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Since W0  W* is fixed, Wk converges to W*, provided :  

            0 < 2ηk  1            ,    i.e., 0 < ηk  ½        . 

We see that in the quasi-Newton method the steps do not proceed along the direction 

of the gradient. Now we introduce two quasi-Newton algorithms : 

 

3.3.1.BFGS Quasi-Newton Algorithm (trainbfg) [13] 

This algorithm requires more computation for each iteration and our results 

shows more storage require than the CG methods, although, generally, converges in 

fewer iterations. For a very large ANN it may be better to use resilient back 

propagation or one of the CG algorithms. For smaller ANN, however, BFGS quasi-

Newton algorithm can be used as an efficient training function. 

3.3.2.One Step Secant Algorithm (trainoss) [13] 

Since the BFGS algorithm requires more storage and computation in each 

iteration than the CG algorithms, there is need for a secant approximation with 

smaller storage and computation requirements. The one step secant (OSS) method is 

an attempt to bridge the gap between the CG algorithms and the quasi-Newton 

(secant) algorithms . 

This algorithm does not store the complete Hessian matrix; it assumes that at 

each iteration the previous Hessian was the identity matrix. This has the additional 

advantage that the new search direction can be calculated without computing a matrix 

inverse. 

3.4.Levenberg-Marquardt Algorithm (trainlm) [13] 

The Levenberg-Marquardt algorithm was designed to approach second order 

training speed without having to compute the Hessian matrix. When the performance 

function has the form of a sum of squares, then the Hessian matrix can be 

approximated as H  JTJ and the gradient can be computed as    g JTe, where J is the 

Jacobian matrix, which contains first derivatives of the network errors with respect to 

the weights and biases, and e is a vector of network errors. The Levenberg-Marquardt 

algorithm uses this approximation to the Hessian matrix in the following Newton 

update:     Wk+1  Wk  [JTJ + I]1JTe  

when the scalar 0, this is just Newton’s method. When  is large, this becomes 

gradient descent with a small step size. 

 

3.5.Conjugate Gradient Algorithms (traincg) 

The conjugate gradient algorithms perform a search along conjugate 

directions, which produces generally faster convergence than gradient descent 

directions [Hagan and Beale, 1996]. The CG algorithms start out by searching in the 

gradient descent direction (negative of the gradient) on the first iteration, 0g0. 
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Then the next search direction is determined so that it is conjugate to previous search 

directions, that is : [12] 

                          Wk+1  Wk + ηkk  . Where   k  gk + k k1.     

The various versions of CG are distinguished by the manner in which the k is 

computed. 

In this paper, we will present different variations of CG algorithms with a 

comparison between them. In most of the training algorithms a learning rate is used to 

determine the length of the weight update (step size). 

In most of the CG algorithms, the step size is adjusted at each iteration. A 

search is made along the CG direction to determine the step size, which will minimize 

the performance function along that line search. The CG algorithms that usually used 

in ANN as a training algorithm is much faster than variable learning rate back 

propagation, and are sometimes faster than Resilient back propagation, although the 

results will vary from one problem to another. 

3.5.1.Fletcher-Reeves update (traincgf) 

          The general procedure for determining the new search direction is to 

combine the new gradient descent direction with the previous search direction :  

          k  gk + kk1.For Fletcher-Reeves update procedure [14] : k  

1k
T

1k

k
T
k

gg

gg



 

The training parameters for 'traincgf' are: epochs, show, goal, time, min-grad, 

srchFcn. 

The training status will be displayed every show iterations of the algorithm. 

The other parameters determine when the training is stopped. The training will stop 

when the number of iterations exceeds an epochs, if the performance function drops 

below goal, if the magnitude of the gradient is less than mingrad or if the training 

time is longer than time in seconds. The parameter srchfcn is the name of the line 

search function. traincgf generally converges in fewer iterations than Resilient back 

propagation (trainrp) (although there is more computation required in each iteration). 

3.5.2.Polak-Ribiere update (traincgp) 

            Another version of the conjugate gradient algorithm was proposed by Polak 

and Ribiere [16]. For the Polak-Ribiere update, the constant k is computed from :                                                

                                                        k

1k
T

1k

k
T

1k

gg

gg




 

The traincgp routine has performance similar to traincgf. It is difficult to predict 

which algorithm will perform best on a given problem. The storage requirements for 

Polak-Ribiere (four vectors) are slightly larger than for Fletcher-Reeves (three 

vectors). 
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3.5.3.Dixon update (traincgd) 

We propose another version of the conjugate gradient algorithm, which 

derive from classical method proposed by Dixon [16]. 

For the Dixon update, the constant k is computed by: k  

1k
T

1k

k
T
k

g

gg




 

The training parameters for traincgd are: epochs, show, goal, time, min-grad, max-

fail, srchFcn, scal-tol, alpha, beta, delta, gama, low-lim, up-lim, maxstep, minstep, 

bmax. 

The training status will be displayed every show iterations of the algorithm. 

The other parameters determine when the training is stopped. The training will stop if 

the number of iterations exceeds epochs, if the performance function drops below 

goal, if the magnitude of the gradient is less than mingrad, or if the training time is 

longer than time seconds, max-fail which is associated with the early stopping 

technique. 

The parameter srchFcn is the name of the line search function. The 

remaining parameters are associated with specific line search routines. The default 

line search routine srchcha is used. 

The traincgd routine has performance, which is some what better than 

traincgp for some problems, although performance on any given problem is difficult 

to predict. The storage requirements for the Dixon algorithm (three vectors). 

3.5.4.Al-Assady and Al-Bayati update (traincga) 

We use another version of the conjugate gradient algorithm, when the 

classical method proposed by Al-Assady and Al-Bayati [16]. 

For the Al-Assady and Al-Bayati update, the constant k is computed by:  

                                                k  

k
T

1k

1k
T
k

g

gg








 

The training parameters for traincga are: epochs, show, goal, time, min-

grad, max-fail, srchFcn. The storage requirements for the Al-Assady and 

Al-Bayati algorithm (four vectors). 
3.5.5.Hestenes-Stiefel update (traincgh) 

       We will consider another version of the CG algorithm, when the classical method 

proposed by Hestenes-Stiefel [12]. 

For the Hestenes-Stiefel update, the constant k is computed by :  
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                                              k  

1k
T

1k

1k
T
k

g

gg








 

The traincgh routine has performance similar to traincgd. 

The storage requirements for the Hestenes-Stiefel algorithm (four vectors) 

3.5.6.Reyadh-Luma update (traincgr) 

We propose a new version of the CG algorithm when the search direction at 

each iteration is determined by: k   gk + kk1 

Where the constant k is computed by: k  

1k
T

1k

1k
T
k

g

gg








 

The training parameters for traincgr are: epochs, show, goal, time, min-grad, max-

fail, sigma, lambda.[13] 

3.5.7.Line Search Routines (SRCHCHA) 

The method of srchcha was designed to be used in a combination with a CG 

algorithm for ANN training. We have used this routine as the default search for most 

of the CG algorithms, since it appears to produce excellent results for many different 

problems. It does require the computation of the derivatives (back propagation) in 

addition to the computation of performance function, but it over comes this limitation 

by locating the minimum with fewer steps. 

3.6. Error Surfaces 

         Generally the error may be represented as a surface E = E(W) into the NW + 1 

space where NW is the total number of weights. The goal is to find the minima of 

error function, where g = 0; however note that this condition is not enough to find the 

absolute minima because it is also true for local minimums, maximums and saddle-

points. 

        In general it is not possible to find the solution W in a closed form. Then a 

numerical approach is taken, to find it by searching the weights space in incremental 

steps (k = 1, …) of the form Wk+1 = Wk +∆Wk. However, usually, the algorithm does 

not guarantee for the finding of absolute minima and even a saddle-point may stick 

them. 

         On the other hand the weight space have a high degree of symmetry and thus 

many local and global minimums which give the same value for the error function; 

then a relatively fast convergence may be achieved starting from a random point. 

3.7. Initialization and Termination of Training 

         Usually the weights are initialized with random values to avoid problems due to 

weight space symmetry. However there are two restrictions: 

 If the initial weights are too big then the activation functions f will have 

values into the saturation region (e.g. sigmoidal activation function) and their 

derivatives f ' will be small, leading to a small error gradient as well, i.e. an 

approximatively at error surface and, consequently, a slow training. 
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 If the initial weights are too small then the activation functions f will be linear 

and their derivatives will be quasi-constant, the second derivatives will be 

small and then the Hessian will be small meaning that around minimums the 

error surface will be approximatively at end, consequently, a slow training. 

We suggest the method to determinate the weights by the following: 

 

 

3.7.1.Determination of weights by Computation 

        For a linear FFNN's let actual output vector y=WX and the desired output vector 

is d , then the total error E(W) over all the L input/output pattern pairs is given by : 

                =)W(E
L
1 ∑

L

1=i

2
ii ||Wxd||  

We can write        

                =)W(E
L
1 ∑

L

1=i

2||WXD||    ………………………. (5) 

Using the definition that the trace of a square matrix S is the sum of the main 

diagonal entries of S, it is easy to see that: =)W(E  
L
1

tr(S),  

where the matrix S is given by: S=(D-WX) (D-WX)T ,and tr(S) is the trace of the 

matrix S. 

Using the definition for pseudo inverse of a matrix, i.e. A+ = AT(AAT)-1 , we get the 

matrix identities A+AAT=AT and AAT(A+)T=A. 

Using these matrix identities we get: 

 S = (D–WX)(D–WX)T=(DX-1X–WX)(DX-1X–WX)T=(DX-1-W) XXT (DX-1-W) 

    = (W-DXT(XT)-1X-1)XXT(W-DXT(XT)-1X-1)T+DDT- DDT 

    = (W-DXT(XXT)-1)XXT(W-DXT(XXT)-1)T+DDT-DXT(XXT)-1XDT 

 S = (W-DX+)XXT(W-DX+)T+D(I-X+X)DT                 ………….. …….(6) 

It can be seen that the trace of the first term in equation (6) is always nonnegative, as 

it is in a quadratic form of the real symmetric matrix XXT. 

It becomes zero for W=DX+. The trace of the second term is a constant, independent 

of W. Since the trace of sum of matrices is the sum of traces of the individual 

matrices, the error E(W) is minimum when W=DX+. 

The minimum error is obtained by substituting W=DX+ in equation (5) and is given 

by:  

    E min =
L
1 2+ ||XDXD||  

            = 
L
1

tr[(D(I-X+X))( D(I-X+X))T] = 
L
1

tr[D(I-X+X)(I-X+X)TDT] 

            = 
L
1

tr[D(I-X+X)(I-(X+X)T)DT] 

            = 
L
1

tr[D(I-(X+X)-(X+X)T +(X+X)(X+X)T)DT] 
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            = 
L
1

tr[D(I-X+X-XT(X+)T +X+X))DT] = 
L
1

tr[D(I-(X+X)T)DT] 

            = 
L
1

tr[D(I-X+X)DT]……………………………………………………( 7) 

  where I is an L×L identity matrix. The above simplification is obtained by using the 

following matrix identities (X+X)T=XT(X+)T and XXT(X+)T =X 

Note  

      We use pseudo inverse since we can not be compute the inverse of matrix and we 

use Singular Value Decomposition (SVD) method to compute pseudo inverse. 

 

3.7.2. Singular Value Decomposition (SVD) 

       The following singular value decomposition (SVD) of an m×n matrix X is used 

to compute the pseudo inverse and to evaluate the minimum error.  

A singular value and corresponding singular vectors of a rectangular matrix  XRmn 

are a scalar σ and a pair of vectors u and v that satisfy: 

X v   u       &    XT u   v  

With the singular values on the diagonal of a diagonal matrix S and the corresponding 

singular vectors forming the columns of two orthogonal matrices U and V, we have: 

X V  U S     &    XT U  V S 

Where U and V are orthogonal. The above decomposition of X is called the singular 

value decomposition ( S V D ) :     X  U S VT 

The singular value decomposition of an m× n matrix, X, involves the 

computation of an m ×m matrix, U, an m× n matrix, S, and an n× n matrix, V. 

In other wards, U and V are both square and S is the same size as X. 

          If X has many more rows than columns, the resulting U can be quite large, but 

most of its columns are multiplied by zeros in S. In this situation, the economy sized 

decomposion saves both time and storage by producing an m× n matrix, U, an n× n 

matrix, S, and the same V. 

The eigenvalue decomposion is the appropriate tool for analyzing a matrix 

when it represents a mapping from a vector space in to itself. On the other hand, the 

SVD is the appropriate tool for analyzing a mapping from one vector space in to 

another vector space, possibly with a different dimension. 

Most systems of simultaneous linear equations fall into the last category. 

            If X is square, symmetric and positive definite, then its eigenvalue and SVD 

are the same. But, as X departs from symmetry and positive definiteness, the 

difference between the two decompositions increases. 

In particular, the SVD of a real matrix is always real, but the eigenvalue decomposion 

of real, non symmetric matrix might be complex.  



AL-Qadisiya Journal for science  Vol. 15  No. 2  year 2010 

143 
 

Now, we can provide a simple explanation for the well known phenomenon 

reported in many practical studies with Ann's. This is the observation that better 

results may well be obtained if the iteration is not continued to converge. 

These problems are closely related to the issue of non spanning patterns 

which we have already encountered. The linear least squares (L.S) problem of 

minimizing ||XW  Y||2 always has a solution. The solution is unique if and only if 

null(X)  0, that is, linear least squares has a unique solution when X has linear 

independent columns (XTX non-singular, even if X is singular) that is null(X)  0 if 

and only if X has linearly independent columns.  

Now XRmn, if n > m, then null(X)  0.  

      Then we may have in this case (null(X)  0) near linear dependent among 

possibly the last columns and in this case we cant use L.S.S. because one is unsure 

about the rank (X) and in this case a remedy for this problem is to use a new 

technique, singular value decomposition (SVD) and this technique used as follow : 

Split X in to USVT, where U and V are orthogonal and S is diagonal (but not 

necessarily square). That is UUT  Im, VVT  In. Then: 

S  

1

2

n

0 0

0 0

0 0

0 0 0

0 0 0

 
 


 
 
 
 
  

 

The matrices U and V consist of the orthonormalize eigenvectors of XTX, XXT 

respectively. i are the square root, i  
T

i (X X)  and said singular values of  X.  

Now, if the rank(X) = r, then :  r+1  r+2  r+3  …  n  0 

Remark  

          Another way to improve network performance is to train multiple instances of 

the same network, but with a different set of initial weights, and choosing among 

those who give best results. This method is called committee of networks. 

The criteria for stopping the training process may be one of the following: 

  Stop after a fixed number of steps. 

  Stop when the error function had become smaller than a specified amount. 

  Stop when the change in the error function (∆E) had become smaller than a 

specified amount. 

  Stop when the error on an (independent) validation set begins to increase. 

 

 

 

 



AL-Qadisiya Journal for science  Vol. 15  No. 2  year 2010 

144 
 

 

 

 

 

 

 



AL-Qadisiya Journal for science  Vol. 15  No. 2  year 2010 

145 
 

References:- 
[1] G.-B. Huang, (4, JULY 2006), " Real -Time Learning Capability of Neural 

Networks ",  IEEE  

       Transactions on Neural Networks, VOL. 17, NO.  

[2] W. W. Hsieh, (August 31, 2008), "Machine Learning Methods in Environmental 

Sciences Neural Networks and Kernels", Cambridge University Press. 

[3] G. Weir-Smith and C.A.Schwabe, (2002), "Spatial interpolation vs neural network 

propagation as a method of extrapolating from field surveys", GIS Centre, HSRC 

(Human Sciences Research Council), Pretoria. 

[4] J.M. Turmon, (August 1995), "Assessing Generalization of Feed forward Neural 

Networks", phD. thesis, University of Cornell,.  

[5] M.A.Ali, S.D.Gore and M.AL-Sarierah, (2005),"The Use of Neural Network to 

Recognize the parts of the Computer Motherboard",  Journal of Computer Sciences 

1(4), pp. 477- 481.   

[6] J.ILONEN, J.-K.KAMARAINEN and J.LAMPINEN, (2003), "Differential 

Evolution Training Algorithm for Feed-Forward Neural Networks", Neural 

Processing Letters 17:pp. 93–105.  

[7] S. Breutel, (2004), "Analysing the Behaviour of Neural Networks", PhD thesis, 

Queensland University of Technology, Brisbane.  

[8] T. Su, J. Jhang and C. Hou, (September 2008), "A Hybrid Artificial Neural 

Networks and Particle Swarm Optimization for Function Approximation", 

International Journal of Innovative Computing, Information and Control ICIC 

International , Volume 4, Number 9, pp. 2363—2374.  

[9] A.Pinkus, (1999), "Approximation theory of the MLP model in neural networks", 

Acta Numerica, pp.143-195. 

[10] L.N.M.Tawfiq and Q.H.Eqhaar, (2007), "On Feed forward neural network with 

Ridge basis function", Journal Al-Qadisiya for Pure Science, Vol. 12, No.4. 

[11] T.Poggio and F.Girosi, (July 1989), "A Theory of Networks for Approximation 

and Learning ,"Massachusetts Institute of Technology Artificial Intelligence 

Laboratory", A.I.Memo No.1140, C.B.I.P Paper No.31.  

[12] R. M. Hristev, (1998), "The ANN Book", Edition 1.  

[13] L.N.M.Tawfiq, (2004), "On Design And Training of Artificial Neural Networks 

For Solving Differential Equations", phD.Thesis, College of Education Ibn Al-

Haitham,Bahgdad University. 

[14] G.P.Jaya Prakash and TRBstaff Representative, (December1999), "Use of 

Artificial Neural Networks In Geomechanical And Pavement System", Transportation 

Research Circular, Number E-co12.  

[15] N.Stanevski and D.Tsvetkov, (2004), "On the Quasi-Newton Training Method 

for Feed-Forward Neural Networks", International Conference on Computer System 

and Technologies. 

[16]  L.N.M.Tawfiq and R.S.Naoum, (2005), "On Training of Artificial Neural 

Networks", AL-Fath Jornal, No 23. 

 

 

 حول تدريب الشبكات العصبية ذات التغذية التقدمية



AL-Qadisiya Journal for science  Vol. 15  No. 2  year 2010 

146 
 

 لمسائل التقريب
 

 لمى ناجي محمد توفيق  و    علاء كامل جابر

 جامعة بغداد –بن الهيثم أ–لية التربية ك –قسم الرياضيات 
 

 -:خلاصةال
لتغذية بية ذات اصفي هذا البحث اقترحنا عدد من الخوارزميات المطورة والجديدة لتدريب الشبكات الع          

ف ه والاختلالتشابواختبرنا أوجه ا التقدمية البعض منها تمتلك سرعة تقارب جيدة للشبكات ذات التركيب المعقول

 بين طرق التدريب المختلفة وقارنا الأداء للتدريب لكل تمثيل طبق على مسائل التقريب .

بط ضيد كيفية لتحد (ء ) دالة الخطأ, دالة الطاقة في كل تلك الخوارزميات استخدمنا انحدار دالة الأدا         

 لتدريب ريع االأوزان بحيث تكون دالة الأداء أقل ما يمكن . حيث استخدمنا خوارزمية الانتشار المرتد لتس

ه صيغ لاتجاسب الجميع الخوارزميات أعلاه تتنوع من حيث اختلاف الحسابات وبالتالي اختلاف الأنواع ح        

   مسائل .  كل اللخزن الذي تقتضيه وكل الخوارزميات أعلاه لا تمتلك خواص رئيسية تجعلها مناسبة لالتفتيش وا

 

 

 

 

 

 

 


