(δ,p)-Continuous Multifunctions and (δ,p)-o-Closed Multifunctions

Amer Kh. Abed Al-shypany, samer Th. Abaas and Bassim Ka. Mihsin

Department of mathematics and computer science
Kufa university

Abstract

In this paper, the concept of upper and lower (δ,p)-continuous multifunctions and (δ,p)-o-closed multifunctions are introduced and studied, and obtain some characterizations and several properties concerning upper and lower (δ,p)-continuous multifunctions. The relationship between these multifunctions and (δ,p)-o-closed multifunctions.

1. Introduction

The aim of this paper a new form of continuous multifunction called (δ,p)-continuous multifunctions, and a new type of multifunction called (δ,p)-o-closed multifunction are introduced and studied.

2. Preliminaries and Definitions

Throughout the present paper, X and Y are always topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by Int(A) and CL(A), respectively. A subset A of a space X is said to be regular open [5] (respectively regular closed) if A = Int(CL(A)) (respectively A = CL(Int(A))). A subset A in a space X is called pre-open [6] if A ⊆ Int(CL(A)). The complement of a pre-open set is called pre-closed. The intersection of all pre-closed sets containing a subset A is called the pre-closure of A and is denoted by pCL(A). The pre-interior of A is the union of all pre-open sets of X contained in A and denoted by pInt(A).

Let X, Y be a topological spaces, the corresponding F : X → Y is called a multifunction if given any x ∈ X, then F(x) is a non-empty subset of Y [3]. Let F : X → Y be a multifunction from a space X to a space Y and A ⊆ X, B ⊆ Y then F(A) = {x ∈ X : F(x) ⊆ B} is called image of the set A. F−1(B) = {x ∈ X : F(x) ⊆ B} is called the upper inverse of the set B. F′(B) = {x ∈ X : F(x) ∩ B ≠ ∅} is called the lower inverse of the set B [7]. We will use the symbol ◦ to indicate end of the proof.

Definition 2.1 [5]

A subset A of a space X is said to be pre-
regular p-open (resp. pre-regular p-closed) if \(A = p\text{Int}(p\text{CL}(A)) \) (resp. \(A = p\text{CL}(p\text{Int}(A)) \)). It is clear that a pre-regular p-open set is pre-open.

Definition 2.2 [2]

- A point \(x \in X \) is called the \((\delta,p)\)-cluster point of \(A \) if \(A \cap U = \emptyset \) for every pre-regular p-open set \(U \) of \(X \) containing \(x \).
- The set of all \((\delta,p)\)-cluster points of \(A \) is called the \((\delta,p)\)-closure of \(A \), denoted by \(\delta\text{CL}_p(A) \).
- If \(\delta\text{CL}_p(A) = A \), then \(A \) is called \((\delta,p)\)-closed.
- The complement of a \((\delta,p)\)-closed set is called \((\delta,p)\)-open.
- A point \(x \in X \) is called the \((\delta,p)\)-Interior point of \(A \) if there exists pre-regular p-open set \(U \) of \(X \) containing \(x \) and contained in \(A \).
- The set of all \((\delta,p)\)-Interior points of \(A \) is called the \((\delta,p)\)-Interior of \(A \), denoted by \(\delta\text{Int}_p(A) \).
- If \(\delta\text{Int}_p(A) = A \), then \(A \) is called \((\delta,p)\)-open.

We say that a set \(U \) in a space \(X \) is a \((\delta,p)\)-neighborhood of a point \(x \) if \(U \) contains a \((\delta,p)\)-open set to which \(x \) belongs.

Lemma 2.3 [4]

If \(A \) and \(B \) are pre-regular p-open sets of the spaces \(X \) and \(Y \), respectively, then \(A \times B \) is a pre-regular p-open set of \(X \times Y \).

- If a space \(X \) is submaximal, then any finite intersection of pre-regular p-open sets is pre-regular p-open.

Definition 2.4

- The net \(\chi_\alpha \) is eventually in \(W \) if there exists \(\alpha_0 \in I \) such that \(\chi_\alpha \in W \), for each \(\alpha \geq \alpha_0 \) [7].
- The net \(\chi_\alpha \) in a space \(X \) is called converges to a point \(x \), if \(\chi_\alpha \) is eventually in every neighborhood of \(x \) [7].
- The net \(\chi_\alpha \) in a space \(X \) is called \((\delta,p)\)-converges to a point \(x \), if \(\chi_\alpha \) is eventually in every \((\delta,p)\)-neighborhood of \(x \).

Definition 2.5 [2]

A space \(X \) is called \((\delta,p)\)-Hausdorff space if for each two points \(x_1, x_2 \) in \(X \), there exist two \((\delta,p)\)-open sets \(V_1, V_2 \) such that \(x_1 \in V_1 \), \(x_2 \in V_2 \) and \(V_1 \cap V_2 = \emptyset \).

Definition 2.6 [3]

Let \((D,\geq)\) be a directed set, \(\{F_\alpha : \alpha \in D\} \) be a net of multifunction \(F_\alpha : X \to Y \) and \(F \) a multifunction on \(X \) into \(Y \), \(\{F_\alpha : \alpha \in D\} \) is said to be

Upper pointwise convergent to \(F \), if for each \(x \in X \) and each open set \(U \subseteq Y \) containing \(F(x) \), there exists \(\beta \in D \) such that \(x \in F_\alpha^*(U) \), for each \(\alpha \geq \beta \).
• Lower pointwise convergent to \(F \), if for each \(x \in X \) and each open set \(U \subseteq Y \) meeting \(F(x) \), there exists \(\beta \in D \) such that \(x \in F_{\alpha \gamma}(U) \), for each \(\alpha \geq \beta \).

• Pointwise convergent if it is both upper pointwise convergent and lower pointwise convergent.

Definition 2.7 [2]

A subset \(A \) of a space \(X \) is said to be \((\delta,p)\)-compact relative to \(X \) if every cover of \(A \) by \((\delta,p)\)-open sets of \(X \) has a finite sub cover.

Definition 2.8

Let \(X \) be a space, we say that \(X \) is \((\delta,p)\)-disconnected if it is the union of two non-empty \((\delta,p)\)-open sub sets, otherwise is \((\delta,p)\)-connected.

Definition 2.9 [7]

Let \(F : X \to Y \) be a multifunction from a space \(X \) to a space \(Y \); then

- \(F \) is called upper \((\delta,p)\)-continuous \((u.\,(\delta,p).c)\) at a point \(x \in X \), if for each open set \(V \) in \(Y \) with \(F(x) \subseteq V \) there exists a pre-regular \(p \)-open set \(U \) in \(X \) containing \(x \) such that \(F(U) \subseteq V \).

- \(F \) is called lower \((\delta,p)\)-continuous \((l.\,(\delta,p).c)\) at a point \(x \in X \), if for each open set \(V \) in \(Y \) with \(F(x) \subseteq V \) there exists a pre-regular \(p \)-open set \(U \) in \(X \) containing \(x \) such that \(F(U) \subseteq V \), for each \(u \in U \).

- \((\delta,p)\)-continuous \((\,(\delta,p).C)\) at a point \(x \in X \), if it is both \((u.\,(\delta,p).c)\) and \((l.\,(\delta,p).c)\) at \(x \).

- \((\delta,p)\)-continuous if it is \((\delta,p)\)-continuous at each point \(x \) in \(X \).

The following four theorems gives some characterizations of upper and lower \((\delta,p)\)-continuous multifunction:

Theorem 3.2

Let \(F : X \to Y \) be a multifunction from \(X \) to \(Y \); then the following statements are equivalent:

3. **\((\delta,p)\)-continuous multifunctions**

In this section, the new concept of \((\delta,p)\)-continuous multifunctions, introduced and studied and several characterization and properties of these forms are proved.

Definition 3.1

Let \(F : X \to Y \) be a multifunction from \(X \) to \(Y \), \(F \) is said to be

1) Upper \((\delta,p)\)-continuous \((u.\,(\delta,p).c)\) at a point \(x \in X \), if for each open set \(V \) in \(Y \) with \(F(x) \subseteq V \) there exists a pre-regular \(p \)-open set \(U \) in \(X \) containing \(x \) such that \(F(U) \subseteq V \).

2) Lower \((\delta,p)\)-continuous \((l.\,(\delta,p).c)\) at a point \(x \in X \), if for each open set \(V \) in \(Y \) with \(F(x) \cap V \neq \emptyset \) there exists a pre-regular \(p \)-open set \(U \) in \(X \) containing \(x \) such that \(F(U) \cap V \neq \emptyset \), for each \(u \in U \).

3) \((\delta,p)\)-continuous \((\,(\delta,p).C)\) at a point \(x \in X \), if it is both \(u.\,(\delta,p).c \) and \(l.\,(\delta,p).c \) at \(x \).

4) \((\delta,p)\)-continuous if it is \((\delta,p)\)-continuous at each point \(x \) in \(X \).

The following four theorems gives some characterizations of upper and lower \((\delta,p)\)-continuous multifunction:
1) \(F \) is \(l.(\delta,p).c \).

2) \(F^{-}(V) \) is \((\delta,p) \)-open, for each open set \(V \) in \(Y \).

3) \(F^{+}(K) \) is \((\delta,p) \)-closed set in \(X \), for each closed set \(K \) in \(Y \).

4) \(F(\delta\text{CL}_{p}(A)) \subseteq \text{CL}(F(A)) \).

5) \(\delta\text{CL}_{p}(F^{-}(B)) \subseteq F^{-}(\text{CL}(B)) \), for each subset \(B \) of a space \(Y \).

6) \(F^{-}(\text{Int}(B)) \subseteq \delta\text{Int}_{p}(F^{-}(B)) \), for each subset \(B \) of a space \(Y \).

7) For each \(x \in X \) and for each open set \(V \) in \(Y \) such that \(F(x) \cap V \neq \emptyset \), there exists a \((\delta,p) \)-open set \(U \) in \(X \) containing \(x \) such that if \(u \in U \); then \(F(u) \cap V \neq \emptyset \).

8) For each \(x \in X \) and for each net \(\chi_{\alpha} \) which \((\delta,p) \)-converges to \(x \) in \(X \) and for each open set \(V \) in \(Y \), such that \(x \in F^{-}(V) \); then the net \(\chi_{\alpha} \) is eventually in \(F^{-}(V) \).

Proof: (1) \(\Rightarrow \) (2) Let \(x \in F^{-}(V) \) in a space \(X \), \(V \) any open subset of \(Y \), from (1) we get there exists a pre-regular \(p \)-open set \(U \) in a space \(X \) such that \(x \in F^{-}(V) \); therefore, \(F^{-}(V) \) is \((\delta,p) \)-open.

(2) \(\Rightarrow \) (3) Let \(K \) be a closed set in a space \(Y \); then \(K^{\complement} \) is open set in \(Y \) from (2) we obtain \(F^{-}(K^{\complement}) \) is \((\delta,p) \)-open set in a space \(X \), since \(F^{-}(K^{\complement}) \) is \((\delta,p) \)-open; then \(F^{-}(K) \) is \((\delta,p) \)-closed set in \(X \).

(3) \(\Rightarrow \) (4) Let \(A \subseteq X \); then \(F(A) \) is subset of \(Y \) and \(\text{CL}(F(A)) \) is closed set in \(Y \). since \(F \) is \(l.(\delta,p).c \); then \(F^{+}(\text{CL}(F(A))) \) is \((\delta,p) \)-closed subset of \(X \), in view fact that \(F(A) \subseteq \text{CL}(F(A)) \) implies that \(A \subseteq F^{+}(\text{CL}(F(A))) \). It follows that \(\delta\text{CL}_{p}(A) \subseteq \delta\text{CL}_{p}(F^{+}(\text{CL}(F(A)))) \); therefore, \(F(\delta\text{CL}_{p}(A)) \subseteq F(F^{+}(\delta\text{CL}_{p}(F(A))) \subseteq \text{CL}(F(A)) \).

(4) \(\Rightarrow \) (5) Let \(B \subseteq Y \), from (4) we get \(F(\delta\text{CL}_{p}(F^{-}(B))) \subseteq \text{CL}(F(F^{-}(B))) \subseteq \text{CL}(B) \), this implies \(\delta\text{CL}_{p}(F^{-}(B)) \subseteq F^{-}(\text{CL}(F(F^{-}(B)))) \subseteq F^{-}(\text{CL}(B)) \).

(5) \(\Rightarrow \) (1) Let \(K \) be any closed subset of \(Y \); then \(\delta\text{CL}_{p}(F^{+}(K)) \subseteq F^{+}(\text{CL}(K)) \), since \(K \) is closed set; then \(\delta\text{CL}_{p}(F^{+}(K)) \subseteq F^{+}(K) \) and \(F^{+}(K) \subseteq \delta\text{CL}_{p}(F^{+}(K)) \); then \(\delta\text{CL}_{p}(F^{+}(K)) = F^{+}(K) \), this means that \(F^{+}(K) \) is \((\delta,p) \)-closed subset of \(X \); then \(F \) is \(l.(\delta,p).c \).

(6) \(\Rightarrow \) (1) Let \(W \) be any open subset of \(Y \); then \(\text{Int}(W) = W \) from (6) we get \(F^{-}(\text{Int}(W)) \) is \((\delta,p) \)-open set in \(X \), thus , \(F^{-}(\text{Int}(W)) = \delta\text{Int}_{p}(F^{-}(\text{Int}(W))) \). It follows that \(F^{-}(\text{Int}(W)) \subseteq \delta\text{Int}_{p}(F^{-}(\text{Int}(W))) \).

(7) \(\Rightarrow \) (3) Let \(x \in X \) and \(V \) be any open set in a space \(Y \) such that \(F(x) \cap V \neq \emptyset \); then \(V^{\complement} \) is closed set in \(Y \) from (3) we get \(F^{+}(V^{\complement}) = (F^{-}(V))^{\complement} \) is \((\delta,p) \)-closed set in a space \(X \). It follows that \(F^{-}(V) \) is \((\delta,p) \)-open set in \(X \),
we take \(U= F^{-}(V) \) ; then for each \(u \in U \), \(F(u) \cap V \neq \emptyset \).

(7) \(\Rightarrow \) (8) Let \(x \in X \) and let \(\chi_{a} \) be a net which \((\delta,p)\)-converges to \(x \), \(V \) any open set in \(Y \) such that \(x \in F^{-}(V) \) from (7) there exists \((\delta,p)\)-open set \(U \) containing \(x \) and \(F(u) \cap V \neq \emptyset \) for each \(u \in U \); then \(U= F^{-}(V) \), since \(\chi_{a} \) is \((\delta,p)\)-converges to \(x \) in \(X \); then \(\chi_{a} \) is eventually in every \((\delta,p)\)-neighborhood of a point \(x \); therefore, the net \(\chi_{a} \) is eventually in \(F^{-}(V) \).

(8) \(\Rightarrow \) (1) Suppose that (1) is not true , there exists a point \(x \) in \(X \) and \(V \) an open set in \(Y \) with \(x \in F^{-}(V) \) such that for each \((\delta,p)\)-open set \(U \) in \(X \) containing \(x \), \(U \subseteq F^{-}(V) \). Let \(\chi_{U} \in U \) and \(\chi_{U} \notin F^{-}(V) \) for each \((\delta,p)\)-open set \(U \) containing \(x \) in \(X \); therefore, the net \(\chi_{U} \) \((\delta,p)\)-converges to \(x \), but \(\chi_{U} \) is not eventually in \(F^{-}(V) \). This is contradiction , hence \(F \) is \(l.(\delta,p).c. \)

Theorem 3.3

Let \(F : X \rightarrow Y \) be a multifunction from \(X \) to \(Y \); then the following statements are equivalent :
1) \(F \) is \(u.(\delta,p).c. \).
2) \(F^{-}(V) \) is \((\delta,p)\)-open , for each open set \(V \) in \(Y \).
3) \(F^{-}(K) \) is \((\delta,p)\)-closed set in \(X \), for each closed set \(K \) in \(Y \).
4) \(\delta CL_{p}(F^{-}(B)) \subseteq F^{-}(CL(B)) \), for each subset \(B \) of a space \(Y \).
5) \(F^{-}(Int(B)) \subseteq \delta Int_{p}(F^{-}(B)) \), for each subset \(B \) of a space \(Y \).

For each \(x \in X \) and for each open set \(V \) in \(Y \) such that \(F(x) \subseteq V \), there exists a \((\delta,p)\)-

6) open set \(U \) in \(X \) containing \(x \) such that if \(y \in U \); then \(F(y) \subseteq V \).
7) For each \(x \in X \) and for each net \(\chi_{a} \) which \((\delta,p)\)-converges to \(x \) in \(X \) and for each open set \(V \) in \(Y \), such that \(x \in F^{-}(V) \); then the net \(\chi_{a} \) is eventually in \(F^{-}(V) \).

Proof : The proof is similar to the proof of theorem (3.2) .

The following theorem shows that the restriction of lower (upper) \((\delta,p)\)-continuous multifunction on pre-regular \(p \) open set is also lower (upper) \((\delta,p)\)-continuous multifunction :

Theorem 3.4

Let \(F : X \rightarrow Y \) be a multifunction from submaximal space \(X \) into a space \(Y \) and let \(A \) be a pre-regular \(p \)-open subset of \(X \), if
1) \(F \) is \(u.(\delta,p).c. \) ; then \(F\mid_{A} : A \rightarrow Y \) is also \(u.(\delta,p).c. \).
2) \(F \) is \(l.(\delta,p).c. \) ; then \(F\mid_{A} : A \rightarrow Y \) is also \(l.(\delta,p).c. \).
3) \(F \) is \((\delta,p).C \) ; then \(F\mid_{A} : A \rightarrow Y \) is also \((\delta,p).C \).

Proof : 1) Let \(x \in A \) and \(V \) be any open set of \(Y \) such that \(x \in (F\mid_{A})^{+}(V) \). Since \(F \) is \(u.(\delta,p).c. \) ; then there exists a pre-regular \(p \)-open set \(U \) in \(X \) such that \(x \in U \subseteq F^{-}(V) \), from here we obtain that \(x \in A \cap U \) and \(A \cap U \subseteq (F\mid_{A})^{+}(V) \), since \(A \) is pre-regular \(p \)-open set and \(X \) is submaximal space ;
then \(A \cap U \) is pre-regular p-open set; therefore, \(F|_A \) is u.(\(\delta \),p).c.

The proof of number (2) is similar, from (1) and (2) we obtain the proof of number (3). \(\blacksquare \)

Theorem 3.5

Let \(F : X \rightarrow Y \) be a multifunction, if \(F \) is \(\text{u.(\(\delta \),p).c} \); then \(G : X \rightarrow F(X) \) is also \(\text{u.(\(\delta \),p).c} \) where \(G(x) = F(x) \).

Proof: Let \(V \) be any open subset of a space \(Y \); then \(F(X) \cap V \) is open set in a space \(F(X) \), \(G^{-1}(V) = X \cap G^{-1}(V) = F^{-1}(V) \), since \(F \) is \(\text{u.(\(\delta \),p).c} \); then \(F^{-1}(V) \) is \((\delta,p) \)-open set in a space \(X \); therefore, \(G \) is \(\text{u.(\(\delta \),p).c} \). \(\blacksquare \)

Theorem 3.6

If \(X \) is a submaximal space and \(F_{\alpha} : X \rightarrow Y \) is \(\text{u.(\(\delta \),p).c} \) multifunction, for each \(\alpha = 1, 2, \ldots, n \); then \(F = \bigcup_{\alpha=1}^{n} F_{\alpha} \) is also \(\text{u.(\(\delta \),p).c} \) multifunction.

Proof: Let \(V \) be any open subset of \(Y \), we have \(F^{-1}(V) = \{ x : x \in X, \bigcup_{\alpha=1}^{n} F_{\alpha}(x) \subseteq V \} = \bigcap_{\alpha=1}^{n} (F_{\alpha})^{-1}(V) \); therefore, \(F^{-1}(V) \) is a \((\delta,p) \)-open set in \(X \); then \(F \) is \(\text{u.(\(\delta \),p).c} \) on \(X \). \(\blacksquare \)

Theorem 3.7

Let \(F : X \rightarrow Y \) be an \(\text{u.(\(\delta \),p).c} \) multifunction and a point compact, if \(Y \) is a Hausdorff space and \(F(x_1) \cap F(x_2) = \emptyset \), for all \(x_1 \neq x_2 \) in \(X \); then \(X \) is \((\delta,p) \)-Hausdorff space.

Proof: Let \(x_1, x_2 \) be any points of \(X \) such that \(x_1 \neq x_2 \), since \(F(x_1) \cap F(x_2) = \emptyset \) in \(Y \) and \(Y \) is a Hausdorff space, there exist two open set \(W_1, W_2 \) such that \(W_1 \) containing \(F(x_1) \) and \(W_2 \) containing \(F(x_2) \) and \(W_1 \cap W_2 = \emptyset \). Since \(F \) is \(\text{u.(\(\delta \),p).c} \); then \(F^*(W_1) \) and \(F^*(W_2) \) are \((\delta,p) \)-open subsets of \(X \) such that \(x_1 \in F^*(W_1) \) and \(x_2 \in F^*(W_2) \) such that \(F^*(W_1) \cap F^*(W_2) = F^*(W_1 \cap W_2) = F^*(\emptyset) = \emptyset \). It follows that \(X \) is \((\delta,p) \)-Hausdorff space. \(\blacksquare \)

Theorem 3.8

Let \(F \) and \(G : X \rightarrow Y \) be two \(\text{u.(\(\delta \),p).c} \) multifunctions and point closed, if \(X \) is a submaximal space and \(Y \) is a normal space; then the set \(E = \{ x \in X : F(x) \cap G(x) = \emptyset \} \) is \((\delta,p) \)-closed set in \(X \).

Proof: Let \(x \in E^C = \{ x \in X : F(x) \cap G(x) = \emptyset \} \), since \(F \) and \(G \) are point closed and \(Y \) is a normal space; then there exist disjoint two open set \(U \) and \(V \) containing \(F(x) \) and \(G(x) \) respectively. Since \(F \) and \(G \) are \(\text{u.(\(\delta \),p).c} \); then \(F^+(U) \) and \(G^+(V) \) are \((\delta,p) \)-open subset of \(X \) such that \(x \in F^+(U) \) and \(x \in G^+(V) \). It follows that there exist pre-regular p-open sets \(W_1 \) and \(W_2 \) such that \(x \in W_i \subseteq F^+(U) \) and \(x \in W_2 \subseteq G^+(V) \). Let \(D = W_1 \cap W_2 \); then \(D \) is pre-regular p-open set containing \(x \) and \(D \cap E = \emptyset \), which means \(D \subseteq E^C \), hence \(E \) is a \((\delta,p) \)-closed subset of \(X \). \(\blacksquare \)

Theorem 3.9

Let \(X_i, i=1,2 \) be submaximal space and \(Y \) be a normal space and \(F_i : X_i \rightarrow Y \) are
u.\((\delta,p)\).c multfunctions and point closed , the set \(D = \{(x_1,x_2) \in X_1 \times X_2 : F_1(x_1) \cap F_2(x_2) = \emptyset\}\) is \((\delta,p)\)-closed set in \(X_1 \times X_2\).

Proof: Let \((x_1,x_2) \in D^C = \{(x_1,x_2) \in X_1 \times X_2 : F_1(x_1) \cap F_2(x_2) = \emptyset\}\), since \(Y\) is a normal space and \(F_i\) are point closed , for each \((i=1,2)\), there exist disjoint open sets \(W_1\) and \(W_2\) such that \(W_1\) containing \(F(x_1)\) and \(W_2\) containing \(F(x_2)\). Since \(F_i\) are u.\((\delta,p)\).c , then \(F'(W_1)\) and \(F'(W_2)\) are \((\delta,p)\)-open subsets of \(X_1\) and \(X_2\) respectively. It follows that there exists pre-regular p-open sets \(H_1\) and \(H_2\) such that \(x_1 \in H_1 \subseteq F_1^{-1}(U)\) and \(x_2 \in H_2 \subseteq F_2^{-1}(V)\). Let \(S = H_1 \times H_2\); then \(S\) is pre-regular p-open set in \(X_1 \times X_2\) and \((x_1,x_2) \in S \subseteq D^C\), from this we obtain \(D^C\) is \((\delta,p)\)-open set in \(X_1 \times X_2\), implies that to \(D\) is \((\delta,p)\)-closed set in \(X_1 \times X_2\).

Theorem 3.10

Let \(F : X \to Y\) be a multifunction from a \((\delta,p)\)-connected topological space \(X\) onto a topological space \(Y\), if \(F\) is u.\((\delta,p)\).c and point connected; then \(Y\) is connected.

Proof: Suppose \(Y\) is disconnected , then there exists nonempty open sets \(U_1\) and \(U_2\) in \(Y\) such that \(Y = U_1 \cup U_2\) and \(U_1 \cap U_2 = \emptyset\), since \(F\) is u.\((\delta,p)\).c ; then \(F'(U_1)\) and \(F'(U_2)\) are \((\delta,p)\)-open subset of \(X\), such that \(F'(U_1) \cap F'(U_2) = F'(U_1 \cap U_2) = F'(\emptyset) = \emptyset\) and \(F'(U_1) \cup F'(U_2) = F'(U_1 \cup U_2) = F'(Y) = X\), so, by definition (2.8) \(X\) is \((\delta,p)\)-disconnected, this is contraction, therefore \(Y\) is connected.

The following result studied cartesian product of finite upper (lower) \((\delta,p)\)-continuous multfunctions.

Theorem 3.11

Suppose that for each \((i = 1,2,\ldots,n)\), \(X_i\) and \(Y_i\) are topological spaces, let \(F_i : X_i \to Y_i\) be a multifunction, for each \((i = 1,2,\ldots,n)\), consider the multifunction \(F : \prod_{i=1}^{n} X_i \to \prod_{i=1}^{n} Y_i\):

1. \(F_i\) is u.\((\delta,p)\).c ; then \(F\) is also u.\((\delta,p)\).c.
2. \(F_i\) is l.\((\delta,p)\).c ; then \(F\) is also l.\((\delta,p)\).c.
3. \(F_i\) is \((\delta,p)\).c ; then \(F\) is also \((\delta,p)\).c.

Proof: Let \(W\) be any open set in \(\prod_{i=1}^{n} Y_i\), then there exist open sets \(U_i\), for each \((i = 1,2,\ldots,n)\), such that \(W = \prod_{i=1}^{n} U_i\). It follows that \(F(W) = F^{-1}(\prod_{i=1}^{n} U_i) = \prod_{i=1}^{n} F_i^{-1}(U_i)\). Since \(F_i\) is u.\((\delta,p)\).c, for each \((i = 1,2,\ldots,n)\), then \(F_i^{-1}(U_i)\) is \((\delta,p)\)-open, for each \((i = 1,2,\ldots,n)\), then \(\prod_{i=1}^{n} F_i^{-1}(U_i)\) is \((\delta,p)\)-open set; therefore, \(F\) is u.\((\delta,p)\).c.

The proof of number (1) is similar, from (1) and (2) we obtain the proof of number (3).

87
Theorem 2.12

Let \{F_\alpha : X \to Y \mid \alpha \in D\} be a net of u.((\delta,p),c) multifunctions, \(F_\alpha\) be an upper pointwise convergent to \(F : X \to Y\) and \(F\) is point closed, if \(Y\) is normal and for each open set \(W\) of \(Y\) with \(F^{-1}(W)\neq\emptyset\) and \(\beta \in D\), there exists \(\gamma \geq \beta\) such that \(F_\gamma(x) \subseteq W\), for all \(x \in F^{-1}(W)\); then \(F\) is also u.((\delta,p),c).

Proof: Suppose \(F\) is not u.((\delta,p),c) at a point \(x^*\) in \(X\); then there exists an open set \(V\) in \(Y\) containing \(F(x^*)\), such that for each pre-regular \(p\)-open set \(U\) in \(X\) containing \(x^*\) and there exists \(x_U \in U\) and \(F(x_U) \subseteq V\). Let \(y^* \in F(x^*) \cap V\), since \(Y\) is normal space, there exists an open set \(V_1\) such that \(y^* \in V_1 \subseteq CL(V_1) \subseteq V\), let \(W = Y - CL(V_1)\), as \(y^* \in F(x^*) \cap V_1\), which means \(y^* \in F(V_1)\). Since \(\{F_\alpha : X \to Y \mid \alpha \in D\}\) is upper pointwise convergent to \(F\) at \(x^*\). It follows that there exists \(\beta \in D\) such that \(F_\beta(x^*) \subseteq V_1\), for each \(\alpha \preceq \beta\), since \(F(x_U) \cap V \neq \emptyset\); then \(F(x_U) \cap W \neq \emptyset\), this implies \(x_U \in F^{-1}(W)\neq\emptyset\). Hence there exists \(\gamma \geq \beta\) such that \(F_\gamma(x) \cap W \neq \emptyset\), for all \(x \in F^{-1}(W)\), this implies \(F_\gamma(x_U) \cap W \neq \emptyset\), therefore \(F_\gamma(x_U) \subseteq V_1\), hence \(F_\gamma\) is not u.((\delta,p),c) at \(x^*\), this contradiction; therefore, \(F\) is u.((\delta,p),c).

Theorem 3.1

Let \(\{F_\alpha : X \to Y \mid \alpha \in D\}\) be a net of l.((\delta,p),c) multifunctions, \(F_\alpha\) be a lower pointwise convergent to \(F : X \to Y\), if \(Y\) is regular and for each open set \(W\) of \(Y\) with \(F^{-1}(W)\neq\emptyset\) and \(\beta \in D\), there exists \(\gamma \preceq \beta\) such that \(F_\gamma(x) \subseteq W\), for all \(x \in F^{-1}(W)\); then \(F\) is also l.((\delta,p),c).

Proof: Assume \(F\) is not l.((\delta,p),c) at a point \(x^*\) in \(X\), then there exists an open set \(V\) in \(Y\), \(F(x^*) \cap V \neq \emptyset\) such that, for each pre-regular \(p\)-open set \(U\) in \(X\) containing \(x^*\) and there exists \(x_U \in U\) and \(F(x_U) \cap V = \emptyset\). Let \(y^* \in F(x^*) \cap V\), since \(Y\) is regular space, there exists an open set \(V_1\) such that \(y^* \in V_1 \subseteq CL(V_1) \subseteq V\), as \(y^* \in F(x^*) \cap V_1\), which means \(y^* \in F(V_1)\). Since \(\{F_\alpha : X \to Y \mid \alpha \in D\}\) is lower pointwise convergent to \(F\) at \(x^*\). It follows that there exists \(\beta \in D\) such that \(x^* \in F_\beta(V_1)\), for each \(\alpha \preceq \beta\), since \(F(x_U) \cap V = \emptyset\); then \(F(x_U) \subseteq V \subseteq W\), this implies \(x_U \in F^{-1}(W)\neq\emptyset\). Hence there exists \(\gamma \preceq \beta\) such that \(F_\gamma(x) \subseteq W\), for all \(x \in F^{-1}(W)\), this implies \(F_\gamma(x_U) \subseteq W\); therefore, \(F_\gamma(x_U) = \emptyset\); then \(F_\gamma\) is not l.((\delta,p),c) at \(x^*\), this contradiction; therefore, \(F\) is l.((\delta,p),c).

4. ((\delta,p))-o-closed multifunctions

In this section, the new concept of ((\delta,p))-o-closed multifunctions, introduced and studied, and several properties of these new concept are proved.

Definition 4.1

A multifunction \(F : X \to Y\) is said to be ((\delta,p))-o-closed if for each \(x \in X\) and \(y \in Y\), for which \(y \in F(x)\), there exists ((\delta,p))-open set \(U\) in \(X\) containing \(x\) and open set \(V\) in \(Y\) containing \(y\), such that \(F(x) \cap V = \emptyset\), for each \(x_0 \in U\).
The following theorem gives the relationships between the concept \((\delta,p)\)-continuous multifunctions and \((\delta,p)\)-o-closed graph.

Theorem 4.2

Let \(F : X \rightarrow Y \) be a multifunction from a space \(X \) into a Hausdorff topological space \(Y \), if \(F \) is \(u.(\delta,p)c \) and point compact; then \(F \) is \((\delta,p)\)-o-closed.

Proof: Let \(F : X \rightarrow Y \) be \(u.(\delta,p)c \) on a space \(X \) and \(y \in F(x) \), since \(F(x) \) is compact and \(Y \) is Hausdorff space; then there exist disjoint two open set \(V_1 \) and \(V_2 \) in \(Y \) such that \(y \in V_1 \) and \(F(x) \subseteq V_2 \). Since \(F \) is \(u.(\delta,p)c \), there exists \(U \) \((\delta,p)\)-open set such that \(x \in U \) implies \(F(U) \subseteq V_2 \); then \(F(U) \cap V_1 = \emptyset \). It follows that \(F \) is \((\delta,p)\)-o-closed.

Theorem 4.3

If \(F : X \rightarrow Y \) be a \((\delta,p)\)-o-closed multifunction, then \(F(B) \) is closed subset of a space \(Y \), for each \(B \) \((\delta,p)\)-compact relative to a space \(X \).

Proof: Let \(y \notin F(B) \); then for each \(x \in B \), \(y \notin F(x) \). By definition (3.1) there exist \((\delta,p)\)-open set \(U_x \) containing \(x \) and an open set \(V_y \) containing \(y \) such that \(f(U_x) \cap V_y = \emptyset \). The family \(\{U_x \mid x \in B\} \) is a cover of a set \(B \) by \((\delta,p)\)-open sets of \(X \), since \(B \) is \((\delta,p)\)-compact there exists a finite subset \(B_0 \) of \(B \) such that \(B \subseteq \bigcup \{U_x \mid x \in B_0\} \). Take \(V = \bigcap \{V_x \mid x \in B_0\} \); then \(V \) is an open set containing \(y \) and \(F(B) \cap V = \emptyset \), this means that \(V \subseteq (F(B))^c \); therefore, \(F(B) \) is closed in \(Y \).

Definition 4.4

A multifunction \(F : X \rightarrow Y \) is called contra \((\delta,p)\)-open if the image of every \((\delta,p)\)-open set in a space \(X \) is closed set in a space \(Y \).

Theorem 4.5

If \(F : X \rightarrow Y \) is contra \((\delta,p)\)-open multifunction such that the inverse image of each point of a space \(Y \) is a \((\delta,p)\)-closed set in a space \(X \); then \(F \) is \((\delta,p)\)-o-closed.

Proof: Let \(y \notin F(x) \); then \(x \notin F^*(y) \), since \(F^*(y) \) is \((\delta,p)\)-closed; then there exists \(U \) \((\delta,p)\)-open set containing \(x \) such that \(U \cap F^*(y) = \emptyset \). Since \(F \) is contra \((\delta,p)\)-open; then \(F(U) \) is closed set in a space \(Y \), this implies that there exists an open set \(S \) in a space \(Y \) such that \(y \in S \) and \(F(U) \cap S = \emptyset \). Hence \(F \) is \((\delta,p)\)-o-closed.

Theorem 4.6

If \(\{F_\alpha : \alpha \in \Gamma\} \) is a family of \((\delta,p)\)-o-closed multifunction from a space \(X \) into a space \(Y \); then \(F = \bigcap_{\alpha \in \Gamma} F_\alpha \) (defined by \(F(x) = \bigcap_{\alpha \in \Gamma} F_\alpha(x) \)) is \((\delta,p)\)-o-closed.

Proof: Let \(y \notin F(x) \); then there exists \(\alpha \in \Gamma \) such that \(y \notin F_\alpha(x) \), since \(F_\alpha \) is \((\delta,p)\)-o-closed; then there exists a \((\delta,p)\)-open set \(U \) of \(X \) containing \(x \) and open set \(V \) in \(Y \) containing \(y \) such that \(F_\alpha(U) \cap V = \emptyset \), from this we obtain \(F(U) \cap V = \emptyset \); therefore, \(F \) is
Theorem 4.7
If $F_1 : X \to Y$ is u.(δ, p) and point compact multifunction from a submaximal space X into a Hausdorff space Y and $F_2 : X \to Y$ be (δ, p)-o-closed multifunction; then $F = F_1 \cap F_2$ is u.(δ, p) .

Proof: By theorem (4.2) F_1 is (δ, p)-o-closed, since F_2 is (δ, p)-o-closed; then by theorem (4.6) $F = F_1 \cap F_2$ is (δ, p)-o-closed. Let $x_0 \in X$ and V open subset in Y containing $F(x_0) = F_1(x_0) \cap F_2(x_0)$. If $F_1(x_0) \subseteq V$ implies there exists U_x (δ, p)-open set such that $V \subseteq U_x \subseteq F_m(V)$, when $F(x_0) \subseteq V$.

Now, let $F_1(x_0) \not\subseteq V$; then $A = F_1(x_0) \cap V = \phi$, let $y \not\in F_2(x_0)$, since F_2 is (δ, p)-o-closed, there exists an (δ, p)-open set U_y in X containing y and an open set W_y in Y containing y such that $F_2(W_y) \cap W_y = \phi$. Since $F_1(x)$ is compact subset of Y and V^C is closed, then A is closed subset of Y. It follows that A is compact subset of Y; therefore, there exists points $y_1, y_2, ..., y_n$ in A such that $A \subseteq U_{i=1}^{n} W_i = W'$, since F_1 is u.(δ, p) and $V \cup W'$ is open set and $F_1(x) \subseteq V \cup W'$; then there exists an open set U_x containing a point x such that $F_1(U_x) \subseteq V \cup W'$, let $U' = U_{y_1} \cap U_{y_2} \cap \ldots \cap U_{y_n} \cap U_x$, we have $F_2(U') \cap W = \phi$ and $F_1(U') \subseteq V \cup W'$; therefore, $(F_1 \cap F_2)(U') \subseteq V$. Hence F is u.(δ, p) at a point x.

Theorem 4.8
If $F : X \to Y$ is (δ, p)-o-closed multifunction from a submaximal space X to a space Y; then $F^-(B)$ is (δ, p)-closed, for each B compact set in a space Y.

Proof: Let B be arbitrary compact set in a space Y and $x \not\in F^{-1}(B) = \{x : F(x) \cap B \neq \phi\}$; then $x \not\in F^{-1}(B)$, for each $b \in B$. Since F is (δ, p)-o-closed, then there exist (δ, p)-open sets $U_b(b)$, and open set U_b such that $x \in U_b(b)$ and $b \in U_b$ implies $F(U_b(b)) \cap U_b = \phi$. The family $\{U_b : b \in B\}$ is open cover of B, since B is compact; then there exists $U_{b_1}, U_{b_2}, ..., U_{b_n}$ is finite sub cover such that $B \subseteq \bigcup_{i=1}^{n} U_{b_i}$, let $U_x = \bigcap_{i=1}^{n} U_{x(b_i)}$ such that $x \in U_x$. If $U_x \cap F^{-1}(B) = \phi$; then $F^{-1}(B)$ is (δ, p)-closed.

Now, for showing this, suppose $U_x \cap F^{-1}(B) \neq \phi$, there exists $x_0 \in U_x$ and $x_0 \in F^{-1}(B)$; then $x_0 \in U_x(b_i)$, for each $i=1,2,...,n$ and $F(x_0) \cap B \neq \phi$, this implies there exists $z \in F(x_0)$ and $z \in B$, since $B \subseteq \bigcup_{i=1}^{n} U_{b_i}$; then $z \in U_{b_i}$ when $i=j$, there exists $U_z(b_i)$ such that $F((U_z(b_i)) \cap U_{bj} \neq \phi$, this is contradiction; therefore, $U_x \cap F^{-1}(B) = \phi$ in X and $F^{-1}(B)$ is (δ, p)-closed in X.

Now, the following theorem is study the converse of theorem 4.2.

Theorem 4.9
If $F : X \to Y$ is a (δ, p)-o-closed multifunction and Y is a compact space; then F is u.(δ, p) .

Proof: Let H be any closed subset of Y, since Y is a compact space; then H is compact set in Y from theorem (4.8) we get
$F^-(H)$ is (δ,p)-closed, this implies F is $u.(\delta,p).c$.

References

