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Abstract

The use Artificial Neural Networks (ANN) can be a form of Artificial Intelligence
| (Al). The feed forward neural network has a wide application area such as pattern
recognition, image compression, and classification problem. Two models of a feed forward
neural network are proposed and implemented using the schematic editor of the Xilinx
FPGA foundation series 2.1i. Model-1 consists of two layers and specializes in solving a
linear problem. Model-2 is a modified copy from Model-1 and consists of three layers and
it’s responsible for classifying the non-linear problems. Each model is designed and
implemented in five stages without using the finite state machine. The flexibility, low
costly, and real-time operation are the main features of the proposed design take in
considered. Model-1 execution time is 2.935ps and model-2 execution time is 2.96ys,
while the costs of two models are 1927 CLBs and 2017 CLBs respectively. These features
compare extremely well with other existing designs with good advantages,
Index Terms— Feed forward, Neural network, FPGA, Schematic Editor, Stand-alone.
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1. Introduction

The first theories of Neural
Networks (NNs) had been introduced
early 20" century. The idea of neural
networks was more theoretical than
applicable. So early development was
slowly. Later, the revolution in computer
fields lead to development new types of
networks. Neural networks are used in the
field of AI, are massively parallel
computation systems that are based on
simplified models of the human brain.
Some rules must exist for evaluating
whether a problem is suitable for a NN
implementation or not. There must be an
example dataset of the problem in order
to be able to train the network. There are
many training algorithms depending on
the type of NN and its ap.piication field
where, the training algorithm which is
suitable for oﬁe'type of networks, it is not
 for other types or even other applications

[1-3]

2. Feedforward Neural Network
Architecture
FFeedforward Neural Network

(FFNN) can be classified into two types

according to their functionality.
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2.1. Single Layer Feedforward (SLFF)
Model

This model consists of two layers
(input layer and output layer). The single
layer perceptron or SLFF can only make
classifications corresponding to a straight
line or hyperplane in the pattern space,
see figure 1 below. This means for
instance that it is not possible to classify
the non-linear XOR binary function. The
input data for NNs are represented using
feature vectors. Each element in the
vector corresponds to a feature of the
input [4].

2.2. Multi  Layer Feedforward
(MLFF) Model

Building on the algorithm of the

simple Perceptron, the MLFF network
model not only gives a multi layer
perceptron  structure for representing
more than two classes, the extra layers
gives the structure needed to recognise
non-linearly  separable classes. The
MLFFs are more convenient for network
classification as explained in figure 2.
Such neural networks with supervised
error correcting learning are used to
approximate (synthesis) a non-linear

input-output mapping from a set of
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training  patterns [5]. The basic
feedforward network performs a non-
linear transformation of input data in
order to approximate the output data. The
number of input and output nodes is
determined by:
t. The nature of the modeling problem
being tackled.
2. The input data representation and the
form of the network output required.
3. The number of hidden layer nodes is
related to the complexity of the
system being modeled. and thus
creating an n-dimensional feature
space. Feature space is easiest to
visualise in the 2-dimensions. The
input patterns can be drawn on the
graph as or encapsulating the different
pattern sets with one perceptron. It is
only possible to distinguish between
two pattern classes, with the visual
representation of a straight separation
line in pattern space [4]. A number of
papers have shown that a two-layered
feedforward network has the ability to
approximate any non-linear
continuous function to an arbitrary
degree of exactness, provided that the

hidden layer contains sufficient nodes.

The problem of determining the
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network parameters (weights) s
essentially a non-linear optimization
task. The back-propagation method,
which is a distributed gradient descent
technique, is the most popular training
algorithm but it is more sophisticated

for hardware implementation [6-9].

4. Implementation Methods
4.1 Training Algorithms

Training or learning algorithm is a
procedure that applied on the network in
order to reach to the desired output with
minimum error. Note that the number of
connections is higher than the total
number of nodes. Both numbers are
chosen based on the particular application
and can be arbitrarily large for complex
tasks.

Although  MLFF  are  more
convenient for network classification,
they introduce a new problem due to the
backpropagation. The network is not
guaranteed to find convergence, where
the risks ending up in a situation where it
is impossible to learn to produce the right
output. This state is called a local
minimum, also the backpropagation-
training algorithm possesses another

disadvantages, which deters some
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designers from using it. A major

disadvantage  of implementing  the
backpropagation algorithm on 2 FPGA is
that pipelining of the algorithm on a
whole cannot occur during training. This
problem arises due to the weight update
dependencies of backpropagation, and as
a result, the utilization of hardware
resources dedicated to each of the neural
network's layers is wasted [12,13]. Next
section a new training algorithm, which is
more suitable for hardware
implementation will be present and

explained.
4.2 Problem Formulation

Attila [1] present new and simple
training algorithm for a FFN. This simple
algorithm is more convenience for
hardware implementation than a regular
backpropagation algorithm.  Where, 2
large number of datasets (patterns) are
presented at the input layer and the
network adapts the connection weights
according to these patterns. The origin of
these terns may be an image. Each set of
images used is called training set, so a
two-dimensional image can be described
as a matrix of dimension P*N (usually in

pixels), whereby N is the number of
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original feature vectors and P is the
number of patterns [5,14-17].

The neural network that will be
considered, is a feed forward with two
layers, the input layer and the output
layer.

Let Input layer containing 125 input
value as a vector, called data set (X1,
X2..X125) and the output layer
containing two output neurons neuron |
and neuron 2 as shown in figure 3. The
results are presented at the neurons of the
output layers as Y: and Y2, The
connection weights are distributed over
links that joined the nodes of the two
layers. Therefore,

Yi= (X (Xi * wi )+ 0 (1)
fori=1,2,3, ..... 125

Y= (X ( Xi * w2 )+ 6 )
for i=1,2,3, O .

The final sums Y1 and Y2 are the
input value to the transfer function f(.).
The transfer function is usually a
sigmoid-shaped function having output
varies between -1 and +1. This transfer
function is often a hyperbolic tangent
used due to it’s characteristic of

convergence on a correct solution with
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smooth effect, although it is complex to
Tmplement as a hardware [18]. Hence,

Oi=tanh(Y1) 3)
O:=tanh(Y>) (4)

The pervious equations | and 2 can
be represented as a mathematical model
of two-dimensional matrix multiplication
if one input pattern is considered as

follows:

( wil wi2 .......wl125 9]

w2l w22 ... w2 125 [ (%)

A J

Yi

— T

()

For two input patterns there is 252-
multipliction process and 250-summation
process at one output neuron, so for two
output  neurons, we have  504-
multiplication  process and  500-
summation process.

The training algorithm of [1] is quite
sufficient for hardware implementation

than back propagation algorithm. This
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algorithm computes the error derivative
with respect to the weight using analytical
method. After calculating the error, new
weights can be computed using the
following formula,

Wi 1=wi n OE /ow (6)

Where 1 is the learning rate

OE /0w is derivative and calculated as
follows,

OE /6w =(En-E)/h 7)
and
Eer=1/2(Z(0-1t)) (8)

Where; En is the error that is created after
added a small value (h ) to the weights
and re-process to find the two neuron

outputs and hence the two neurons errors

(En). t, is the desired or training output

5. Related Designs

Table 1 summarizes the cost and the
speed for the four related designs. These
results will be compared and discussed
with the proposed design results. The cost
(if available) is measured by the number
of CLBs and I0Bs while the speed
represents the execution time of the
design for one iteration i.c.; the delay
time required to process the input and

present the output.
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ﬁeﬁén Name, | No. of | No.  of No. of | Cost | Speed/one | notes ]
} 5 A J

| year | Inputs | neurons Layers ‘| CLBs | IOBs iteration | |

non-RRANN for
XOR, 2003[2] |
| non-RRANN for 2 3

] 1 8 | VLS 10MHz

XOR, 2003[2 T—
” RWC, 1998[19] ‘ 20 3
| [ For 126 input, the

| ‘ ’ I

Mg o ab ———— S gj\ | __speed=48 us 3

Ir_AzmeI AT60005 3 3 3 | 12165 - | 176 [ Clock=20MiEz

|_for XOR, 1996(3] | |
*-: Unavailable

Use Virtex-E |[

Use Virtex-1I | .

Table 1: Comparison the four similarity design

*- . Unavailable

6. Block Diagram of the Model-1 FFNN 7. __Block Diagram of the Model-2
g FENN Design
Design

Although many neural networks
have been implemented in hardware, no
researcher could produce the logic circuit
details, which help the new designer for

adding, improving and even invention in

the current design. Our designs
produce the ideas over many steps. Each
group of design steps are called “stage”,
and each stage is responsible to
implement part of the over all system
operation.

The first model consists of five
design stages explained in figure 4. This
figure gives us summary review about the

main design architecture.
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We can refer to a three-layer FFNN
as Model-2. The input layer of this model
is consist of 126 input values, the hidden
layer include two neurons, and one
neuron in the output for non-linear
classification problems. The hidden layer
was in fact the output layer in Model-1.
The new modification in the model-1
FENN is only the output neuron, which is
added at the output layer where, the two
outputs (O1 and 02) becomes an input to
this layer. The new output formula will
be,

Y=01Wii+02Wi2+0 9)
and O =tanh(y) (10)
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Since this model has only one
output neuron, stage#4 will also modify
its circuit design according to one output

neuron and hence one error will be

. Caleulation of the Model-1 Execution

Time and Cost

The processing time of the model-

I is the accumulated time for its

individual stages as will be computed in
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calculated.Up to now the five stages of

the two models are designed. Next section
the two model stages will be tested,

implemented, and optimized.

I processing time of the first 252
weights in the first half memories.
Th processing time of the second 252

weights in the second half memories

the table 2 below.

Table 2: model-1 FFNN execution time

|[-_tage no. |  Data input time(us) Data output time(ps) Processing |
F T Th i Tk time (ns)

| ] 0 0 1.315 2.595 65

! 7 1315 2.595 1.35 263 35 b
[l""_ 3 1.35 + 263 | 1625 2.905 275 |
g | 1.625 2.905 2.935 2.935 30
L ' |

7

h: processiln g time of the second 252 we

ights in the second half memories.

The design cost of this model was summarized in table 3. T his table represents the

report result of the Place & Route step implementation process.

Table 3: Model-1 design cost

T

Stage no. CLB 10Bs Total stages
| CLB I0Bs
#1 1206 756 1206 756
a 2 10 392 220 784
S = 201 250 j 402 | 300
#4 99 331 99 331
- _ |
! 45 | Already computed in each stage = - ]
Total cost | 1927 2371 4’
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9. Calculation of the Model-2

Execution Time and cost

Model-2 architecture match the first
one with 80% where, the change was
done only by embedding stage#2 model-1
in stage#2 model-2. Stage#2 for this
model will add new processing time, this
time is created as follows,

Time (stage#2 Model-2) = Tsz = Tsi+
(stage#2 Model-2 processing time)
stage#2 Model-2 processing time = 35ns
+25ns = 60ns

Ts2=1.315us + 60ns = 1.375 us

Where, the 60ns are the macro device of
stage#2 model-1 processing time (35ns).
The timing diagram is explained in figure
6. Also, the total time required for the
second halves memories (128-253)10 is,
Ths2 = Thsl+ (stage#2 Model-2
processing time)

Ths2=2.595 pus + 60ns

Ths2 =2.655 ps

In the same way, the remaining stages

be Table 4

summarizes the spent time for the four

time  will computed.

stages in model-2.

rnst;gc no. | Data input_time(ps) | Data outpﬁﬁme(us) Eocessing ]
T | Th T Th time (ns)

#1 0 0 1.315 2.595 65

#2 1.315 2.595 1.375 2.655 60 |
S | 1375 | 2655 1.65 | 293 275

_ | )

| #4 165 | 293 296 | 296 30 |
| . I |

Table 4: model-2 FFNN execution time
Design cost for this model can be

casy conclude from the following,

Model-2 Design Cost = Model-1 Design

Cost + new layer cost

The new layer cost is the output layer that

designed in stage#2. Table 5 contents

summarizes the cost report resuited from

*Department of Electrical Engineering University of Baghdad

*Department of Computer Engineering University of Al-Must
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Place & Route implementation process.
We can notice that change is appear only
in stag#2 and stage#3 where, the hidden

and out put layer are included in their.

Baghdad, Iraq
ansiriya Baghdad, Iraq
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Table 5: Model-2 design cost

!_ " ‘_S't_age no. CLB I0Bs Total stages
B CLB T10Bs
#1 1206 ‘ 756 1206 756
o ) 621 1043 621 1043
83 T 201 T 250 201 250
‘ #4 99 | 331 99 331
#5 . Already compu'ted in each stage = -
~ Total cost | o a N 2017 | 2380
| i
According to tables 3 and 5 proposed design in the future or even for

results, the change of CLBs cost is
relatively larger than IOBs cost change.
The reason of this back that RAM and
multiplier consumes a CLBs much more
than other devices where, stage#2 Model-
2 circuit consumed pair of 8bit*8bit
multipliers and pair of look-up tables
RAMs.

The percent of CLBs in XC4005XL
platform of the table 3 is,
1927/20736 =9.293% while,
the percent of CLBs in XC4005XL
platform of the table 5 is,

2017720736 = 9.727%

These two conclusion values are too

important, when we want to develop the

109

more run-time optimization.

10. Discussion and Conclusions

This paper has presented the design
and implementation of the two models
FFNNs by XC4005XL FPGA using the
schematic editor of Xilinx 2.1i.

Two  models design steps were
implemented, as pure hardware: i.e. not
based the finite state machine software.
The main benefits obtained from stages
based design idea is the flexibility. This
was achieved through the following
points:

I. This feature was satisfied in model-
some of

| design when, with
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modification applied on

one stage to

obtain the new model-2 design.

2. The range of inputs can vary from

2-126 by justifying the zero-bytes
locations and delay counter in
stag#4 depending on type of

application.

Design and Implementation of Two Feed forward Neural
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4.

Requirement of adding/canceling
layers or neurons are local stage
dependent. The proposed design
architecture in addition of being
flexible, high-speed run time, and
is inexpensive. These features can
be discussed through comparison

with a related works as shown in

3. The design implementation and

verification becomes more

interactive and easy for debugging.

table

Table6: Comparison the two models with a similarity design

6 below

Design Name, | No. of | No. of | No. of | Cost | Speed/one [ notes
' year Inputs | neurons | Layers [ CLBs | IOBs | iteration
(ps)
Model-1 126 2 2 1927 2371 2.935 Use
2004 XC4005XL |
Model-2 126 3 3 12017 2380 | 2.96 Use
2004 | XC4005XL
non-RRANN |2 3 3 1239 [» 47.8 Use Virtex-E
for XOR, 2003 | o | ) |
non-RRANN |2 3 3 8334.75 | _ ' 580 Use Virtex-II
| for XOR, 2003 | i B | | B
RWC, 1998 20 13 3 _ r 8 VLSI. 10MHz
| | | For 126 input,
the speed=48
S H3
Atmel 2 3 3 12165 | _ 17.6 Clock =
AT60005 for l 20MHz
| XOR, 1996 |‘

* .: Unavailable
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The two models cost has in
minimum value, the speed of them can
rise up by adding more multiplier devices.
These  additional — multipliers — will
decreases the execution time as follows:

The 126 input values take 1.315us
to finish the multiplication process for
one multiplier per neuron, so for two

parallel multipliers per neuron, the 126

Design and Implementation of Two Feed forward Neural
Network Models Using FPGAs Schematic Editor

input values will divided to two equally
halves, each one contains 63 input values.
The first and second 63 input values
will be multiplies in 0.6575pus can be
Concluded that stage#! processing
time will decreases to a new value for
each additional multiplier per neuron, as

in the table 7.

Table 7: Stage#1 Execution Time after modification

No. of Multiplier | No. of dataset | No. of Input | Stage#l  Execution
Per Neuron Groups per Group Time(us)
| 1 126 1315
X 2 2 63 0.6575
3 3 42 0.4383
6 6 21 0.2193
iy 7 8 | 0.185 i
I 9 | 9 14 0.1161
The new processing time = (stage#l will not be proportionate with the new

processing time)/(No. of multiplier per
neuron)

Also, Total run time = total run time —
(stage#1 execution time — new processing
time)From table 7, it can observed the
following, when the No. of multipliers

exceeds 7, the new stage processing time

111

stage complexity. This table can be
reference for any FFNN design has the
same range of input values where, the

execution time and cost are the main

issucs.
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Figure 2: Decision regions (IEEE SSP April 1987)
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Figure 6: Timing diagram of stage#2 model-2
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Stage#l

Five RAMs, cach onc has 256x 16bits for two ncurons.
Lach neuron has two swapping in operations RAMs lor
weights values.
One RAM for shared inpul valucs.
Two parallels line (8bitsx8bits) multiplicrs.
J-K control circuit.

l

!

Neuron#l - Neuron#2
I
Stage#?2 Stage#2
Sum the positive weighted input data ol Sum the positive weighted inputdata | [~
Sum the negative weighted input data Sum the negative weighted input data
Sum the two values to find Y1 Sum the two values to find Y2
b 4 b
Stage#3 Stage#3
Mapping to find tanh (Y1) Mapping to find tanh (Y2)
Mapping to find the training value ti Mapping to find the training value t2
Find the EMSI (E1) Find the EMS2 (E2)
Stage#d
Sum the two neuron values (E1+E2).
Hold and sum the two EMSh values (Ehi+En2) of the 2™ half memory (wgt-th), e, :
Find the derivative (Eh-E)/h.
Count the number of iterations
Stage#5 :

Implement the training algorithm by updating the weights in stage# 1.

Control and synchronize the swapping opcration of the four weights memory in stage# 1.

And, control and synchronize the operations in all remaining stages

Data flow
Control flow

Figure 4: Block diagram of the model-1 five-stage architecture
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