

Al-Mustansiriyah University-College of Education

Department of Mathematics

E-mail:dalalresan@yahoo.com

تقديـــم البحث: 7/ 6/11

قبول نشر البحث: 2011/11/30

Abstract

In this paper , we introduced a new concepts of generalized Λ_{gs} - sets (breifly.g. Λ_{gs} - sets) and generalized V_{gs} - sets (breifly. g.V $_{gs}$ - sets) and study its connection with Λ_{gs} - (resp. V_{gs} -) sets ,we give some results about that.

Keywords: Λ_{gs} -sets , V_{gs} - sets, generalized Λ_{gs} -set , generalized V_{gs} - set.

 $m V_{gs}$ - المجموعات العامة م $m \Lambda_{gs}$ - المجموعات العامة

دلال ابراهيم رسن نالان جلال عبد القادر الجامعة المستنصرية - كلية التربية قسم الرياضيات

الملخص: في هذا البحث سوف نقدم مفهومي المجموعات الاعم- S9و- S9كما سندر س ارتباطهما مع المجموعات- S9و- S9سوف نعطي بعض النتائج حول ذلك.

1.Introduction

In 1986, Maki [1] continued the work of Levine [2]and Dunham [3] on generalized closed sets and closure operators by introducing the notion of a generalized Λ -set in a topological space (X,τ) and by defining an associated closure operator, i.e. the Λ -closure operator. He studied the relationship between the given topology τ and the topology τ generated by the family of generalized Λ -sets.Ganster and et.al. [4] introduced the notion of pre- Λ -sets and pre-V-sets and obtained new topologies defined by these families of sets . M.E. Abd El-Monsef, A.A. El-Atik and M.M. El-Sharkasy [5] are introduced the notion of b- Λ - sets and b-V-sets topological spaces and studied some of its properties. Also they proved that the topology generated by the class of b-open sets contains the topology generated by the class of pre open (resp. semi-open) sets by using the notions of Λ -sets and V-sets.

2. Preliminaries

The concept of a semi-open set in a topological space was introduced by N.Levine in 1963 [6]. If (X,τ) is a topological space and $A \subset X$, then A is semi-open if there exists $U \in \tau$ such that $U \subset A \subset Cl(U)$. The complement A^c of a semi-open set A, is called semi-closed and the semi-closure of a set A, denoted by SCl(A), is defined to be the intersection of all semi-closed sets containing A, SCl(A) is a semi-closed set [7] and [8]. The semi-interior [8] of A, denoted by SCl(A), is defined by the union of all semi-open sets contained in A. A subset A of SCl(A) is said to be generalized semi-open[9] (written as gs-open) in SCl(A) in SCl(A) is a subset A is generalized semi-closed (written as gs-closed) if its complement SCl(A) is gs-open in SCl(A) is generalized class of closed sets was consider by Maki in 1986 [1]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e, sets that are intersection of open sets are called SCl(A) complements of V-sets, i.e, sets that are intersection of open sets are called SCl(A) complements of V-sets, i.e, sets that are

open(resp. generalized semi-closed)sets in (X,τ) will be denoted by $GSO(X,\tau)$ (resp. $GSC(X,\tau)$,during our work X and Y(or(X, τ) and (Y, σ)) will always denote topological spaces .No separation axioms are assumed unless stated explicitly.

Definition 2.1

Let A be a subset of a space (X,τ) . We define the subsets $\Lambda_{gs}(A)$

and V_{gs} (A)as follows:

$$\Lambda_{gs}\left(A\right) = \cap \left[U:A \subset U, U \in GSO(X,\tau)\right] \quad \text{and} \quad V_{gs}(A) = U\left[F:F \subset A, F \in GSC(X,\tau)\right]$$

Definition 2.2

A subset A of a space (X,τ) is called Λ_{gs} -(resp. V_{gs} -)set if $A=\Lambda_{gs}(A)$ (resp. $A=V_{gs}(A)$).

Lemma 2.3

Let A be subset of a space (X,τ) , then the following properties are valid.

- (1) $A \subset \Lambda_{g_S}(A)$
- (2) $V_{gs}(A) \subset (A)$
- (3) If $A \in GSO(X,\tau)$, then $A = \Lambda_{gs}(A)$
- (4) $\Lambda_{gs}(A^{c}) = (V_{gs}(A))^{c}.$
- $(5) \qquad \Lambda_{gs} \ (\{U \ Ai : i \in I\}) = \{ \ U \ \Lambda_{gs} \ (Ai) : i \in I \}$
- (6) If $A \in GSC(X,\tau)$, then $A=V_{gs}(A)$.
- (7) If $A \subset B$, Then $\Lambda_{gs}(A) \subset \Lambda_{gs}(B)$.
- (8) $\Lambda_{gs} (\Lambda_{gs}(A)) = \Lambda_{gs}(A).$

the proof of (1),(2),(3),(4),(5) and (6) in [10 : Lemma 2.3]

For prove (7) it is clear by Definition 2.1.

Fore prove (8), first observe that by (1) and (7), we have $\Lambda_{gs}(A) \subset \Lambda_{gs}(\Lambda_{gs}(A))$.

For the converse inclusion ,let $x \notin \Lambda_{gs}(A)$. Then there exists $G \in GSO(X,\tau)$, such that $A \subset G$, $x \notin G$. Since $\Lambda_{gs}(\Lambda_{gs}(A)) = \{G: \Lambda_{gs}(A) \subset G, G \in GSO(X,\tau)\}$. So we have $x \notin \Lambda_{gs}(\Lambda_{gs}(A))$. Thus $\Lambda_{gs}(\Lambda_{gs}(A)) = \Lambda_{gs}(A)$.

Remark2.4

By Lemma 2.3(3) and (6), we have that

- (1) If $A \in GSO(X,\tau)$, then A is a Λ_{gs} –set.
- (2) If $A \in GSC(X,\tau)$, then A is a V_{gs} -set.

3- The Main Results.

Definition 3.1

A subset A of a space (X, τ) is called generalized Λ_{gs} -set(briefly g. Λ_{gs} -set) if $\Lambda_{gs}(A) \subset U$ whenever $A \subset U$ and $U \in GSC(X, \tau)$.

Definition 3.2

In a space (X,τ) , a subset A is called a generalized V_{gs} - set(briefly g- V_{gs} - set) of (X,τ) if A^c is a g. Λ_{gs} -set of (X,τ) .

Proposition 3.3

For a space (X, τ) the following statements hold

- 1- Every Λ_{gs} -set is a g. Λ_{gs} -set.
- 2- Every V_{gs} set is a g. V_{gs} set.
- 3- Every union of g. Λ_{gs} -sets is a g. Λ_{gs} -sets.
- 4- Every intersection of g. V_{gs} sets is a g. V_{gs} sets.

Proof: (1) and (2) Follows from Definition (2.2) and Definition (3.1)

To proof (3) let $\{A_i: i \in I \}$ is a g. Λ_{gs} -sets then by Lemma 2.3 (5)

For prove (4), let $\{A_i : i \in I \}$ is a g. V_{gs} -sets then by Definition 2.3, $\{A_i^c : i \in I \}$ is

a g. Λ_{gs} -sets.Then by(3),we obtain $\ U\{\ A^c_i: i\in I\ \}$ is = a g. Λ_{gs} -sets.Thus by Definition (3.2), $\ \cap\ \{A_I: i\in I\}$ is g. V_{gs} -set .

Remark 3.4

The intersection of two g. Λ_{gs} -sets is not a g. Λ_{gs} -sets as shown by the following Example .

Example 3.5

Let $X = \{ a,b,c \}$ and $\tau = \{ \Phi, \{a,b \}, X \}$.

The family of all g. Λ_{gs} -sets = { Φ ,X,{a},{b},{a,b},{a,c},{b,c} } and family of g. V_{gs} - sets ={ Φ ,X,{a},{b},{c},{a,c},{b,c}} , if A={a,c} and B={b,c} . then A and B are g. Λ_{gs} -sets but $A\cap B=\{c\}$ is not a g. Λ_{gs} -set.

Remark 3.6

The converse of Proposition 3.3 (1) (resp.(2)) is not true as in the following example.

Example 3.7

Let (X,τ) be the space in Example 3.5 , the subset $A=\{b,c\}$ is a g. Λ_{gs} -set but it is not a Λ_{gs} -set.

Proposition 3.8

If A is a generalized semi closed and g. Λ_{gs} -set of a space (X, τ) , then A is Λ_{gs} -set

Proof: since $A \in GSC(X, \tau)$ and $g. \Lambda_{gs}$ -set then $\Lambda_{gs}(A) \subset A$ and by Lemma 2.3 (1),

 $A \subset \Lambda_{gs}(A)$, hence $\Lambda_{gs}(A) = A$, thus A is Λ_{gs} -set.

Corollary 3.9

By Remark (2.4) and Proposition(3.3), we have that:

- (1) If $A \in GSO(X, \tau)$, then A is a g. Λ_{gs} -set
- (2) If $A \in GSC(X, \tau)$, then A is a g. v_{gs} -set.

Proof:(1) Since $A \in GSO(X, \tau)$, then by Remak 2.4(1),A is a . Λ_{gs} -set .Thus by Proposition3.3(1),A is a g. Λ_{gs} -set.

To prove (2).by the same method we can prove that.

Proposition 3.10

Let(X, τ) be a space and x \in X, then

- (1) $\{x\}$ is a generalized semi open or $\{x\}^c$ is a g. Λ_{gs} -set of (X, τ)
- (2) $\{x\}$ is a generalized semi open or $\{x\}$ is a g. v_{gs} -set of (X, τ)

Proof: (1) Suppose that $\{x\}$ is not generalized semi open, then X is the only generalized semi closed set containing $\{x\}^c$ we have

 $\Lambda_{gs}(\left\{x\right\}^c)\subset X$ holds . This implies $\left\{x\right\}^c$ is a g. $\Lambda_{gs}\text{-set}$ of (X,τ) .

(2) Follows from (1) and Definition 3.2.

Proposition 3.11

If $A \subset B \subset \Lambda_{gs}(A)$ and A is a g. Λ_{gs} -set of a space (X, τ) , then B is a g. Λ_{gs} -set of (X, τ) .

Proof: Since $A \subset B \subset \Lambda_{gs}(A)$ then by Lemma 2.3 (7) we have

$$\begin{split} &\Lambda_{gs}(A) \subset \Lambda_{gs}(B) \subset \Lambda_{gs}\left(\ \Lambda_{gs}(A)\right) \ , \ \text{then by Lemma 2.3(8),we have} \ \Lambda_{gs}(A) \subset \\ &\Lambda_{gs}(B) \subset \Lambda_{gs}(A). \text{Thus, we get} \ \Lambda_{gs}(A) = \Lambda_{gs}(B) \ \ \text{let F be any generalized semi} \\ &\text{closed subset of} \ (X,\tau) \ \text{such that} \ B \subset F. \ \text{Since} \ A \subset B \ \text{and} \ A \ \text{is a g.} \ \Lambda_{gs}\text{-} \ \text{set. Then} \\ &\text{we have} \ \Lambda_{gs}(B) = \Lambda_{gs}(A) \subset F \end{split}$$

In the following Propositions we give a characterization of g. v_{gs} -sets (Definition 3.2) By using v_{gs} - operations and we obtain results concerning subsets.

Proposition 3.12

Subset A of a space (X, τ) is a g. v_{gs} -set if and only if $U \subset v_{gs}(A)$ whenever U $\subset A$ and $U \in GSO(X, \tau)$

Proof: Necessity . Let U be a generalized semi open subset of (X, τ) such that $U \subset A$. Then since U^c is generalized semi closed and $A^c \subset U^c$, then by Definition 3.2 , A^c is a g. Λ_{gs^-} set , thus by Definition 3.1 $\Lambda_{gs}(A^c) \subset U^c$, hence by Lemma 2.3 (4) $(v_{gs}(A))^c \subset U^c$. thus $U \subset v_{gs}(A)$

Sufficiency Le F be a generalized semi closed subset of (X,τ) such that $A^c \subset F$. Since F^c is generalized semi open and $F^c \subset A$, by assumption we have $F^c \subset v_{gs}(A)$. Then by Lemma 2.3 (4), $(v_{gs}(A))^c = \Lambda_{gs}(A^c) \subset F$

thus A^c is a g. $\Lambda_{gs}\text{--}$ set , i.e , A is a g. $v_{gs}\text{--}$ set .

Corollary 3.13

Let A be a g.v_{gs}- set in a space (X, τ), then for every generalized semi closed set F such that $v_{gs}(A)U$ $A^c \subset F$, F=X holds.

Proof: The assumption $v_{gs}(A)U$ $A^c \subset F$ implies $F^c \subset (v_{gs}(A))^c \cap A$. where F^c is generalized semi open set, since A is a g. v_{gs} - set, then by Proposition 3.12,

we have $F^c \subset v_{gs}(A)$ and hence $(v_{gs}(A))^c \subset F$ and

 $F^{c} \subset (v_{gs}(A))^{c} \cap \, v_{gs}(A) = \Phi. \,$ Therefore , we have F = X

Corollary 3.14

Let A be a g. v_{gs} - set of a space (X , τ)

Then $v_{gs}(A)$ UA^c is a generalized semi closed set if and only if A is a v_{gs} -set

Proof: To prove A is a v_{gs} -set. By Corollary 3.13, $v_{gs}(A)UA^c = X$. Thus $(v_{gs}(A))^c \cap A = \Phi$. Therefore, $A \subset v_{gs}(A)$ and by Lemma 2.3 (2), we get $v_{gs}(A) = A$. Hence A is a $v_{gs}(A)$, sufficiency is obvious.

Proposition 3.15

Let A be a subset of space (X,τ) such that $v_{gs}(A)$ is generalized semi closed , if X=F holds for every generalized semi closed subset F such that $v_{gs}(A)UA^c \subset F$ then A is a g. v_{gs} -set.

Proof: Let $U \subset A$ where U is generalized semi open. According to assumption $v_{gs}(A)UU^c$ is generalized semi closed such that

 $v_{gs}(A)UA^{c} \subset v_{gs}(A)UU^{c}$, it follows that $v_{gs}(A)UU^{c}=X$ and hence

 $U \subset V_{gs}(A)$ then by proposition 3.12, A is a g. V_{gs} set

References

- 1- H. Maki, Generalized Λ -sets and the associated closure operator, Special Issue in Commemoration of prof. Kazusada Ikeda's Retirement Oct 1. (1986),139-146.
- 2- N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- 3- W. Dunham, A new closure operator for non-T1 topologies, kyungpook Math. J.,22 (1982), 55-60.
- 4- M. Ganster, S.Jafar and T.Noiri, On pre-Λ-sets and pr-V-sets, Acta Math.Hungar., 95 (4) (2003).
- 5-M.E.Abdel-Monsef, A.A.EL-Atik and M.M.EL-Sharkasy, Some topologies induced by b-open sets, Kyungpook Math. J. 45(2005), 539-547.
- 6-N.Levine, Semi-open sets and Semi-continuity in topological spaces, Amer. Math.Monthly, 70 (1963), 36-41.
- 7-N.Biswas,On characterization of semi-continuous function, Atti.Accad.Naz.Lincei. Rend.Cl.Sci.Fis.Mat.Natr.(3)48(1970),399- 402.
- 8-S.G.Crossely and S.K.Hildebrand, Semi-closure, Taxas. Sci.(1971), 99-112.

9-S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J. Pure Apple. Math.21(8) (1990),717-719.

10- Dalal.I.R, Λ_{gs} - functions and V_{gs} -function ,Proceeding of the 17^{th} seientific conference of college of Education . AL-Mustansiriyah University 2011 .