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Abstract 

     In this paper, we will study and prove the existence and the uniqueness theorems 
of solutions of the generalized linear integro-differential equations with unequal 
fractional order of differentiation and integration  by using Schauder fixed point 
theorem. This type of fractional integro-differential equation may be considered as a 
generalization to the other types of fractional integro-differential equations 
Considered by other researchers, as well as, to the usual integro-differential 
equations. 
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 :الخلاصة
في هذا البحث, سنقوم بدراسة وبرهان مبرهنة وجود ووحدانية حلول الصيغة العامة للمعادلات التفاضلية      

التكاملية ولرتب اشتقاق وتكامل كسري غير متساوية وذلك باستخدام مبرهنة شاودر للنقطة الصامدة . 
هذا النوع من معادلات تفاضلية تكاملية ذات رتب كسرية يمكن اعتباره أعمام إلى الأنواع الأخرى من المعادلات 

التفاضلية التكاملية ذات الرتب الكسرية والتي درست من قبل بقية الباحثين , بالإضافة إلى المعادلات 
. التفاضلية التكاملية الاعتيادية
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1- Introduction 
     Consider the linear integro-differential 
equation of fractional order: 
DP

q
Pu(t) = f(t) + J P

p
Pu(t), 0 < q, p ≤ 1                (1.) 

u(0) = uR0R                                                        (1.) 

where qD  is the Caputo fractional derivative 

operator of order q, pJ  denotes the Riemann- 
Liouville fractional integral operator of order p,      
f ∈C [0, T]. 
in recent years, the study of fractional integro-
fractional differential equations as a basic 
theoretical part of some applications are 
investigated by many authors and therefore 
 there have been interest in the study of 
fractional integro-differential equation of the 
type  

qD u(t) =f(t,u(t))+
t

0
k(t,s, u(s))ds∫ ,0<q≤1 

With initial condition u (0) = u.0 
Where f is a continuous function on (t, u) for u∈ 
R ,a > 0 and 0 < t <a , k is a continuous function 
on (t, s, u) for u∈ R and 0< t ,s < a  , u0 is a real 
positive constant  and DP

q
P  denotes the Caputo 

fractional derivative , (see[1,2,3,4 and 5]). In ref. 
[6] the author justify the existence and the 
uniqueness of equations 1 and 2 of the same 
order p and q, while in this paper we concern 
with the existence and the uniqueness of the 
solutions of equations 1 and 2 with different 
fractional orders p and q, and we shall use 
Schauder fixed point  theorem to prove the 
existence of solution, while the Grounwall’s 
inequality have been used to obtain the 
uniqueness of solutions of the fractional integro-
differential equation. 
Moreover , the operator of the fractional integro-
differential equations 1 and 2 , becomes: 
Au(t) = f(t)                                                    (3) 
where: 

Au(t) = qD u(t)  − pJ u(t)                           (4) 
2- Preliminaries 
     Before proving the existence and the 
uniqueness theorems of fractional integro-
fractional differential equations, some basic and 
fundamental concepts which are necessary for 
this work must be given first. 
 
 

Definition  2.1: [7,8] 
     The Riemann-Liouville fractional integral 
operator of order p ≥ 0, of a function f(x), x ∈ R  
is defined by: 

pJ f (x)= 
x

p 1

0

1 (x t) f (t)dt
(p)

−−
Γ ∫ , p > 0    (5) 

and 0J f (x) = f(x).  

  properties of   the  operator pJ   , for  f ∈ 
C[0,T] ,  q , p≥ 0    and ∂ >-1 , we have: 
 
1. ( ) ( ) p q p qJ J f x   J  f x+=   

2. ( ) ( ) p q q pJ J f x   J J  f x=  

3. (pΓ +1)= p (pΓ ) 

4. p p( 1)J x x
(p 1)

∂ +∂Γ ∂ +
=
Γ + ∂ +

 

 
Definition  2.2: [9 , 10] 
     The Caputo fractional derivative of f(x) of 
order q can be written as: 

DP

q
Pf(x)=

x
m q 1 (m)

a

1 (x t) f (t)dt
(m q)

− −−
Γ − ∫   (6) 

For m − 1 < q ≤ m, m ∈ R, x > 0, f ∈ C[0, T]. 
 
Definition  2.3: [11]: 
     A subset S of C[0, T] is said to be 
equicontinuous, if for each ε  > 0  , there is a δ> 
0, such that 

1t t− < δ  and u∈ M imply  

C[0,T]1u(t) u(t )− < ε . 

 
Next, equations. 1 and 2 may be written into an 
equivalent form, as in the following lemma: 
 
Lemma 2.1: [5] 
     The solution of the initial-value problem 
given by equations.1 and 2 has the form: 

u(t) = uR0R + 
t

q 1

0

1 (t s) f (s)ds
(q)

−−
Γ ∫  + 

t t
q 1 p 1

0 0

1 1(t s) (s v) u(v)dv ds
(q) (p)

− −  − − Γ Γ  
∫ ∫      (7) 

Also, the following theorems are used later on. 
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Theorem  2.1(Schauder Fixed Point) [12]: 
     Let X be a nonempty, closed, bounded and 
convex subset of Banach space B and  
T: X → X is a compact operator. Then T has 
at least one fixed point in X. 
 
Theorem  2.2 (Arzela-Ascoli Theorem)[13]: 
     Suppose F is a Banach space and E is a 
compact metric space. In order  that a subset H 
of the Banach space  ƮF(E)  be relatively 
compact, if and only if   H be equicontinuous 
and  that , for each x∈  E, the set H(x) = {f(x): 
f∈ H } be 
relatively compact in F. 
 
Theorem 2.3 (Grounwall's Inequality)[5]: 
     Let u(t) and b(t) be a nonnegative continuous 
functions for t ≥ α and let: 

u(t) ≤ a + 
t

α
∫ b(s)u(s) ds, t ≥ α 

where a is a nonnegative constant, then: 

u(t) ≤ a

t
b(s)ds

eα
∫

, t ≥ α 
3- The Main Results 
     This section concerned with the proof of the 
main theorems of the existence and the 
uniqueness of solutions of equations.1 and  2  
 
Theorem 3.1 (The Existence Theorem): 
     Let u and  uP

(m)
P be a real nonnegative function 

in C[0, T], and that  t∈ [0, T], 0 < q , p ≤1. Then 
eqs. (2.1)-(2.2) has a solution u. 
Proof: 
First, let us define B = C[0, T] to be the Banach 
space with the supremum norm. In order to 
discuss the condition for the existence for the 
solution of eqs.(1.1) and (1.2), so let: 
U = {u ∈ C[0, T] : ||u|| ≤ 1c , ||u P

(m)
P|| ≤ 2c , 1c , 2c   

> 0, m ≥ 0} 
and suppose that f ∈C[0, T] is bounded function 
at tR0R, there exist M ∈ R P

+
P, such that: 

||f(t)|| ≤ M, ∀ t ∈ [0, T] . 
Now, in order to use Schauder fixed point 
theorem, then it sufficient to prove that U is a 
nonempty closed, bounded and convex subset of 
the Banach space B and then the operator  
A : U → U is compact operator, where the 
operator A was  defined in equation.4. 

It can be seen that the set U is nonempty since 
from the properties of the norm we have    0 ∈ U 
;  on the other hand it is closed and bounded 
subset of Banach space (from the definition of 
U). 
To prove that U is convex set, let uR1R, uR2R   ∈ U, 
such that: 

||uR1R|| ≤ 1c   ,     || (m)
1u || ≤ 2c        

||uR2R|| ≤ 1c  ,       || (m)u2 ||≤ 2c  

i.e., to prove that u(t), uP

(m)
P(t) ∈ C[0, T] and  

Moreover , to prove that ||u(t)|| ∈ U and          
||u P

(m)
P(t)|| ∈ U ,where 

u(t)= λuR1R(t) + (1 − λ)uR2R(t) 

u P

m
P(t) = λ (m)u1 (t) + (1 − λ) (m)u2 (t) , λ∈[0,1] 

 since we can prove easily: 
||u(t)|| ≤ 1c  and ||u P

(m)
P(t)|| ≤ 2c  

as follows: 
||u(t)|| = ||λuR1R(t) + (1 − λ)uR2R(t)|| 
≤ ||λuR1R(t)|| + ||(1 − λ)uR2R(t)|| 
= |λ|||uR1R(t)|| + |1 − λ| ||uR2R(t)||  
≤ λ 1c +(1 − λ) 1c  
= 1c  
 
and 

||u P

m
P(t)|| = ||λ (m)u1 (t) + (1 − λ) (m)u2 (t)|| 

≤ ||λ (m)u1 (t)|| + ||(1 − λ) (m)u2 (t)|| 

= |λ| || (m)
1u (t)|| + |1 − λ| || (m)

2u (t)|| 

≤λ 2c + (1−λ) 2c  
= 2c  
Therefore, u satisfies the conditions of U, so: 
u(t) = λuR1R(t) + (1 − λ)uR2R(t) ∈ U 
Hence, U is a convex set. 
Now, we have to show that the operator A in 
equation. 4 is completely continuous, in order to 
see that equations.1 and 2 has a solution first, 
one can prove that A is relatively compact. 
Let v(t)=Au(t),to prove v(t) ∈U 
|v(t)| = t1 m q 1 (m)(t s) u (s) ds

(m q) 0
− −− −∫

Γ −
 

t1 p 1(t s) u(s)ds
(p) 0

−−∫
Γ
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≤ t1 m q 1 (m)(t s) || u (s) ||ds
(m q) 0

− −−∫
Γ −

+ 

t1 p 1(t s) || u(s) || ds
(p) 0

−−∫
Γ

 

= 

(m)sup | u (t) |
tt [0,T] m q 1(t s) ds

(m q) 0

∈ − −−∫
Γ −

 + 

sup | u(t) |
tt [0,T] p 1(t s) ds

(p 1) 0

∈ −−∫
Γ +

 

= 
(m)sup | u (t) |

t [0,T] m qt
(m q 1)

∈ −
Γ − +

 + 

sup | u(t) |
t [0,T] pt

(p 1)
∈
Γ +

 

≤

(m)sup | u (t) |
t [0,T] m qT

(m q 1)
∈ −
Γ − +

+ 

sup | u(t) |
t [0,T] pT

(p 1)
∈
Γ +

 

≤ 2c
m qT

(m q 1)

−

Γ − +
 +  1c

pT
(p 1)Γ +

 

=  c 
That is v(t) is bounded. 

| (k)v (t) | = 
t1 m q 1 (km)(t s) u (s) ds

(m q) 0
− −− −∫

Γ −
 

t1 p 1 (k)(t s) u ds
(p) 0

−−∫
Γ

≤ 

 
t1 m q 1 (km)(t s) || u (s) ||ds

(m q) 0
− −−∫

Γ −
+ 

t1 p 1 (k)(t s) || u (s) || ds
(p) 0

−−∫
Γ

 

= 

(km)sup | u (t) |
tt [0,T] m q 1(t s) ds

(m q) 0

∈ − −−∫
Γ −

 + 

(k)sup | u (t) |
tt [0,T] p 1(t s) ds

(p) 0

∈ −−∫
Γ

 

= 
(km)sup | u (t) |

t [0,T] m qt
(m q 1)

∈ −
Γ − +

+

(k)sup | u (t) |
t [0,T] pt

(p 1)
∈

Γ +
                                                   

≤    2c
m qT

(m q 1)

−

Γ − +
 + 2c

pT
(p 1)Γ +

 

   ≤   *c  . 
Proving that A maps U into itself. Moreover, A 
is bounded operator. 
To prove that A is continuous, let u, v ∈ U, 
then: 
|Au(t) − Av(t)| = |(D P

q
Pu(t) − JP

p
Pu(t)) − (D P

q
Pv(t) − 

JP

p
Pv(t))| 

= 
t1 m q 1 (m)(t s) u (s) ds

(m q) 0
− −− −∫

Γ −
 

t1 p 1(t s) u(s)ds
(p) 0

−−∫
Γ

 -

t1 m q 1 (m)(t s) v (s) ds
(m q) 0

− −− −∫
Γ −

 

t1 p 1(t s) v(s)ds
(p) 0

−−∫
Γ

  

≤ 
t1 m q 1 (m) (m)(t s) (u (s) v (s)) ds

(m q) 0
− −− −∫

Γ −
       

+ 
t1 p 1(t s) (u(s) v(s))ds

(p) 0
−− −∫

Γ
 

 

≤

(m) (m)sup | u (t) v (t) |
t [0,T]

(m q)

−
∈

Γ −
 

t m q 1(t s) ds
0

− −−∫  + 
sup | u(t) v(t) |

t [0,T]
(p)

−
∈

Γ
 

t p 1(t s) ds
0

−−∫  

≤ m q

(m) (m)sup | u (t) v (t) |
t [0,T] T

(m q 1)
−

−
∈

Γ − +
P

 
P+ 

sup | u(t) v(t) |
t [0,T] pT

(p 1)

−
∈

Γ +
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Let w=u-v 

≤ m q

(m)sup | w (t) |
t [0,T] T

(m q 1)
−∈

Γ − +
  

+

sup | w(t) |
t [0,T] pT

(p 1)
∈
Γ +

 ≤ c. 

Which means that Au is bounded operator led to 
Au is continuous. 
Now, to prove that A is equicontinuous, 
Let u ∈ U and tR1R, tR2R ∈ [0, T], then: 
|Au(tR1R)−Au(tR2R)| = |[DP

q
Pu(tR1R)−JP

q
Pu(tR1R)] − [DP

q
Pu(tR2R)− 

JP

q
Pu(tR2R)]| 

= 
t11 m q 1 (m)(t s) u (s) ds1(m q) 0

− −− −∫
Γ −





 

t21 m q 1 (m)(t s) u (s) ds2(m q) 0
− −−∫

Γ −





+       

t11 p 1(t s) u(s) ds1(p) 0
−− −∫

Γ
 

t21 p 1(t s) u(s) ds2(p) 0
−−∫

Γ





 

≤ 

(m)sup | u (s) |
t [0,T]

(m q)
∈

Γ −
 

t1 m q 1(t s) ds1
0

− −− −∫     

2t m q 1
2

0
(t s) ds− −−∫  + 

t [0,T]
sup | u(s) |

(p)
∈

Γ

t1 p 1(t s) ds1
0

−− −∫

t2 p 1(t s) ds2
0

−−∫  

≤ 

(m)sup | u (s) |
t [0,T]

(m q 1)
∈
Γ − +

|| m q
1t
−  − m q

2t
− || 

+

sup | u(s) |
t [0,T]

(p 1)
∈
Γ +

|| p
1t  − p

2t ||  

≤ m q22c
(m q 1)

T −
Γ − +

 + P1
(p 1)
2c T

Γ +
 

≤ c. 

Au is equicontinuous operator, is relatively 
compact and this implies that A is completely 
continuous by Arzela-Ascoli theorem. 
Then by Schauder fixed point theorem, A has a 
fixed point, which corresponds the solution of 
equation. 3.     
Now, to study the uniqueness of the solution of 
equations.1 and 2, we shall prove the following 
theorem: 
 
Theorem  3.2 (The Uniqueness Theorem): 
     The initial value problem given by 
equations.1 and 2 has a unique solution on the 
interval      [0, T] if u and u P

(m)
P are continuous 

functions in the region: 
D = {(t, u) | 0 < t < T, |t − tR0R| ≤ b}  and u(0)= uR0 
and satisfy the conditions: 
t p 1

0

1 (s ) u( )
(q)

−−σ σ −
Γ∫

 

p 11 (s ) y( ) d
(q)

−−σ σ σ
Γ

 ≤ L |u − y| 

for some positive constant L. 
 
Proof: 
     Let u and y be two solutions to equations 1 
and  2, then: 

u(t) = uR0R +
t1 q 1(t s) f (s) ds

(q) 0
−− +∫

Γ
 

t s1 1q 1 p 1(t s) (s ) u( ) d ds
(q) (p)0 0

− −− − σ σ σ∫ ∫
Γ Γ

 
 
 

 

y(t) = yR0R + 
t1 q 1(t s) f (s) ds

(q) 0
−− +∫

Γ
 + 

t s1 1q 1 p 1(t s) (s ) y( ) d ds
(q) (p)0 0

− −− − σ σ σ∫ ∫
Γ Γ

 
 
 

 
this implies to: 

|u(t)−y(t)|≤
t1 1q 1(t s)

(q) (p)0
−−∫

Γ Γ





 

t p 1(s ) | u( ) y( ) |d ds
0

−− σ σ − σ σ∫




 

for any ε > 0 and 0 < t < T. Hence: 
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|u(t)−y(t)|≤ ε+
t

p 1

0

L (t s) | u(s) y(s) |ds
(p)

−− −
Γ ∫  

Where p 1(t s) −− is non negative since the limit 
of the integration  ∈ [0, T], and it is 
differentiation for all t not equal to s ,hence it is 
continuous function with respect to t.    
Then, by using theorem 2.3, we get: 

|u(t) − y(t)| ≤ ε

tL p 1(t s) ds
(p)0e

−−∫Γ
 

 
Since ε is arbitrary, then as ε → 0, which 
implies to u(t) = y(t), for all t ∈ [0, T].     
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