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Abstract 

     In this paper, we study the impacts of variable viscosity , heat and mass transfer 

on  magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined 

channel with porous medium . The viscosity is considered as a function of 

temperature. The slip conditions at the walls were taken into consideration. Small 

Reynolds number and the long wavelength  approximations were used to simplify 

the governing equations. A comparison between the two velocities in cases of slip 

and no-slip was plotted. It was observed that the behavior of the velocity differed in 

the two applied models for some parameters.  Mathematica software was used to 

estimate the exact solutions of  temperature and concentration profiles. The 

resolution of the equations to the momentum  was based on the perturbation method 

to find the axial velocity, pressure gradient and  trapping  phenomenon. The 

influences of the various flow parameters of the problem on these distributions were 

debated and proved graphically by  figures. 
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تاثير انتقال الحرارة والكتلة على التدفق المغناطيدي ذي الخصائص المعتمدة على درجة الحرارة في 
المداميط وسقناة مائلة من خلال   

 

 عبد الهادي مهلهد احمد, *رابحة سليم كريم
العخاق ،بغجاد  ،جامعة بغجاد ،كمية العمهم ، قدم الخياضيات  

 لخلاصها
في هحه الهرقة ، ناقذشا تأثيخات المدوجة الستغيخة ، انتقال الحخارة والكتمة عمى التجفق التسعجي السغشظيدي       

في قشاة مائمة غيخ متشاعخة مجببة مع وجهد وسط مدامي. المدوجة متغيخة حيث تعتسج عمى درجة الحخارة. تؤخح 
رقم ريشهلجز الرغيخ وتقخيب الظهل السهجي الظهيل  شخوط الاندلاق في الججران في الاعتبار. يتم استخجام

لتبديط السعادلات الحاكسة. وتخد مقارنة بين الدخعتين في حالة الاندلاق وعجم الاندلاق مهضحة في الخسم. لقج 
لاحغشا أن سمهك الدخعة لشسهذجين يختمف عن بعزها البعض بالشدبة لبعض السعمسات، تم الحرهل عمى 

ن الحخارة والتخكيد بيشسا استخجمشا طخيقة الاضظخاب لسعخفة الدخعة السحهرية،اخيخا ناقذشا الحل الحقيقي لكل م
 ويثبت بيانيا من خلال الخسهم.  تأثيخ معمسات التجفق السختمفة 

1-    Introduction  

     Nowadays, the peristaltic flow has gained much interest because of its influences in the field of 

industry and physiology. Peristalsis is a format of fluid transfer caused by a progressive wave of 
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region constriction or extension over the length  of a flexible channel. In this format, transmission of 

the fluid occurs in the trend of the wave propagation. The peristalsis flow happens in the human body, 

as in the movement processes of chyme through digestive tract, urine through the ureter, the 

swallowed food through the esophagus. and many others [1,2]. This type of flow is  extremely 

expedient in designing several biomedical apparatuses, e.g. the heart - lung device to preserve the  

blood circulation in dangerous surgeries [3]. This subject was first investigated by Shapiro et al. and 

Lew et al. [4,5]. The concept of peristaltic transport was subjected to various suppositions, the most 

well-known among which are the lengthy wavelength and the small Reynolds number.  

     A non-Newtonian fluid is a fluid whose viscosity is variable based on applied stress or force. It is a 

fluid whose flow properties are not described by a single constant value of viscosity. It was observed 

that the physiological fluids with constant viscosity fail to give an accurate grasp when the peristaltic 

transfer is involved in the lymphatic vessels, small blood vessels and gut. Most studies of peristalsis 

were applied under constant viscosity. Several recent studies [6-9] investigated the influence of 

variable viscosity, when the viscosity is dependent on the distance only. However, some researches 

considered the influence of the viscosity when it is dependent on the temperature [10-12]. Also, It was 

established that the influences of heat and mass transfer hold significant roles in peristaltic flow, as in  

blood flux processes, kidney dialysis and cancer medicament. Interesting research attempts 

investigated the link between the influence of heat and mass transfer on magneto hydrodynamic flows, 

as studied lately by Zin et al. [13], Gul et al.[14], and Abdellateef et al. [15]. The correlation between 

the problems of heat and mass transfer through peristaltic flow of MHD fluid on an asymmetric 

channel was investigated by Kothandapani et al.[16].  

     The porous medium has a significant role in the analysis of transportation process in industrial 

mechanisms , bio-fluid mechanics and engineering domains.  Several investigators  studied the 

magneto hydrodynamic flow under convective heat and mass transfer through a porous medium. 

Ramesh and  Devakar [17] studied the  effects  of heat and mass transfer of MHD couple stress fluid 

with porous medium in a vertical asymmetric channel. Alharbi et al. [18] investigated heat and mass 

transfer in MHD visco-elastic fluid flux through a porous medium with chemical reaction. Reddy[19] 

discussed the effect of velocity slip on MHD peristaltic flow in a porous medium with heat and mass 

transfer. 

   The aim of the present study is to analyze the MHD fluid with variable viscosity. The related 

equations were simulated by adopting conservation laws of mass, momentum, energy and 

concentration. The small Reynolds number and  the long wavelength  were also executed. The 

differential equations of the fluid flow were resolved subject to related boundary conditions (slip 

conditions). A comparative study between the velocity and slip and no-slip conditions was discussed. 

At the end of the paper, graphical results were shown to display the physical conduct of the various 

considered parameters. 

2-  Formulation The Problem: 

    We consider the     fluid flow, with variable viscosity in a tapered inclined asymmetric channel 

with the width of (      )  through a porous medium in two dimensions. The motion is made by 

sinusoidal wave sequences propagating with constant speed (𝑐) and wavelength  on the lengthwise of 

the channel walls. 

The equations of walls geometry are presented as 

 ̅ ( ̅  ̅)      ̅ ̅       *
  

 
( ̅  𝑐 ̅)+                   Lower wall                                                    (1) 

 ̅ ( ̅  ̅)       ̅ ̅       *
  

 
( ̅  𝑐 ̅)   +        Upper wall                                                    (2) 

     where (  ) and (  ) represent the wave amplitudes of the lower and upper walls, respectively, (𝜆) 

is the wave length , (𝑐) is the velocity of the peristaltic wave ,  ̅ is the time, and  ( ̅   ) is a non-

uniform parameter. ( ̅  ̅) are the Cartesian coordinates, where  ̅ is the direction of wave propagation 

while  ̅ is taken normal to it. ( ) represents the phase difference with the range (0 ≤   ≤ 𝜋), in which 

(   ) matches up to the symmetric channel with waves out of phase, while (  = 𝜋) matches up to 

the waves in phase, i.e., both channel walls move inward  or outward concurrently . Further, 

              and   satisfy the next relation at the inlet of the divergent  channel 

  
    

           ( )   (     )
                                                                                               (3) 
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3-  Fundamental Computation of Lorentz Force 

     To calculate the Lorentz force, we will apply the magnetic field in the  ̅   direction and, thereafter, 

we are interested in the analysis of the impact of magnetic field on the flow. Suppose the fluid to be 

electrically conducting in the existence of a uniform inclined magnetic field  ⃑  (      ).  

 ̅   ̅     | 
     ⃑ 

   
    

|      ⃑                                                                                                             (4) 

Hence 

    ( ⃑   ⃑ )       ⃑                                                                                                                         (5) 

 

Then, by Ohm’s law one has 

    ⃑   |
     ⃑ 

      
    

|      
                                                                                                       (6) 

in which    is the current density vector, ( ) is the electrical conductivity of fluid, and (  ) is the 

magnetic field strength. It is obvious that the influence of magnetic field on the fluid flux is substantial 

in  ̅   direction . 

4-  The Governing Equations  

    The governing equations of  motion of incompressible     fluid model, with variable viscosity, 

through an inclined tapered asymmetric channel in laboratory frame are 

The continuity equation 
  ̅

  ̅
 

  ̅

  ̅
                                                                                                                            (7) 

The momentum equations 

 *
  ̅

  ̅
  ̅

  ̅

  ̅
  ̅

  ̅

  ̅
+   

  ̅

  ̅
  

 

  ̅
*  ̅( ̅)

  ̅

  ̅
+  

 

  ̅
*  ̅( ̅) (

  ̅

  ̅
 

  ̅

  ̅
)+      

  ̅      ( ̅  

  )    ( )      ( ̅    )    ( )  
  ̅( ̅)

  
 ̅                                                                                       (8) 

 *
  ̅

  ̅
  ̅

  ̅

  ̅
  ̅

  ̅

  ̅
+   

  ̅

  ̅
  

 

  ̅
*  ̅( ̅)

  ̅

  ̅
+  

 

  ̅
*  ̅( ̅) (

  ̅

  ̅
 

  ̅

  ̅
)+  

  ̅( ̅)

  
 ̅                               (9) 

The energy equation  

   *
  ̅

  ̅
  ̅

  ̅

  ̅
  ̅

  ̅

  ̅
+   *

   ̅

  ̅  
   ̅

  ̅ +  
  ̅ 

  ̅
                                                                              (10) 

The concentration equation 
  ̅

  ̅
  ̅

  ̅

  ̅
  ̅

  ̅

  ̅
  *

   ̅

  ̅  
   ̅

  ̅ +  
   

  
*
   ̅

  ̅  
   ̅

  ̅ +                                                                         (11)   

     where   ̅  is the axial velocity,   ̅ is the transverse velocity,   ̅̅ ̅ is the temperature, and  ̅) is the 

concentration.  ,       ̅                ,   ,   ,     represent the density,  permeability parameter , 

the pressure, constant heat addition/absorption, thermal conductivity, constant magnetic field, 

coefficient of mass diffusivity, electrical conductivity, thermal diffusion ratio, mean temperature, 

coefficient of linear thermal expansion,  and coefficient of expansion with concentration, respectively. 

By Rosselandi approximation  [20] , the relative heat flux is expressed as 

 ̅  
   

   
   

  ̅
                                                                                                                                           (12) 

     where  (  ) and  (  ) are the mean absorption coefficient and the Stefan- Boltzman constant, 

respectively. Taking into account that the temperature variance within the fluid mass that flows is 

adequately small, by Taylor expansion and cancelling higher-order terms, we can write 

 

   ̃    
  ̅     

                                                                                                                                 (13) 

By substituting Eq.(13) into Eq.(12), we get 

 ̅   
      

 

   
  ̅

  ̅
                                                                                                                                    (14) 

The boundary conditions at the wall are listed below: 

Model-1: The appropriate boundary conditions, including wall slip, convective and concentration, are 

given as follows 
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 ̅    
  ̅

  ̅
           ̅          ̅            ̅   ̅                                                                                 (15) 

 ̅    
  ̅

  ̅
           ̅          ̅            ̅   ̅                                                                                (16) 

Model-2: The appropriate boundary conditions, including wall no-slip, convective  and concentration , 

are given as follows 

          ̅            ̅          ̅            ̅   ̅                                                                                     (17) 

         ̅             ̅          ̅            ̅   ̅                                                                                     (18) 

     The flow phenomenon is fundamentally unsteady in the laboratory coordinate system ( ̅  ̅  ̅). 

However, it can be treated as a steady flow in a coordinate system ( ̅  ̅), rotating with equal angular 

velocity as a laboratory coordinate, which moves with the speed of the wave. The relationship between 

the two frames is described in the following: 

 ̅    ̅  ̅   ̅  𝑐 ̅    ̅   ̅  𝑐    ̅    ̅  ̅( ̅  ̅)   ̅( ̅  ̅  ̅)        ̅    ̅                              (19) 

     in which   ̅,  ̅,  ̅,    and    designate velocity components, pressure, temperature and concentration 

in the wave frame, respectively. 

     After using the conversions in Eq.(19), Eqs.(7)-(11) in the wave frame will be formed as below  
 ( ̅  )

 ( ̅   ̅)
 

  ̅

  ̅
                                                                                                                                     (20) 

 *
 ( ̅  )

  ̅
 ( ̅  𝑐)

 ( ̅  )

 ( ̅   ̅)
  ̅

 ( ̅  )

  ̅
+   

  ̅

 ( ̅   ̅)
  

 

 ( ̅   ̅)
*  ̅( )

 ( ̅  )

 ( ̅   ̅)
+  

 

  ̅
*  ̅( ) (

  ̅

 ( ̅   ̅)
 

 ( ̅  )

  ̅
)+     

 ( ̅  𝑐)      (    )    ( )      (    )    ( )  
  ̅( )

  
( ̅  𝑐)                 (21) 

 *
  ̅

  ̅
 ( ̅  𝑐)

  ̅

( ̅   ̅)
  ̅

  ̅

  ̅
+   

  ̅

  ̅
  

 

  ̅
*  ̅( )

  ̅

 ( ̅   ̅)
+  

 
 

 ( ̅   ̅)
*  ̅( ) (

  ̅

 ( ̅   ̅)
 

 ( ̅  )

  ̅
)+  

  ̅( )

  
 ̅                                                                                     (22) 

   *
  

  ̅
 ( ̅  𝑐)

  

 ( ̅   ̅)
  ̅

  

  ̅
+   *(

   

 ( ̅   ̅) 
 

   

  ̅ )+  
  ̅ 

  ̅
                                                   (23) 

  

  ̅
 ( ̅  𝑐)

  

 ( ̅   ̅)
  ̅

  

  ̅
  *(

   

 ( ̅   ̅) 
 

   

  
)+  

   

  
*(

   

 ( ̅   ̅) 
 

   

  ̅ )+                                  (24) 

To simplify the governing equations, the next dimensionless quantities are introduced 

  
 ̅

 
    

 ̅

  
    

  ̅ 

 
   

 ̅

 
    

  ̅

   
       

  
  ̅

    
       

   
 ̅ 

  
         

 ̅ 

  
        

  

  
        

   

  
        

  

  
   

 ( )  
 ̅( )

  
   

(    )

  
    

(    )

  
    

  

 
     

 ̅ 

  
  

 }
 
 

 
 

                                                              (25) 

    Where                  ,    ,  are the components of the dimensionless coordinates ,the 

dimensionless time, the dimensionless axial velocity, the dimensionless transverse component of 

velocity, the dimensionless pressure, the amplitudes of the lower wall, the amplitudes of the upper 

wall, the dimensionless viscosity, the dimensionless temperature, the dimensionless concentration, the 

wave number, and the non-uniform parameter, respectively.    (     ) and    (     ) 

denote the mass concentration difference and temperature difference, respectively. 

Also, we shall  make use of several dimensionless parameters that are registered below: 

   
    

 (  )  

   
    

    
 (  )  

   
     

  
   

  

  
   

  
   

(  ) 
    

             

  

  
  

  
       

      

    (    )
     

  

  
     

      
 

      
     

    

 
 

}                                (26)  

     where    and    are called the Grashof number which stands for the solute Grashof number,     
is the Hartmann number,   is the heat source / sink parameter,    is the Reynolds number,     is the 

Darcy number,    is the Soret number which represents the thermal diffusion effect,  𝑐 is the Schmidt 

number,    is the thermal radiation parameter, and  Pr  is the Prandtl number. 

     By using the dimensionless quantities in (25) and (26), with the flow being steady, the equations 

(20 ) to (24 )  become 
  

  
 

  

  
                                                                                                                                            (27) 
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    *(   )
  

  
  

  

  
+   

  

  
     

  
* ( )

  

  
+  

 

  
* ( ) (    

  
 

  

  
)+    (   )  

        ( )          ( )  
 ( )

 
(   )                                                                                      (28) 

     *(   )
  

 
  

  

  
+   

  

  
     

  
* ( )

  

  
+  

 

  
  * ( )  (

  

  
 

  

  
)+    

 ( )

 
        (29) 

       *(   )
  

  
  

  

  
+  *     

    
   

   +    
   

                                                               (30) 

    *(   )
  

  
  

  

  
+  

 

  
*     

    
   

   +    *     

    
   

   +                                                   (31) 

     The stream function  (     ) and its relationship with velocity components is defined below 

   
  

  
 and            

  

  
                                                                                                                  (32) 

Now, by the long wavelength approximation  (   ) and considering low Reynolds number 

(    ) , the Eqs. (27)-(31) become 
  

    
 

  

    
                                                                                                                                     (33) 

  

  
 

 

  
* ( )

   

   +    (
  

  
  )          ( )          ( )   

 ( )

 
(
  

  
  )                      (34) 

  

  
                                                                                                                                                     (35) 

(    )
   

  
                                                                                                                               (36) 

 

  
*
   

   +    *
   

   +                                                                                                                           (37) 

     For the ease of investigation, most studies on fluid mechanics take fluid with a constant viscosity . 

But in several processes, the viscosity is a function of heat, and out of several variations of viscosity 

with non-dimensional temperature, the following form was proposed by Slattery [21]. 

 ( )           or    ( )         where          .                                                                     (38)        

where (α) is the viscosity parameter, which is a constant. Results for the constant viscosity are 

obtained for    . 

By the aid of Eq.(38) , the dimensionless  Eq.(34)  will be 
  

  
 

 

  
*(    )

   

   +    (
  

  
  )          ( )          ( )   

(    )

 
(
  

  
  )           (39) 

Eq.(35) shows that the pressure is  independent of  the dimensionless  coordinate  (   ) . By combining 

Eqs. (35) & (39) and after removing the pressure, we get the following 

  (    )
   

      
  

  

   

     
   

   

   

    (   
 

 
  )

   

    
 

 

  

  
(
  

  
  )     

  

  
    ( )  

   
  

  
    ( )                                                                                                                                      (40) 

      
 

 
  

The suitable boundary conditions in non-dimensional wave frame are 

 Model-1: 

     
 

 
           

  

  
   

   

                                                                                        (41) 

     
 

 
       

  

  
   

   

                                                                                         (42) 

Model-2 : 

  
 

 
           

  

  
                                                                                                         (43) 

   
 

 
       

  

  
                                                                                                         (44) 

where     
  

  
  is  the non-dimensional velocity-slip parameter and (F ) is the non-dimensional  mean 

flow rate in the wave frame. 

The non-dimensional forms of the lower and upper walls are 

  ( )     (   )       ( 𝜋 )                                                                                                (45) 

  ( )      (   )       ( 𝜋   )                                                                                     (46) 

Also the Eq.(3) in the dimensionless frame is 

            ( )  (   )                                                                                                      (47)    
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5-  Rate of Volume Flow  

     The instantaneous volume flow rate in the laboratory frame of reference is defined as  

 ̅  ∫  ̅( ̅  ̅  ̅)   ̅
 ̅ ( ̅   ̅)

 ̅ ( ̅  ̅ )
                                                                                                                   (48) 

Likewise , the rate of  volume  flow in the wave frame is obtained as 

 ̅  ∫  ̅( ̅  ̅)  ̅
 ̅ ( ̅   ̅)

 ̅ ( ̅  ̅ )
                                                                                                                          (49) 

Using the conversions (19) in (48), and with (49), we obtain the connection between the volumetric 

flow rates  as follows 

 ̅   ̅  𝑐( ̅ ( ̅   ̅)   ̅ ( ̅  ̅ ))                                                                                                         (50) 

The mean flow over a period of time   (
 

 
)  at  a fixed  position   is given by 

 ̃  
 

 
∫  ̅                 

 

 
                                                                                                                          (51) 

By substituting (50) into (51), we have   

 ̃    𝑐(     )       ̅                                                                                                             (52) 

Let ( ) be the dimensionless time mean flow, where 

  
 

   
and    

 ̅

   
                                                                                                                             (53) 

The dimensionless form of (48) is 

  ∫                                   
  

  
                                                                                                             (54) 

We derive the next relations by using (52) 

                                                                                                                                     (55) 

and 

  ∫
  

  
    (  )   (  )              

  ( )

  ( )
                                                                                         (  )        

6- Solutions of The Temperature and Concentration Equations 

     We obtain the exact solution for the temperature Eq.(36), satisfying the boundary conditions (41) & 

(42), by the following 

   
   

 (    )
                                                                                                                          (57) 

where  

    
       

         
       

 (     )(    )
  

    
     

     
     

 (      )(    )
  

While the solution of the concentration Eq. (37), with  boundary conditions (41 ) & (42), is given by 

   
       

 (    )
                                                                                                                           (58) 

where 

    
             

             
     

 (     )(    )
  

    
         

         
     

 (      )(    )
  

7- The Perturbation Technique 

    The momentum equation (40) is non-linear. For arbitrary values of the parameters contained in this 

equation, the exact solution appears very impossible to obtain. However, the viscosity parameter ( ) is 

very small. Therefore, the consideration is concentrated to the perturbation technique for a small fluid 

parameter ( ) . For that, we can widen the stream function ( ) , pressure (P), and the flow rate (F) in 

a power series form, as follows 

               

               

               

}                                                                                                             (59)                                                                                       

     By substituting Eq.(59) into Eqs.(39) & (40) and then comparing the coefficients of the same power 

of up to the first order, we get the following two system zeroth-order and first-order equations:  
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7.1- Zeroth Order System 
   

  
 

    

      (
   

  
  )          ( )          ( )  

(    )

 
(
   

  
  )                             (60) 

  
    

    (  )
    

       
  

  
    ( )     

  

  
    ( )                                                                  (61) 

with boundary conditions 

Model-1: 

   
  

 
            

   

  
   

    

                                    

    
  

 
       

   

  
   

    

                                    

 

}                                             (62) 

Model-2: 

   
  

 
                     

   

  
                                             

    
  

 
                   

   

  
                                          

 

}                                              (63) 

By solving the Eq.(61) for Model-1, the final solution for the zeroth order is 

         

               (         )     ( ) 
 (         )     ( )

 (    )

                                                 (64) 

 

7.2- First Order System 

The complemented first order perturbation system is found in the next form  
   

  
 

    

     
    

    
  

  

    

         

  
 

 

 
(
   

  
  )                                                                     (65) 

  
    

     
    

     
  

  

    

    
   

   

    

    (  )
    

    
 

 

    

    
 

 

  

  
(
   

  
  )                          (66)        

with boundary conditions 

Model-1:  

   
  

 
            

   

  
   

    

                                   

    
  

 
       

   

  
   

    

                                   

 

}                                                (67) 

Model-2: 

   
  

 
            

   

  
                                                  

    
  

 
       

   

  
                                                  

 

}                                                 (68) 

The first order solution gained from the above system is 

          
 

     (    ) 
(    (    )( (  (                          

     ))     ( (    ) 
       

  (                        (       
           ))))    (    )(     (      )(    

   (      )     (     ))  
  (  (               (           ))     ( (     ) 

       
  (   

             (            ))))      (         )))  
 

 
  (   (     

    )  (    ) (        )      (      𝑐  ) (             )    (  
  )(    

 (      𝑐  )        𝑐  (            )       (            )  
     (            )))      )                                                                                              (69) 

The values of coefficients  (                       )   are large non-constant and their values can 

be calculated with the boundary conditions in Eq.(67) by using Mathematica 11 programs. Also, these  

coefficients  are changing when we use  the no-slip conditions in Eqs.(63) & (68). 

8- Results and Discussion 

    This section is devoted to study the influences of different parameters on the axial velocity for both 

models, i.e., temperature distribution, concentration distribution, and pressure gradient. The results are 

described  by the graphical clarifications while Mathematica program was used to obtain  results. The 

trapping phenomenon was also studied for the slip condition through graphs. 
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8.1- Velocity Profile  

     The axial velocity is calculated at the (     ) cross-section in the cases of slip and no-slip 

conditions of the channel, which are compared based on differences in physical parameters such as 

Grashof number (  ) , the non-uniform parameter ( )  the solute Grashof number (  ) , Hartman 

number ( )  and mean flow rate ( )  via Figures -(1-5).  

      Figure-1 provides an idea of the difference in the axial velocity that takes place with the variation 

in the Grashof number (  ). When the value of (  ) is increased, the velocity profile is progressively 

reduced  down to a definite point which is called the point of inflexion. Next to this point , the 

orientation is reflected, where with the augmentation of (  ) , the velocity progressively increases, 

with the observation that the velocity profile does not change near the walls of the channel for model-

1. Whereas the velocity increases up to the point of inflexion at (         ). Following this point, 

the velocity decreases down to another point of inflexion at (         )  then it increases again and 

also notices that the velocity profile does not change near the walls of the channel for model -2. the 

measures of the velocity close in on a specific value at some  point of the  upper wall of the channel 

for model -2. The influence of the non-uniform parameter ( ) on the axial velocity is presented in 

Figure-2. We observed that the velocity distribution decreases in the middle of the channel by 

increasing  the non-uniform parameter,  with the note that the velocity increases near the walls channel 

for both model, Figure-3 denotes that in both model,  the axial velocity decreases in a part of the 

channel but it increases in another part with increasing the value of (  ). Figure-4 exhibits the 

variation in the axial velocity with the alteration in the value of  ( ) for both models. It is important to 

note the decrease in the velocity near the center of channel (                 ) and the 

increase in the remaining intervals with the increase of ( ) for model-1. While  in  model -2 , we 

observed the existence of two points of inflexion. It may be also noted that the orientation of velocity 

is reversed after passing the point of inflexion and that the measures of the velocity converge to a 

specific value at some  point of the  upper wall. These  results appear as factual because the magnetic 

field acts in the transverse trend to the flow and the magnetic force resists the flow. The influence of 

the parameter ( ) on the velocity profile is shown in Figure-5. We observed that the velocity 

distribution increases with increasing the mean flow rate ( ) for model-1, whereas, for model-2, the 

velocity increases in the middle of the channel and decreases near the walls with increasing ( ). 
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Figure 2-The effect of (m) on velocity profile at                  ⁄                 
     

 
          ⁄             α                                     
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Figure 3-The effect of (Gm) on velocity profile at                  ⁄                
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Figure 5-The effect of (Q) on velocity profile at                  ⁄                
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8.2- Temperature Profile 

     Figures-(6-10) depict the impacts of heat transfer on the peristaltic flow for several values of 

parameters. The plots provide  important information that deal with the heat transference in the fluid. 

Fig. 6 demonstrates the effects of the heat source / sink parameter ( ) on the temperature distribution. 

The graphical results show that the temperature increases with the increase in the heat generation 

Gm 2

Gm 1

Gm 3

1.5 1.0 0.5 0.0 0.5 1.0

0.10

0.05

0.00

0.05

0.10

0.15

y

u

Gm 1

Gm 2

Gm 3

1.5 1.0 0.5 0.0 0.5 1.0

0.10

0.05

0.00

0.05

0.10

0.15

y

u

M 4

M 3

M 5

1.5 1.0 0.5 0.0 0.5 1.0

0.2

0.1

0.0

0.1

0.2

y

u

M 4

M 5

M 3

1.5 1.0 0.5 0.0 0.5 1.0

0.15

0.10

0.05

0.00

0.05

0.10

0.15

y

u

Q 3

Q 3.5

Q 4

1.5 1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

y

u

Q 3

Q 3.5

Q 4

1.5 1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

y

u



Kareem and Abdulhadi                          Iraqi Journal of Science, 2020, Vol. 61, No. 4, pp: 854-869 

 

 863  

parameter. However, the scheme presented in Figure-   points to an adverse direction, where the value 

of the thermal radiation parameter (  ) is increased. This figure shows that the temperature 

distribution is greatly influenced by (  ). Here we can make an important remark that the temperature 

is reduced with the increase in thermal radiation. Further, Figs. 8-10 demonstrate the effects of the 

phase difference ( ) , the amplitude of the upper wall ( )  and the amplitude of the lower wall ( ) on 

the temperature distribution. It can be observed that the temperature distribution increases with 

increasing ( ) and ( ). The temperature differs significantly at the lower wall and middle part,  while 

an increase in the amplitude of the lower wall ( ) enhances the temperature distribution at the upper 

wall as well as in the center of the channel. 

 
Figure 6-The effect of ( ) on temperature 
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                     ⁄   
 

8.3- Concentration Profile 

    Figures-(11-16) are plotted to illustrate the effects of different parameters on the concentration 

profile. In Figures-(11-13), it is noticed that the concentration profile decreases with the increase in 

Schmidt number (  ), Soret number (  ) and the heat source / sink parameter ( ). From Figure-14, it 

is obvious that the concentration profile increases with increasing the thermal radiation parameter (  ) 

. Also, the effect of the non-uniform parameter ( ) on the concentration is shown in Figure-15 .It can 

be noted that the concentration profile decreases with increasing ( ) towards the upper wall of the 

channel. While Figure-16 demonstrates that the concentration profile increases in the boundary layer 

and progressively decreases upon approaching the upper wall with increasing the phase difference 

( ). 
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              𝑐                 ⁄   
 

                      𝑐         
         

8.4- Pressure Gradient Profile 

    Figures-(17-21) show the alteration of pressure gradient against the axial coordinate x for various 

wave forms. The impacts of   , (  ) and the heat source / sink parameter ( ) on pressure gradient 

are exhibited in Figures-(17-19). It can be observed from Figure-17 that increasing Grashof number 

increases the pressure gradient. It is also noticed that increasing  (Gm) and ( ) increases the pressure 

gradient., In Figures-(20 & 21), it is illustrated that increasing the Soret number (  ) and Schmidt 

number (  ) leads to decreased pressure gradient . It is noted that, in the wider part of the channels   

∈[0, 0.2] and   ∈ [0.7, 1], the pressure gradient is low, so that the flow can be simply passed without 

the imposition of high pressure gradient. However, in the tight part of the channel   ∈ [0.2, 0.7], the 

pressure gradient is high, that is, a much higher pressure gradient is needed to preserve the same given 

volume of flow rate. 

 
Figure 17-The effect of (Gr) on the pressure 

gradient profile at               
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Figure 18-The effect of (Gm) on the pressure 
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Figure 19-The effect of ( ) on the pressure 

gradient profile at               
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Figure 20-The effect of (Sr) on the pressure 

gradient profile at               
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Figure 21-The effect of (Sc) on the pressure 

gradient profile at                  ⁄    
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8.5- Trapping 

     Trapping is also an important phenomenon of peristaltic motion, that is a formation of an inside 

movable circulating bolus that is closed by numerous streamlines, and shifts with the peristaltic wave 

at the speediness of waves. This phenomenon is useful in grasping the motion of the gastrointestinal 

tract and in the arrangement of thrombus in veins. Figures-(22-25) show various values of effective 

parameters on the trapping stream lines. The influence of the viscosity parameter (α) on trapping is 

analyzed in Figure-22 which depicts that the magnitude of the trapped bolus  increases with an 

increased values of (α). This observation reveals a very significant phenomenon that, as the fluid 

viscosity is reduced, the bolus size is increased. The effect of Hartman number is calculated through 

Figure-23. It is observed that the larger size of the bolus becomes smaller with the increase of Hartman 

number. This result is expected since the Lorentz force opposes the fluid flow and, hence, decreases 

the fluid velocity. Therefore, we make here a significant notice that bolus  formation can be averted by 

setting the force of the applied magnetic field. Figures-(24-25) exhibit that the volume of the bolus 

raises with increasing of the Grashof number and the heat source / sink parameter .  

 
(a) 

 
(b) 

Figure 22-The effect of (α) on the streamlines at                 ⁄                
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(a) α =0.1  (b) α =0.5. 
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(a) 

 
(b) 

Figure 23-The effect of (M) on the streamlines at                 ⁄                
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Figure 24-The effect of (Gr) on the streamlines at                 ⁄                
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Figure 25-The effect of ( ) on the streamlines at                 ⁄                
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9- Conclusions 

     In this paper, we studied the peristaltic flow of variable viscosity fluid in porous medium through 

the tapered inclined asymmetric channel, under the impact of magnetic field,  heat, and mass transfer . 

The channel asymmetry was generated by selecting the peristaltic waves on the non-uniform walls to 

have various amplitudes and phases. The solution was acquired by taking assumptions of lengthy 

wavelength approximation and small Renolds number. The main results and conclusions of this 

investigation are summarized as follows. 

- The slip and no-slip conditions do not influence the fluid velocity with the increase of the values of 

(Gm) and (m). 

- The  (Gr) and (M) parameters have different effects on velocity for both models. 

- The increase of the mean flow rate (Q) leads to an increase in the velocity in model-1 and a 

decrease near the walls in model -2. 

- The temperature distribution is a decreasing function with rising values of (  ) and an increasing 

function with the enhancement of the values of ( ) ( ) ( ) and ( ). 

- The concentration profile is diminished due to an increase in (  ) (  ) ( ) ( )  whereas it 

increases with the parameter ( )     (  ). 

-  Pressure gradient decreases with the increase of the inclination angle, Grashof number and volume 

flow rate, while this trend is reversed in the couple stress parameter. 

- Increasing of the megnetic filed decreases the peristaltic pumping size of the trapped bolus. 
-  The magnitude of the trapped bolus increases through the increase of Grashof number , the heat 

source/sink parameter,  and viscosity. 
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