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Abstract –This paper presents the modeling and control simulation for Lab-Volt 
5250 five degree of freedom robot manipulator based on the standard Denavit- 
Hartenberg approach. The dynamic model of the robot derived using Euler- Lagrange 
equation which is the energy balance equation. This dynamic model has a very high 
nonlinearity that is represented by using MATLAB, m-file and simulation to run the 
dynamic model in open and close loop. In this research, the close loop simulation is 
done by using two types of control theory that applied to control each joint of the robot 
manipulator independently, the first one is PD controller and the second one is an 
intelligent controller which is PD-like fuzzy controller used to control the joint position. 
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1. Introduction  
The implementation of dynamic control 

systems for manipulators has been 
hampered because the models are difficult 
to derive and computationally expensive, 
and because the needed parameters of the 
manipulator are generally unavailable [1]. 
This paper presents the dynamics and 
control of robot manipulators. Whereas 
the kinematic equations describe the 
motion of the robot without consideration 
of the forces and torques producing the 
motion, while the dynamic equations 
explicitly describe the relationship 
between force and motion. The equations 
of motion are important to consider in the 
design of robots, in simulation and 
animation of robot motion, and in the 
design of control algorithms. The use of 
the Euler-Lagrange equation is considered 
to drive the dynamics of robot 
manipulator which is derived from the 
principle of virtual work, so in order to 
drive the Euler-Lagrange equations one 
has to form the Lagrangian of the system, 
which is the difference between the 
kinetic energy and the potential energy. 
The Euler-Lagrange equations have 
several very important properties that can 
be exploited to design and analyze 
feedback control algorithms. Among 
these are explicit bounds on the inertia 
matrix, linearity in the inertia parameters, 
and the so-called skew symmetry and 
passivity properties. The Euler-Lagrange 
also can be derived based on Hamilton’s 
principle of least action [2]. The 
dynamical system can be controlled in 
open loop or close loop. In open loop, the 
input is computed without observing the 
output that is to be controlled. In the 
complex systems the open loop controller 
isn’t possible, because the controller will 
never know if the output reaches to the 
desired target. So the use of feedback 

controller will achieve the desired target. 
 

2. Dynamic Model  
At first the forward kinematics and 

velocity kinematics must be driven to use 
them in driving the dynamical model of 
the robot manipulator, see appendix. 

The Euler-Lagrange equation used to 
derive the dynamical model of the Lab-
Volt 5250 robot manipulator, which is the 
difference between the kinetic energy and 
the potential energy. 

 
푳 = 푲 − 푷        (1) 

Where K is the kinetic energy and P is the 
potential energy 
 

퐾 = 푚푦̇          (2) 
 

푃 = 푚푔푦         (3) 
 

̇
=

̇
and = − then 

 

̇
− = 푓        (4) 

 
The function L, which is the difference 

between the kinetic and P potential 
energy, is called the Lagrangian of the 
system, m mass, g acceleration of gravity 
and y height, (4) is called the Euler- 
Lagrange Equation. The kinetic energy of 
n-link robot manipulator composed of two 
components linear and angular kinetic 
energy, so the need for derivation of 
manipulator Jacobian is important because 
the Jacobian consists of both linear and 
angular velocities which are component of 
the kinetic energy where the Jacobian 
matrix expressed as follows 

 
푣 = 퐽 (푞)푞̇,  푤 = 퐽 (푞)푞̇   (5) 

Where vi and wi are linear and angular 
velocities, q is the joint variable which is 
revolute or prismatic, Jvi and Jwi are linear 
and angular the Jacobian matrix. Suppose 
the mass of link i is mi, and that the inertia 
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matrix of link i equal Ii then the kinetic 
energy of the manipulator equal 

K =
		 q̇ ∑ [m J (q) J (q) + J (q) R (q)I R (q) J (q)]q̇
                  (6) 

In other words, the kinetic energy of 
the manipulator is of the form 

퐾 = 푞̇ 퐷(푞)푞̇       (7) 

Where D(q) is a symmetric positive 
definite matrix that is in general 
configuration dependent and is called the 
inertia matrix. 

The potential energy in the case of rigid 
dynamics, the only source of potential 
energy is gravity. The potential energy of 
the ith link can be computed by assuming 
that the mass of the entire object is 
concentrated at its center of mass and is 
given by 

P = g r m        (8) 

Where g is the vector giving the 
direction of gravity in the inertial frame 
and the vector rci gives the coordinates of 
the center of mass of link i. The total 
potential energy of the n-link robot is 
therefore 

P = ∑ P = ∑ g r m      (9) 

After simplification of the kinetic 
energy and potential energy and substitute 
them in the Euler-Lagrange equation the 
result is  

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ     (10) 
Where D(q) is the inertia matrix, 

C(푞, 푞̇) is centrifugal and coriolis forces 
as shown in (11), g(q) is the gravity force 
and 휏 is the torque applied to joints and 
for the complete dynamics model of the 
robot see Appendix (A). 

 
C = ∑ c (q)q̇ = ∑ + −   (11) 

3. Parameter Estimation  
This section describes how the dynamic 

parameters are estimated quite roughly to 
ensure that the parameters are closed 
enough to the real unknown parameters. 
The center of mass of the Lab-Volt robot 
arm’s joints can be estimated from 
assuming the links have uniform mass 
density so it is easy to calculate the center 
of mass by studying the manipulator 
thoroughly and allocating the center of 
mass for each link. But this method is not 
accurate, so the method which is used in 
this research for finding the center of 
mass quite roughly is the method of 
centroid. This provides accurate 
estimation for the center of mass of each 
link. Based on the centroid method the 
center of mass for each link will 
expressed as ci for each link while link 4 
is merged with link 5. Estimating the 
inertia parameters are definitely the most 
difficult task. The irregular shapes of the 
links makes it highly complicated to come 
up with realistic parameters without 
performing some kind of identification. 
As a fair simplification the links are 
modeled as cylindrical links with uniform 
mass density, where the estimating of the 
inertia parameters is definitely the most 
difficult task. As a fair simplification, the 
links are modeled as cylindrical links with 
uniform mass density; where the center of 
mass of each link is the geometric center 
of the cylinder [3].  Figure (1) shows an 
example of how this simplification can be 
applied on link 3 and the other links are 
same. 

 
 
 
 
 
 
 

Figure 1. Link 3 modeled as cylinder 
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The inertia tensor of such a cylinder is 
[4] 

 

푰 =

⎣
⎢
⎢
⎢
⎡
ퟏ
ퟏퟐ
풎풉ퟐ + ퟏ

ퟒ
풎풓ퟐ ퟎ ퟎ

ퟎ ퟏ
ퟏퟐ
풎풉ퟐ + ퟏ

ퟒ
풎풓ퟐ ퟎ

ퟎ ퟎ ퟏ
ퟐ
풎풓ퟐ⎦

⎥
⎥
⎥
⎤
 (12) 

 
Where m is the mass, r is the radius and 

h is the height of the cylinder. The cross 
products are identically zero such that the 
inertia tensor becomes a diagonal matrix 
in its principal axis form. The mass of 
each link can be determined from the 
approximated shape for each link as a 
cylinder but this is not accurate way of 
determined the masses of these links, so 
the calculation of the masses can be done 
by determining the geometry of each link 
and the material that these links were 
made from known, so the density of the 
material is known, also the other 
components of the links are known then, 
the calculation of the mass for each link 
was done. In our case the base of the robot 
was made from the steel, so the density of 
the steel is equal to 7830 kg/m3 according 
to [5], and the other links was made from 
the aluminum, so the density of the 
aluminum is 2690 kg/m3 according to [5], 
so the calculation of the mass for these 
links can be done. The following table of 
the parameters to determine the inertia 
tensor for the cylinder 

 
Table 1. Cylinder parameters 

link Mass (kg) Radius (m) Height (m) 

1 12.26 0.1613 0.28 

2 1.515 0.045 0.38 

3 0.94 0.0375 0.23 

4 - - - 

5 0.5024 0.105 0.15 

 

4. Simulation of Open Loop Model  
In Simulink a so-called interpreted 

MATLAB function was used to 
implement the dynamic model of the robot 
manipulator. This is a block with multiple 
input and output ports where inputs are the 
applied torque for each joint while outputs 
are the actual joint angles derivatives. 
Ode45 is used for solving the differential 
equations of the dynamical model. 

In open loop there is no feedback from 
the system output. In other words, no 
information about the joint variables and 
its derivatives is available when 
computing the input torque. Due to the 
excitation of gravity on the links being 
dependent on the joint variables, it is quite 
intuitive that controlling the system in 
open loop is impossible. The behavior of 
the system can be studied by driving the 
system with the desired torque that is the 
constant torque derived when substituting 
in the dynamic equations for the desired 
joint variables and derivatives [3]. 

 

 
Figure 2. Open loop Simulink model 

The applied torque for each joint that 
represented as a vector is τ = [1 1.5 2 2.5 
3] T, so the behavior of the system in open 
loop model as shown in Figures 3 – 7.  
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Figure 3. Joint 1 response in open loop 

 
 

 

 
Figure 4. Joint 2 response in open loop 

 
 

 
Figure 5. Joint 3 response in open loop 

 
Figure 6. Joint 4 response in open loop 

 
Figure 7. Joint 5 response in open loop 

Form figures above the simulation 
when apply torques to the joints, all joints 
didn’t give the desired position and the 
response for each joints is unstable. The 
conclusion corresponds to the simulations, 
the behavior of the system is unstable, and 
just a slightest disturbance in the system 
leads to a completely uncontrollable 
motion because the gravity on the links is 
dependent on the joint variables, and the 
input is computed without observing the 
output. The system requires feedback 
controllers to be stabilized. 

 
5. Controller Design and Simulation 

A system can be controlled in open loop 
or closed loop. With an open-loop 
controller, the input is computed without 
observing the output that it is controlling. 
Complex systems will not be possible to 
control in open loop, because the 
controller will never know if the output 
has achieved the desired goal. However, 
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by adding feedback controllers, it might 
be possible to stabilize the system in 
closed loop [3]. 

One of the most important challenges 
in the field of robotics is robot 
manipulators control with acceptable 
performance, because these systems are 
multi-input multi-output (MIMO), 
nonlinear and uncertainty [6]. 

In this research the controller designed 
to control each joint of the robot 
manipulator independently.  

5.1. PD Controller 
The main objective of the controller is 

to develop link position tracking 
controllers for the robot manipulator 
model given by (10). To quantify the 
performance of the control objective, the 
link position tracking error e(t) is defined 
as: 

e = q − q																																							(13) 
 

Where qd(t) denotes the desired link 
position trajectory. 

It is a remarkable fact that the simple 
PD scheme for set-point control can be 
shown to work in the general case of a 
system model in the form of (10). This can 
be proved by using Lyapunov stability 
analysis [3]. The proof is based on 
independent joint control, which means 
that each joint is controlled as a single-
input/single-output (SISO) system. 
Adding PD controllers in the model, the 
input torque u can be written in vector 
form as 

u = −K (q − q) − K q̇      (14) 
 
 

Kp and Kd are positive definite 
diagonal matrices of proportional and 
derivative gains, see Figure 8. 

 

 
Figure 8. Close loop PD controller 

 
In this section the results of the PD 

controller recorded when the desired joint 
angles are set to [1 1.5 2 2.5 3] 
respectively as shown in Figures 8-13. 

 

 
 

Figure 9. Joint 1 response in close loop model PD 
controller 

 
 

Figure 10. Joint 2 response in close loop model 
PD controller 
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Figure 11. Joint 3 response in close loop model 

PD controller 

 
Figure 12. Joint 4 response in close loop model 

PD controller 

 
Figure 13. Joint 5 response in close loop model 

PD controller 

 

5.2. Fuzzy controller 
Fuzzy systems have been used in a 

wide variety of applications in 
engineering, science, business, medicine, 
psychology, and other fields. The fuzzy 
controller has four main components:  

The “rule-base” holds the knowledge, 
in the form of a set of rules, of how best to 
control the system, the inference 

mechanism evaluates which control rules 
are relevant at the current time and then 
decides what the input to the plant should 
be, the fuzzification interface simply 
modifies the inputs so that they can be 
interpreted and compared to the rules in 
the rule-base, and the defuzzification 
interface converts the conclusions reached 
by the inference mechanism into the 
inputs to the plant [7], see Figure 14. 

 
 

 
Figure 14. Fuzzy controller architecture. [7] 

 
 
Fuzzy controller used to control the 

robot joint’s angle independently by 
implementing the fuzzy controller as 
shown in Figure 15. 
 

 

Figure 15. . Fuzzy controller for robot manipulator 

The controller was designed using 
MATLAB fuzzy toolbox, so the 
membership functions were selected as a 
triangular shape for inputs and output as 
shown in Figures (16, 17, 18) the e 
universe of discourse chosen to be [-pi pi], 
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the universe of discourse for de [-2.5 2.5]. 
These are chosen by some experiments 
and the universe of discourse for the 
output is chosen to be [-20 20] because 
this is the limit of the motors. 

 

 
Figure 16. Membership function for e 

 

 
Figure 17. Membership function for de 

 

 
Figure 18. Membership function for u 

 
Where  

Nb: negative big 
Nm: negative medium 
Ns: negative small 
Z: zero 
Ps: positive small 
Pm: positive medium 
Pb: positive big 
 
These are the linguistic variables that 

describe each of the time varying fuzzy 
controller inputs and outputs are used to 
define the rule base of the fuzzy controller. 

 
 

Table 2. Rule base table 

e  Nb Nm Ns Z Ps Pm Pb 

Nb Nb Nb Nb Nm Nm Ns Z 

Nm Nb Nb Nm Nm Ns Z Ps 

Ns Nb Nm Nm Ns Z Ps Pm 

Z Nm Ns Z Z Z Ps Pm 

Ps Nm Ns Z Ps Pm Pm Pb 

Pm Ns Z Ps Pm Pm Pb Pb 

Pb Z Ps Pm Pm Pb Pb Pb 

 
 
The rules for the fuzzy controller are: 

1- If e is Nb and de is Nb then u is 
Nb 

2- If e is Nb and de is Nm then u is 
Nb 

3- If e is Nb and de is Ns then u is 
Nb 

4- If e is Nb and de is Z then u is 
Nm 

And so on, as seen in Table 2. 
 
The fuzzy controller Simulink is shown 

in Figure 19. 

 
Figure 19. Close loop fuzzy controller 

In this section the results of the fuzzy 
controller recorded when the desired joint 
angles are set to [1 1.5 2 2.5 3] 
respectively as shown Figures 20 - 24. 

de 
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Figure 20. Joint 1 response in close loop model 

fuzzy controller 

 
 

 
Figure 21. Joint 2 response in close loop model 

fuzzy controller 
 
 

 
Figure 22. Joint 3 response in close loop model 

fuzzy controller 

 
Figure 23. Joint 4 response in close loop model 

fuzzy controller 
 
 
 

 
Figure 24. Joint 5 response in close loop model 

fuzzy controller 

 
 
6. Discussion and Conclusion 

As seen from the simulation result for 
the PD controller the signals reach the 
desired position (steady state time) with 
maximum time 1.15 second and the 
maximum percent over shoot is 2.044% 
for joint two, while in fuzzy controller the 
signals reaches the desired position 
(steady state time) with a maximum time 
1.15 second and the maximum percent 
over shoot is 3.088% for joint two as 
shown in Tables 3 and 4. 
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Table 3. Performance specification for PD 
controller 

Joint 
No. 

Delay 
time (s)  

Rise 
time 
(s) 

Peak 
time 
(s) 

Steady 
state 
time 
(ts.s) (s) 

Maximum 
percent 
overshoot 

Joint 
1 

0.0712 2 2 2.4 0 

Joint 
2 

0.0398 0.1 0.133 0.2 2.044 

Joint 
3 

0.093 0.75 2.006 0.6 0.314 

Joint 
4 

0.0453 0.35 0.568 0.35 0.399 

Joint 
5 

0.1309 1.4 2 0.8 0 

 
Table 4. Performance specification for fuzzy 

controller 
Joint 
No. 

Delay 
time 
(s)  

Rise 
time 
(s) 

Peak 
time 
(s) 

Steady 
state 
time 
(ts.s) (s) 

Maximum 
percent 
overshoot 

Joint 
1 

0.515 1.119 1.15 1.116 1.652 

Joint 
2 

0.404 0.859 0.9 0.95 3.088 

Joint 
3 

0.399 0.971 0.995 1 1.434 

Joint 
4 

0.2266 0.891 0.908 0.9 0.754 

Joint 
5 

0.371 0.869 0.888 0.88 1.117 

 
Tables 3 and 4 show the characteristics 

of applying PD and fuzzy controllers 
respectively there is a little difference 
between them, so it doesn’t matter which 
controller can be chosen from this side but 
when looking on the figures below that 
shows the applied torque for each joint in 
both controller, see that the fuzzy 
controller approaches the maximum motor 
delivered torque 20 N/m while PD 
controller exceed this range so the 
simulation can be done by putting a 
limiter on the control input signal to be 
insured that the control signal will be in 
the motor range but this effect on the 
performance of the controller when 
reaching the desired target so fuzzy 
controller will be the appropriate solution 
for this problem, see Figures 25 - 34.     

 
Figure 25. Joint 1 control signal for PD controller 

 
Figure 26. Joint 2 control signal for PD controller 

 
Figure 27. Joint 3 control signal for PD controller 

 
Figure 28. Joint 4 control signal for PD controller 

 
Figure 29. Joint 5 control signal for PD controller 
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Figure 30. Joint 1 control signal for fuzzy 

controller 

 
Figure 31. Joint 2 control signal for fuzzy 

controller 

 
Figure 32. Joint 3 control signal for fuzzy 

controller 

 
Figure 33. Joint 4 control signal for fuzzy 

controller 

 
Figure 34. Joint 5 control signal for fuzzy 

controller 
 

Appendix (A) 
Forward Kinematics 

The forward kinematics is a set of 
equations that calculates the position and 
orientation of the end- effecter in terms of 
given joint angles. This set of equations is 
generated by using the Denavit-
Harbenterg (D-H) parameters obtained 
from the frame assignation. The 
parameters for the Lab-Volt 5250 arm are 
listed in Table A-1 which derived from 
Figure A-1, where θi represents rotation 
about the Z-axis, αi rotation about the X-
axis, di translation along the Z-axis, and ai 
translation along the X-axis. 

 
Table A-1. The D-H parameters of the Lab-Volt 

5250 arm 
Frame ai (mm) αi (degree) di (mm) θi 

1 0 90 380 θ1 

2 380 0 0 θ2 

3 230 0 0 θ3 

4 0 90 0 θ4 

5 0 0 150 θ5 

 
Figure 35 Coordinate Frames of 5250 Lab-Volt 

Robotic Arm 
 

The forward kinematics describes the 
transformation from one frame to another, 
starting at the base and ending at the end-
effecter. The transformation matrix Ai 
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between two neighboring frames oi-1 and 
oi is expressed as: 

 

A =

Cθ −Sθ Cα
Sθ 	Cθ Cα

Sθ Sα a Cθ
−Cθ Sα a Sθ

0							 	Sα
0							 	0				

Cα 		 d
0		 							1

    (A1) 

 

A =

C1					 					0
S1					 					0

		S1 				0
-C1		 				0

0				 						1
0				 						0

					0 d1
					0 						1

       (A2) 

A =
C2										 -S2
S2									 C2

			0 a2C2
			0 a2S2

0											 0
0											 	0		

		1					 0
	0				 1

        (A3) 

A =
C3 			-S3
S3 C3

				0 a3C3
			0 a3S3

0 	0
0 	0

		1 0
	0 1

        (A4) 

A4=

C4 											0		
S4 										0	

		S4 	0
-C4			 	0

0 												1	
0 												0

			0			 			0
			0			 			1

        (A5) 

A5=
C5					 			-S5
S5					 C5

			0 						0
			0 						0

0										 		0
0										 	0

					1					 d5
				0				 1

        (A6) 

 

The translational kinetic energy KEt is 

5×5 matrix, and its terms as shown below: 

 
T = (m (a c + a c + 2a a c c ))/2

+ (m (a c + a c

+ 2a a c c ))/2 + (a m c /2

+ (a m (a c + c + d s

+ 2a d s c + 2a d s c

+ 	2a a c c ))/2 
T = 0 
T = 0 
T = 0 
T = 0 
T = 0 
T = (m a /2	 +	(m (a + 2c a a + 2s a d + 	a

+ 	2s a d 	+ 	d ))/2	 +	(m (a 	

+ 	2c a a + 	a ))/2	 + 	(m (a

+ 2c a a + 	a ))/2 
 
T = (m (a 	+ 	2s a d + 	a c a + d +	a s d ))/2	

+ 	(m (a + a c a ))/2	 + 	(m (a 	

+ 	a c a ))/2 

T = (d m (d 	+ 	a s +	a s ))/2 
T = 0 
T = 0 
T = (m (a + 2s a d + a c a + d + a s d ))/2

+ (m (a 	+	a c a ))/2 + (m (a

+ a c a ))/2 
T = (a m )/2	 + (a m )/2 + (m (a 	+ 	2s a d

+ d ))/2 
T = (d m (d 	+ 2a s ))/2 
T = 0 
T = 0 
T = (d m (d +	a s 	+ 	a3s ))/2 
T =	 (d m (d 	+ 	a s ))/2 
T =	 (d m )/2 
T = 0, T = 0, T = 0, T = 0 

T = 0, T = 0 
 

The rotational kinetic energy KEr is 5×5 

matrix, and its terms as shown below: 

 

R =
I
2
	+

I
2
+
I
2
	+

I
2
+ 	
I
2
 

R = R = 0 
R = R = 0 
R = R = 0 
R = R =

−I c
2

 
R =

I
2
+ 	
I
2
	+ 	

I
2
	+	

I
2
 

R = R =
I
2
	+	

I
2
	+	

I
2
 

R = R =
I
2
	+	

I
2
 

R = R = 0 
R =

I
2
	+	

I
2
	+ 	

I
2
 

R = R =
I
2
	+	

I
2
 

R = R = 0 
R =

I
2
	+	

I
2
 

R = R = 0 
R =

I
2
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