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Abstract 
 Our main concern here is to give an approximate scheme to solve a linear 
Fredholm integro–differential equations of higher–order (LFIDE) using expansion 
method with the expansion functions as basis functions associated with weighted 
residual technique ( collocation method ). Computing of singular value 
decomposition (SVD) has been used to treat these equations approximately. For 
this method a program is written in matlab (ver.6.5), examples are solved, results 
are tabulated and comparison is made between the exact and the approximate 
solution depending on least squares error  method. 
 
Keywords: linear Fredholm integro–differential equations, expansion method, 

and singular value decomposition. 
  

الحل التقريبي لمعادلات خطية تكاملية تفاضلية ذات الرتب العليا من نوع 
  (SVD)فريدهولم بحساب 

 الخلاصة
ذات تفاضـلية   خطية تكاملية الرئيسي هو إعطاء مخطط تقريبي لحل معادلات هدفنا

 ـتوسيع دوال الع مع يالتوس طريقةباستخدام ) LFIDE(م لنوع فريدهوالعليا من الرتب  دوال ك
 لمركبـة ا ةفـرد المقيمـة  ال حساب مع) التجميع طريقة(رجح تتقنية المتبقي الممع  تقرن أساس

)SVD (برنامج في مـاتلاب   ةباكتتم  طريقةال هلهذ. ايهذه المعادلات تقريب ةلجاعمل تستخدما
)ver.6.5 (حل الالدقيق والحل بين  نةمقار يتجرأفي جداول و ادرجت مثلة ، والنتائجاحلت ، و
  .مربعات الخطأ طريقة اصغر عتمادا علىتقريبي اال

   
1. Introduction  
    In the recent years many problems 
of mathematical physics, theory of 
elasticity, viscodynamics fluid and 
mixed problems mechanics of 
continuous media reduce to Fredholm 
integral and integro–differential 
equation [1]. The study of numerical 
methods for integro–differential 
equations become a topic of 
considerable interest. Also, the 
solution form of it is often more 

suitable for today's extremely fast 
machine computations [2]. 
    Consider the following form of 
higher order linear Fredholm integro–
differential equation (LFIDE): 
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with two–point boundary conditions: 
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where k(x,y) , f(x) , pi(x) , i = 0,…,n-
1 are known functions, u(x) is the 
unknown function, and Di u(x) denote 
the ith derivative of  u(x) with respect 
to x [3] . 
    In this paper we try to represent an 
approximate method for solving 
higher order (LFIDE) in equation (1) 
using expansion method with the aid 
of weighted residual technique 
collocation method [4]. Moreover 
computing of singular value 
decomposition (SVD) has been used 
to determine the values of variables 
from the resulting normal equations. 
    The (SVD) is an important tool in 
numerous applications, it is a well 
studied, and good numerical method 
that is available. A singular value 
decomposition of matrices A is a 
factorization  A = LDU where  L and 
U are orthogonal and  D  is diagonal 
as follows: 
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   The diagonal entries of D are 
allowed by either positive or negative 
and to appear in any order, but this 
(SVD) is not unique. We are using a 

generalized inverse for the 
computating unique (SVD) [5,6].  
2.Expansion Method and Weighted 
Residual Methods 
    In this section, we shall discuss and 
illustrate an important approache 
coming from the field of 
approximation theory, this method is 
called expansion method in which the 
unknown solution  u(x)  is expanded 
in terms of a set of known functions 
φm(x), such that [7]: 

...(2)(x)c(x)u m

N

0m
mN ϕ∑

=

=  

where cm are parameters to be 
determined and φm(x) are the 
expansion functions to be chosen.  
    Now, we present the weighted 
residual methods by considering the 
following functional equation: 
L [ u(x) ] = f(x)         x∈D      …(3)  
 
where , L denotes an operator which 
maps L : U → F  (where U and F are 
sets  of functions) such that  u∈U, 
f∈F and  D is a prescribed domain. 
    The approximate solution in 
equation(2) is substituted in equation 
(3) for u(x), we obtain the residual 
defined by : 
RN(x) = L[ uN(x) ] – f(x)         …(4) 
     
    We hope that the residue RN(x) will 
become smaller and the exact 
solution is obtained when the residue 
is identically zero but this is difficult 
so we shall try to minimize RN(x)  in 
some sense. 
    Now, to minimize the residual 
RN(x) the weighted integral of the 
residue is put equal to zero, that is  

...(5)n..., 1, 0,j0dx(x)Rw N
D

j ==∫  

where wj is a prescribed weighting 
function. Different choices of wj  
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yield different methods (Collocation 
method, Galerkin's method, Partition 
method , ...) with different 
approximate solutions. 
 3. Collocation Method 
    Here, we discuss a collocation 
method of the weighted residual 
method. It is a simple technique for 
obtaining a linear approximation 
uN(x), the weight function wj in 
equation (5) are defined as [4]:- 
    wj  = δ(x–xj)                      …(6) 
where the fixed points   xj∈D  , j = 0, 
1, …, n are called collocation points 
and δ(x–xj) is Dirac's delta function 
defined as: 



 =

=−
elsewhere0

xxif1
)x(x j
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Inserting equation(6) in equation(5) 
gives    

...(7)n..., 1, 0,j
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4. Singular Value Decomposition  
    The singular value decomposition 
(SVD) of a constant matrix  A∈IRp×q  
, p ≥ q  is a factorization   Ap×q = Lp×p 
Dp×q Uq×q [8]. 
where    

...(8)
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and both L (lower triangular) and U 
(upper triangular) are non singular 
(even  A is singular) [9]. The 
diagonal matrix Dr×r has dimension 
and rank r corresponding to the rank 
A. we can diagonalizable any matrix 
as. 
D = L-1 A U-1                        …(9) 
    Now define a new matrix D-1 
created by taking the inverses of the 
non–zero (diagonal) elements of D: 

...(10)
00
0D

D
-1

rr1-








= ×  

    D-1 is a generalized inverse of  D 
because of the extra structure 
required. Note that this is a 
generalized inverse not unique 
generalized inverse since the matrices 
on the right side of equation (8) are 
not–unique. By rearranging equation 
(8) and using equation (10) we can 
define a new (q×p) matrix: 
G = U-1 D-1 L-1 = A-1             …(11) 
    The importance of the generalized 
inverse matrix G is revealed in the 
following theorem. 
Theorem (Moore 1920)[10]: 
G is a generalized inverse of  A  since  
AGA = A.  
    Moore (1920) and (unaware of 
Moore's work) Penrose (1955) [11] 
reduced the infinity of generalized 
inverse to one unique solution. That 
is if  
1- General condition AGA = A. 
2- Reflexive condition GAG = G. 
3- Normalized condition(AG)T = GA. 
4- Reverse normalized condition 
   (GA)T = AG  
Then  G  matrix is unique. 
 5.Solution of LFIDE By Expansion 
Methods Using Weighted Residual 
Methods 
    In this section, the solution of 
(LFIDE) has been found 
approximately by expansion method 
using the weighted residual methods. 
Recall equation (1) 
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with two–point boundary conditions  
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 u(a) = u0, u′ (x)|x = a = u1, …, 
u(n-1)(x)|x = a = un-1  
and u(b) = v0, u′ (x)|x = b = v1, …, 
u(n-1)(x)|x = b = vn-1 
    In operator form, the above 
equation can be written as. 
 
L [u(x)]  = f(x) 
 

where 
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    The unknown function u(x) is 
approximated by equation(2) where 
φm(x) are basic functions to be 
chosen. 
    Then from equation(4) and 
equation (12)  we obtain: 
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Thus (eq.13) becomes:         
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    In this work, we take the basis 
function φm(x) = xm. 
    Now, the problem is how to find 
the optimal values of cm's which 
minimize the residual RN(x) in 
equation (15), this can be achieved by 
using the weighted residual methods 
with the aid of collocation method. 

    In this method we choose the 
collocation points x0, …, xN in the 
closed interval [a,b], such that xj = a 
+ j h, j = 0, …, N, where 

N
abh −= . 

Hence, by equation (7) we have  

...(16)

N...,1,0,)f(x)(xψc
N
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    Equation(16), will provide us with 
(n+1) simultaneous equations to 
determine the parameter's cm's,         
m = 0, …, N. 
    Rewrite (equation(16)) in matrix 
form 

AC = B                  …(17) 
where 
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    In this technique the two–point 
boundary conditions of equation (1) 
are added as a new rows in the 
problem equation (17), these rows 
can be formed as: 
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    In matrix form, these equations 
give: 
    φ(a) C = U   and   φ(b) C = V 
    Adding these matrices to matrix in 
equation (17), we obtain : 
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     RC = E                         …(18) 
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    R and E are constant matrices with 
the dimensions p×q , p>q and p×1 
respectively, where q = N+1 and      
p≤ N+2n +1, depend on the number 
of the boundary conditions. 
    Reliable techniques based on 
singular value decomposition (section 
4) can be used to find general inverse 
of  R to determine the solution values 
cm which satisfy equation(2), then the 
approximate solution of equation(1) 
is given. 
6. Examples  
    The approximate solution of 
equation (2) can be summarized by 
the following examples: 
Example (1): 
Consider the problem, which is 1st 
order  LFIDE:  

∫ −

++−=+
2

0

2

...(19)dtu(t)t)(x

4)x32(x u(x)1)(D

    with boundary conditions  u(0) = 0,  
u(2) = 4  while the exact is  u(x) = x2. 
    Assume the approximate solution 
is solution 
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where   f(x) = x2 – (2/3)x + 4 
    So the given equation becomes:    
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    Then, evaluate 21,0,m,)(xψ jm =  
and f(xj), by putting  xj = a + j .h  and   
h = 1  for all  j=0,1,2  we have a 
matrices A and  B  in equation (17). 
    Now the boundary conditions are 
added new rows in the matrices  A  
and B, therefore , we get the matrices  
R  and  E in system equation (18) as: 
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    Solve the system equation (18) 
using singular value decomposition to 
find general inverse of  R (R+)  to 
determine the coefficients c0, c1, c2 . 
    At first we write a factorization of   
R as: 
       R5×3 = L5×5 D5×3 U3×3 
   By using equation(11) and equation 
(10) we obtain : 
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    Substitute cm's in transforming 
form u2(x) to obtain the approximate 
solution of u(x). Table(1) present a 
comparison between the exact and 
approximate solutions depending on 
least square error method. 
Example (2): 
    Consider the following problem: 

∫ +

+−−−=′′
1

0

x

u(t)t)(x

11)x(ee (x)u

td
 

and  u(0)= ú(x)|x = 0 =1, u(1) = ú(x)|x =1 
= e  with exact solution  u(x) = ex . 
    Assume the approximate solution 
is in the form:    

∑
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Then we have 
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    Table(2) lists the result obtained by 
running program to find the 
approximate solution of the above 
equation. Included are the least 
square errors for comparison. u3(x) = 

(1.000) + (1.000)x + (0.5094)x 2 + 
0.2904x3  
Example (3): 

Consider the 3rd order LFIDE 
problem: 

∫+−+=+
1

0

23 dtu(t)t3/4x2x u(x)x)(D

 
with boundary conditions u(0) = 2, 
ú(x)|x = 0 = 1 and u(1) = 3 .  
    The exact solution  u(x) = x + 2 . 
    Assume the approximate solution 
is in the form:    
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    Table(3) lists the result obtained by 
running program to find the 
approximate solution of the above 
equation. Included are the least 
square errors for comparison. u3(x) = 
(2.0000) + (1.0000)x + (0.0000)x 2 + 
0.0000x3  
7.  Conclusions  
    It has already been proving that 
expansion method with weight 
residual technique (collocation 
method) is a very powerful advice for 
solving integral equations and 
integro–differential equations [4]. 
    In this paper we use this method 
for solving linear Fredholm integro–
differential equations of higher–order 
with two–point boundary conditions. 
When we applied this method we 
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obtained constant matrices with the 
dimensions p×q, p>q, then using the 
(SVD) to give the inverse of these 
matrices to find the approximate 
solution. 
    The computations associated with 
the examples in this paper we 
performed using Matlab (ver.6.5). 
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Table (1) Approximate solution of example (1) 
x 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

L.S.E 
Exact 0.000 0.0400 0.1600 0.3600 0.6400 1.0000 1.4400 1.9600 2.5600 3.2400 4.0000 

u2(x) 0.000 0.0400 0.1600 0.3600 0.6400 1.0000 1.4400 1.9600 2.5600 3.2400 4.0000 0.0000 

 
Table (2) Approximate solution of example (2) 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
L.S.E 

Exact 1.000 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221 2.0138 2.2255 2.4596 2.7183 

u3(x) 1.000 1.1054 1.2227 1.3537 1.5001 1.6636 1.8461 2.0492 2.2747 2.5243 2.7998 0.0154 

 
Table (3) Approximate solution of example (3) 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
L.S.E 

Exact 2.000 2.1000 2.2000 2.3000 2.4000 2.5000 2.6000 2.7000 2.8000 2.9000 3.000 

u3(x) 2.000 2.1000 2.2000 2.3000 2.4000 2.5000 2.6000 2.7000 2.8000 2.9000 3.000 0.0000 
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