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Abstract:  
 This work, introduces some concepts in bitopological spaces, which are nm-j-ω-converges to a 

subset, nm-j-ω-directed toward a set, nm-j-ω-closed mappings, nm-j-ω-rigid set, and nm-j-ω-continuous 

mappings. The mainline idea in this paper is nm-j-ω-perfect mappings in bitopological spaces such that n = 

1,2  and m =1,2 n ≠ m. Characterizations concerning these concepts and several theorems are studied, where j 

=  , δ,  , pre, b, . 

 

Key words: Filter base, nm-j-ω-converges, nm-j-ω-closed mappings,  j-ω-rigid a set, nm-j-ω-perfect 

mappings. 

 

Introduction and Preliminaries: 
 In 1963 Kelly J. C. (1) introduced the 

definition, a set G with two topologies σ1 and σ2 is 

said to be bitopological space and denoted by (G, 

σ1, σ2) and a subset K ⊆ G.  The closure and interior 

of K in (G, σn) is denoted by σn–cl(K) and σn–int(K), 

where n = 1, 2. A topological space (G, σ) and a 

point g in G is said to be condensation point of K ⊆ 

G if every open neighborhood S in σ with g  S, the 

set K ∩ S is uncountable )2). In 1982 the ω-closed 

set was first exhibited by H. Z. Hdeib in (3) defined 

it as a subset K ⊆ G is called ω-closed if it 

incorporates each its condensation points, and the 

ω-open set is the complement of the ω-closed set 

and the ω-closed of the set K ⊆ G denoted by 

cl𝜔(K). The ω-interior of the set K ⊆ G is defined 

as the union of all ω-open sets content in K and is 

denoted by int𝜔(K). In (4) a point g  G is said to 

θ-cluster points of K ⊆ G if cl(S) ∩ K ≠ φ for each 

open set S of G contained g.Al so in (4) the set of 

each θ-cluster points of K is called the θ-closure of 

K and is denoted by  cl𝜃(K). A subset K ⊆ G is 

called θ-closed (4) if K =  cl𝜃(K). The complement 

of θ-closed set is said to be θ-open. A point g  G is 

said to θ-ω-cluster points of K ⊆ G if cl𝜔(S) ∩ K ≠ 

φ for each ω-open set S of G containing g. The set 

of each θ-ω-cluster points of K is called the θ-ω-

closure of K and is denoted by  cl𝜃
𝜔(𝐾). A subset K 

⊆ G is called θ-ω-closed (4) if K =  cl𝜃
𝜔(𝐾). The 

complement of θ-ω-closed set is said to be θ-ω-

open. A subset K ⊆ G is said to be δ-closed (5) if K 

= cl𝛿(K) = {g  G : int(cl(S)) ∩ K ≠ φ, S  τ and g 

 S}. The complement of δ-closed is called δ-open 

set, and K is δ-ω-closed if K = cl𝛿
𝜔(𝐾) = {g  G : 

int𝜔(cl(S)) ∩ K ≠ φ, S  τ and g  S}. For other 

notions or notations not defined here, R. Englking 

(6) should be followed closely. Several 

characterizations of ω-closed sets were provided in 

(4, 5, 8, 9, and 10). Some of the results in (11), (12), 

(13), (14) and (15) will be bult. 

 

Definition 1. (1) A nonempty family  of 

nonempty subsets of G is called filter base if M1, M2  

  then M3  M1 ∩ M2 for some M3  . 

 The filter generated by a filter base  consists 

of all supersets of elements of . An open filter 

base on a space G is a filter base with open 

members. 

 The set g of all neighborhoods (nbds) of g 

 G is a filter on G, and any nbd base at g is a filter 

base for g. This filter called the nbd filter at g. 

 

Definition 2. (1) Let  and be filter bases on G. 

Thenis called finer than  (written as  < ) if 

for all M  , there is G , G  M also, that  

meets G if M ∩ G   for all M   also, G . 

Notice,   g iff g < . 

 

Definition 3. (7) A subset K of a space G is called:
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(a) -ω-open if K  int𝜔(cl(int𝜔(K))). 

(b) pre-ω-open if K  int𝜔(cl(K)). 

(c) b-ω-open if K  cl(int𝜔(K))  int𝜔(cl(K)). 

(d) -ω-open if K  cl(int𝜔(cl(K))). 

The complement of an -ω-open (resp., pre-ω-

open, b-ω-open, -ω-open) is called (resp. -ω-

closed (resp., pre-ω-closed, b-ω-closed, -ω-

closed). 

The j-ω-closure of K  G is denoted by  cl𝑗
𝜔(K) and 

defined by  cl𝑗
𝜔(K) = ∩{M  G; M is j-ω-closed and 

K  M}, where j = , δ,  , pre, b, . 

 

Filter Bases and nm-j-ω-Perfect Mappings in 

Bitopological Spaces 

 This section, defines filter bases and nm-j-

ω-converges to a subset, nm-j-ω-directed toward a 

set, nm-j-ω-closed mapping, j-ω-continuous 

mappings, j-ω-rigid a set, and used to obtain 

characterization theorem for an nm-j-ω-perfect 

mappings in bitopological spaces. 

 

Definition 4.  A point g in bitopological space (G, 

σ1, σ2) is said to be nm-j-ω-condensation point of a 

subset  K of G iff for any σn–open nbd S of g, 

( cl𝑗
𝜔(S)) ∩ K ≠ φ. The set of all nm-j-ω-

condensation point of K is called nm-j-ω-closure of 

K and means by nm ω- cl𝑗
𝜔(K). A set K ⊆ G   is said 

to be nm-j-ω-closed if K = nm-ω- cl𝑗
𝜔(K), where j = 

 , δ,  , pre, b, . 

 

Definition 5.  A point g in a bitopological space (G, 

σ1, σ2) is said to be nm-j-ω-condensation point of a 

filter base   on K if it is an nm-j-ω-condensation 

point of every number of . The set of all nm-j-ω-

condensation point of  is called nm-j-ω-condensed 

of  and means by nm-j-ω-cod, where j =  , δ,  

, pre, b, . 

 

Definition 6.  A filter base  on a bitopological 

space (G, σ1, σ2) is called nm-j-ω-converges to a 

subset K  G (written as nm-j-ω  K) if for each 

σn–open cover K of K, yond is a finite subfamily L 

 K  and M   such that M  { σn– cl𝑗
𝜔(L) : L  

L }.  nm-j-ω-converges to a point g  G (written 

as nm- j-ω g) iff nm- j-ω  {g}, or 

equivalently, σn- cl𝑗
𝜔(S) of every σm–open nbd S of g 

contains some member of , where j =  , δ,  , pre, 

b, . 

 

Theorem 1. In a bitopological space (G, σ1, σ2) a 

point g is an nm-j-ω-condensation of a filter base  

on G if there subsistent a filter base * finer  than  

such that *nm- j-ω g, where j =  , δ,  , pre, b, 

. 

Proof: () Let g be an nm-j-ω-condensation point 

of a filter base  on G, then every  σn –open nbd S 

of g, the j-ω-closure of S contains a member of  

and thus contains a member of any filter base * 

minutes than , so that * nm- j-ω g. 

() Assume that g is not an nm-j-ω-condensation 

point of a filter base  on G, then there subsistent 

an σn–open nbd S of g, such that j-ω-closure of S 

contains no member of , denote by * the family 

of sets M* = M  ∩ (G – ( cl𝑗
𝜔(S)) for M  , then 

the sets M* are nonempty. And * is a filter base 

and indeed it is minute than , since M1* = M1 ∩ (G 

  cl𝑗
𝜔(S)) and M2* = M2 ∩ (G   cl𝑗

𝜔(S)), so there is 

an M3  M1 ∩ M2 and this lead to: 

M3* = M3 ∩ (G  ( cl𝑗
𝜔(S))  M1 ∩ M2 ∩ (G  

( cl𝑗
𝜔(S))  

= M1 ∩ (G  ( cl𝑗
𝜔(S)) ∩ M2 ∩ (G  ( cl𝑗

𝜔(S)). 

By construction * not nm-j-ω-convergent to g. 

This contradiction, and thus g is an nm-j-ω-

condensation point of a filter base  on G. 

 

Definition 7.  A filter base  on a bitopological 

space (G, σ1, σ2) is said to be nm-j-ω- directed 

toward to a set K  G (written as nm-j-ω-dir-tow 
 K) if for each filter base  finer   has an nm-j-

ω-condensation point in K.  i.e (nm- j-ω-cod) ∩ 

K φ. nm-j-ω-dir-tow  g used to mean nm-j-ω-

dir-tow  {g} , where g  G,  and  j =  , δ,  , pre, 

b, .   

 

Theorem 2.  Let  be a filter base on a 

bitopological space (G, σ1, σ2) and point g  G , 

then  nm- j-ω g if and only if nm-j-ω-dir-tow 
 g, where j =  , δ,  , pre, b, . 

Proof: () Clear. 

() Assume that  is not an nm-j-ω-converge to g, 

there exists an σn–open nbd S of g, such that M   

 cl𝑗
𝜔(S), for all M  . Then  = {(M ∩ (G  (σn –

 cl𝑗
𝜔(S)): M } is a filter base on G finer than , 

and conspicuously g  nm-j-ω-cod. So  cannot 

be nm- j-ω- directed towards g. 

 

Definition 8.  A mapping  : (G, σ1, σ2)   (H , 1, 

2) is said to be nm-j-ω-perfect if for every filter 

base  on (G),  nm-j-ω-directed towards some 

subset L of (G),  the filter base −1() is nm-j-ω-

directed towards −1(L) in G, where j =  , δ,  , 

pre, b, . 
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Theorem 4. Let  : (G, σ1, σ2)  (H , 1, 2) be a 

mapping. Then the following are equivalent: 

(a)  is nm-j-ω-perfect. 

(b) For every filter base  on (G), which is nm- j-

ω-convergent to a point h in H, −1()nm-j-ω-dir-

tow  −1(h). 

(c) For any filter base  on G, nm-j-ω-cod ()  

(nm- j-ω-cod ), where j =  , δ,  , pre, b, .   

Proof: (a)  (b) Proof by Theorem (2). 

(b)  (c) Let h  nm- j-ω-cod (). By Theorem 

(1), there is a filter base  in (G) finer than (), 

 nm-j-ω  h. Let  = {−1(G) ∩ M  : G  and 

M  }. Then  is a filter base on G finer than 

−1(). Since  nm-j-ω-dir-tow  h, and by 

Theorem (2) and  is nm- j-ω-perfect, −1() nm-j-
ω-dir-tow  −1(h).  Being finer than −1(), 

then −1(h) ∩ (nm- j-ω-cod )  . It is then clear 

that −1(h) ∩ (nm- j-ω-cod )  . Then, h (nm- 

j-ω-cod ).  

(c)  (a) Suppose  be a filter base on (G), it is 

nm-j-ω-directed towards some subset L of (G). Let 

 be a filter base on G finer than −1(). Hence, 

() is a filter base on (G) finer than  and so L 

∩ (nm- j-ω-cod ())  . Then by (c) L ∩  (nm-

j-ω-cod ))  , so that −1(L) ∩ (nm-j-ω-cod ) 

 . Then, −1() is nm-j-ω-directed towards −1(L) 

. Thus,  is nm-j-ω-perfect. 

 

Definition 9. A mapping  : (G, σ1, σ2)  (H, 1, 2) 

is said to be nm-j-ω-closed if the image of every 

nm-j-ω-closed set in G  is nm-j-ω-closed in H, 

where j =  , δ,  , pre, b, .   

 

Theorem 5. A mapping  : (G, σ1, σ2)  (H, 1, 2) 

is  nm-j-ω-closed if  nm-ω- cl𝑗
𝜔 (K)  ( nm-ω-

 cl𝑗
𝜔(K)), for n, m= 1and 2 such that (n  m), and for 

every K   G, where j =  , δ,  , pre, b, . 

Proof: Straightforward. 

 

Theorem 6.  The nm-j-ω-perfect mapping  : (G, 

σ1, σ2)  (H, 1, 2) is nm-j-ω-closed, where j =  , 

δ,  , pre, b, . 

Proof: Follow from Theorem (5) and Theorem (3) 

(a)  (c) taking  = {K}. 

 

Definition 10. A subset K of  bitopological space 

(G, σ1, σ2) is said to be nm-Supra-ω-rigid (written as 

nm-j-ω-rigid ) in G  if for every filter base  on G 

with  (nm-j-ω-cod ) ∩ K = , there is S  σn and 

M  ,  such that K  S and  cl𝑗
𝜔(S) ∩ M = . or 

equivalent, if for every filter base  on G whenever, 

K ∩ (nm-j-ω-cod ) = , then for some M   , K 

∩ (nm-ω- cl𝑗
𝜔(M)) = , where j =  , δ,  , pre, b, . 

 

Theorem 7. If a mapping  : (G, σ1, σ2)  (H, 1, 

2) is  nm-j-ω-closed such that for every h  H, 

−1(h) is nm-j-ω-rigid in G, then  is nm- j-ω-

perfect, where j =  , δ,  , pre, b, . 

Proof: Assume that  be a filter base on  (G) such 

that  nm-j-ω  h in H, for some h  H. If  is a 

filter base on G finer than the filter base on −1(). 

Thus () is a filter base H, finer than . Since 

nm-j-ω-dir-tow  g, by Theorem (1), h  nm- j-

ω-cod(), i.e., h  ∩{nm-ω- cl𝑗
𝜔(G): G } 

and h  ∩{(nm-ω- cl𝑗
𝜔(G)): G } by Theorem 

(5), since  is  nm- j-ω-closed. Then −1(h) ∩ nm-

ω- cl𝑗
𝜔(G)  , for all G .  Hence for all S  σn 

with −1(h)  S,   cl𝑗
𝜔(S) ∩ G   , for all G .  

Since −1(h) is nm- j-ω-rigid, it then that −1(h) ∩ 

(nm- j-ω-cod )  . Then −1()nm-j-ω-dir-tow 
  −1(h), and by Theorem (4 (b)  (a) ). Thus  is 

nm-j-ω-perfect. 

 

Definition 11. A mapping  : (G, σ1, σ2)  (H, 1, 

2) is  said to  be nm-Supra-ω-continuous (written as 

nm-j-ω-continuous) if for  any n-open nbd T of 

(g), there exists a σn- open nbd S of g, ( cl𝑗
𝜔(S))  

m- cl𝑗
𝜔(T) , where j =  , δ,  , pre, b, . 

 

Definition 12. A mapping  : (G, σ1, σ2)  (H, 1, 

2) is  said to  be weakly nm- j-ω-continuous if for  

any n-open nbd T of (g), there exists a σn-open 

nbd S of g such that (S)  m- cl𝑗
𝜔(T), where j =  , 

δ,  , pre, b, . 

 

Definition 13. A mapping  : (G, σ1, σ2)  (H, 1, 

2) is  said to  be strongly nm-j-ω-continuous if for  

any n-open nbd T of (g), there exists a σn- open 

nbd S of g, ( cl𝑗
𝜔(S))  T , where j =  , δ,  , pre, 

b, . 

 

Definition 14. A mapping  : (G, σ1, σ2)  (H, 1, 

2) is  said to  be super nm-j-ω-continuous if for any 

n-open nbd T of (g), there exists a σn-open nbd S 

of g, ( int 𝑗
 𝜔( cl𝑗

𝜔(S))  m- cl𝑗
𝜔(T), for n, m = 1and 

2 such that (n  m), where j =  , δ,  , pre, b, . 

 

Definition 15. A mapping  : (G, σ1, σ2)  (H, 1, 

2) is  said to  be almost nm-j-ω-continuous if for  

any n-open nbd T of (g), there exists a σn-open 

nbd S of g, (S)  (m-int 𝑗
 𝜔( cl𝑗

𝜔(T)) , for n, m = 
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1and 2 such that (n  m), where j =  , δ,  , pre, b, 

. 

 

The relation between weakly and strongly nm-j-ω-

continuous mappings are given by the following 

 
Strongly 

nm- j-ω- 

continuous 

mapping 

 nm- j-ω- 

continuous 

mapping 

 Weakly 

nm-j-ω- 

continuous 

mapping 

     

Super 

nm- j-ω- 

continuous 

mapping 

 almost nm- j-

ω- continuous 

mapping 

  

Figure 1. The relation between weakly and 

strongly nm-j-ω-continuous mappings, where j = 

, δ, α, pre, b, β. 

 

In the higher figure the converses not be true such 

that the demonstrated by the following examples:  

 

Example 1. Let A be the upper half of the plane and 

B be the x-axis. Let G = A ∪ B. If τhdis be the half 

disc topology on G and τr be the relative topology 

that G inherits by virtue of being a subspace of 2. 

The identity mapping  : (G, τr)   (G, τhdis) . Then, 

 is weakly nm- j-ω-continuous mapping but it is 

not nm- j-ω-continuous mapping.  

 

Example 2. Let  :(G, σ1, σ2)  (G, 1 , 2 ) be a 

mapping such that G = {u,v, w}, and σ1 =  {G , φ}, 

σ2 = {G, φ,{u, v}} and  1 = {G , φ}, 2  ={G, φ, 

{w}}.  Such that   (u) =  (v) = (w) = u. Then  

is almost nm-j-ω-continuous mapping but it is not 

nm- j-ω-continuous mapping. 

 

Example 3.  Let  : (, τ)  (, τ) be a mapping.  

Define by (g) = g, and let (, τ) where τ is the 

topology with basis whose members are of the form 

(a, b) and (a, b) -  such that   = {1/n; n   +}. 

Then (, τ) is Hausdorff but is not ω-regular. Then 

 is nm-j-ω-continuous mapping but is not strongly 

nm- j-ω-continuous mapping. 

 

Example 4. Let  : (G, σ1, σ2) → (G, σ1, σ2) be 

identity mapping, such that G = {u, v, w} and  σ1 = 

{G, φ, {u , v}}, σ2 = {φ, G, {u}, {v}, {u, v}}. Then 

 is super nm- j-ω-continuous mapping but it is not 

strongly nm- j-ω-continuous mapping. 

 

Theorem 8. If an nm- j-ω-continuous mapping  : 

(G, σ1, σ2)  (H, 1, 2) is  nm- j-ω- perfect , then:  

(a)  is nm-j-ω- closed. 

(b) For every h  H, −1(h) is nm-j-ω-rigid in G, 

where j =  , δ,  , pre, b, .  

Proof: (a) By Theorem (6)  an nm- j-ω- perfect 

mapping is nm- j-ω- closed. 

(b) To prove −1(h) is nm- j-ω-rigid, let h  H, and 

assume that   be a filter base on G such that (nm- 

j-ω-cod ) ∩ −1(h) = . Then h   (nm- j-ω-cod 

), since  is nm- j-ω-perfect, by Theorem (3 (a)  

(c) ). Then,  h  (nm- j-ω-cod ()), so there exists 

an M   such that h  nm -ω-cl𝑗
𝜔(M), yond 

exists an n-open nbd T of h also, m- cl𝑗
𝜔(T) ∩ (M) 

= , since  is nm- j-ω-continuous, for every g  

−1(h), then  σn-open nbd Sg of g such that 

( cl𝑗
𝜔(Sg))  m- cl𝑗

𝜔(T)  H-(M). Then ( cl𝑗
𝜔(Sg)) 

∩ (M) = , so that  cl𝑗
𝜔(Sg) ∩ M = , then g  nm-

ω-cl𝑗
𝜔(M), for every g  −1(h), then −1(h) ∩ (nm-

ω-cl𝑗
𝜔(M)) = , so  −1(h) is nm- j-ω-rigid in G, 

where j =  , δ,  , pre, b. 

 

Corollary 1. An nm-j-ω-continuous mapping  : 

(G, σ1, σ2)  (H, 1, 2) is  nm-j-ω-perfect if  is 

nm- j-ω- closed and for every h  H, −1(h) is nm-j-

ω-rigid in G, where j =  , δ,  , pre, b, . 

 

 The results show that thereupon the higher 

theorem remainders aright if nm- j-ω-closeness of  

is replaced by a stringently enfeeble condition 

which will be called as a  weak nm- j-ω-closeness 

and strong nm- j-ω-closeness of . Thus, these will 

be predefined as follows: 

 

Definition 16. A mapping  : (G, σ1, σ2)  (H, 1, 

2) is called weakly nm- j-ω-closed if for every h  

(G), and each σn-open set S containing −1(h) in G, 

there exists a m-open nbd T of h, −1(m- cl𝑗
𝜔(T) ) 

 cl𝑗
𝜔(S), for n, m = 1and 2 such that (n  m), where 

j =  , δ,  , pre, b, . 

 

Definition 17. A mapping  : (G, σ1, σ2)  (H, 1, 

2) is said to be strongly nm- j-ω-closed if for each h 

 (G), and each σn-open set S containing −1(h) in 

G, there exists a m-open nbd T of  h, −1(m- cl𝑗
𝜔(T) 

)  (S), for n, m = 1and 2 such that (n  m), where j 

=  , δ,  , pre, b, .  

 

The relation between weakly and strongly nm-j-ω-

closed mappings are given by the following figure: 

       

Strongly nm- j-ω-closed         nm- j-ω-closed          

weakly nm- j-ω-closed 

Figure 2. The relation between weakly and 

strongly nm-j-ω-continuous mappings, where j = 

 , δ,  , pre, b, . 
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Theorem 9. An nm-j-ω-closed mapping  : (G, σ1, 

σ2)  (H, 1, 2) is weakly nm- j-ω-closed, where j 

=  , δ,  , pre, b, .  

Proof: Assume that h  (G) also, let S be a σn-

open set containing −1(h) in G , by Theorem (5) 

and  is nm- j-ω-closed mapping, then nm-ω-cl𝑗
𝜔( 

G – cl𝑗
𝜔(S))  [ (σn – cl𝑗

𝜔(G – cl𝑗
𝜔(S)]. Since h  

[(σn – cl𝑗
𝜔(G – cl𝑗

𝜔(S)], and h  nm-ω-cl𝑗
𝜔( G –

 cl𝑗
𝜔(S)). Thus, there exists an n-open nbd T of h in 

H, n- cl𝑗
𝜔(T) ∩ ( G – cl𝑗

𝜔(S)) = , then −1(m-

 cl𝑗
𝜔(T) ) ∩ ( G-  cl𝑗

𝜔(S)) = ,  i.e  −1(m- cl𝑗
𝜔(T) ) 

  cl𝑗
𝜔(S), then  is weakly nm- j-ω-closed. 

 

 The inversion of the Theorem (9) is not be 

right, it will be shown by next example: 

 

Example 5. Let  : (G, σ1, σ2)  (H, 1, 2) be a 

constant mapping and σ1, σ2 and  1, 2 be any 

topology, then   is weakly nm- j-ω-closed for n, 

m= 1and 2 such that (n  m), let G = H = . If 1 or 

2 is discrete topology on H, then   : (G, σ1, σ2)  

(H, 1, 2) given by (g) = 0, for every g  G, is 

neither 12- j-ω-closed nor 21- j-ω-closed, regardless 

of the topologies σ1 , σ2 also, 2 (or 1), where j =  , 

δ,  , pre, b, .  

 

Theorem 10. An strongly nm-j-ω-closed mapping  

: (G, σ1, σ2)  (H, 1, 2) is nm- j-ω-closed, where j 

=  , δ,  , pre, b, .  

 

Theorem 11. If an nm-j-ω-continuous mapping  : 

(G, σ1, σ2)  (H, 1, 2) is nm-j-ω-perfect, then:  

(a)  is strongly nm-j-ω-closed. 

(b) for every h  H, −1(h) is nm-j-ω-rigid in G, 

where j =  , δ,  , pre, b, .  

 

Theorem 12. Let  : (G, σ1, σ2)  (H, 1, 2) be  

nm-j-ω-continuous mapping. Then  is nm-j-ω- 

perfect, if: 

(a)  is weakly nm- j-ω- closed. 

(b) for every h  H, −1(h) is nm-j-ω-rigid in G, 

where j =  , δ,  , pre, b, .  

Proof: Assume that  is nm-j-ω-continuous 

mapping then satisfying the condition for (a) and 

(b). To show that   is nm-j-ω-perfect, Theorem (7) 

show that  is nm-j-ω-closed, let h  nm-j-ω- cl𝑗
𝜔 

(K), for some non- null subset K of G. However h  

(nm-ω-cl𝑗
𝜔(K)), so L ={K} is a filter base on G, 

also (nm- j-ω- cod L ) ∩ −1(h) = , by nm-j-ω-

rigidity of −1(h). There is σn-open set S containing 

−1(h)  such that cl𝑗
𝜔(S) ∩ K = , and by a mapping 

 is weakly nm- j-ω-closed, there exists an n-open 

nbd T of h, such that  −1(m- cl𝑗
𝜔(T) )   cl𝑗

𝜔(S). 

Then −1(m- cl𝑗
𝜔(T) ) ∩  K = , i.e (m- cl𝑗

𝜔(T)) ∩  

(K) = , this is impossible because that h  nm-ω-

 cl𝑗
𝜔 (K). So h   (nm- j-ω- cl𝑗

𝜔(K)). Then  is 

nm-j-ω-closed. 

 

Study on some Types of j-ω-perfect Mappings in 

Bitopological Spaces. 

 In this section,  nm-j-ω-perfect mappings 

are given and used the definitions of 

characterizations theorems for an nm-j-ω-

continuous mapping and weakly nm-j-ω-continuous 

mapping and strongly nm-j-ω-continuous mapping 

and super nm-j-ω-continuous mapping and almost 

nm-j-ω-continuous mapping are indicated to this 

end, and n ,m = 1, 2  where j =  , δ,  , pre, b, . 

 

Theorem 13. A mapping   : (G, σ1, σ2)  (H, 1, 

2) is nm-j-ω-continuous if ( nm-ω-cl𝑗
𝜔(K))  nm-

ω-cl𝑗
𝜔(K), for n, m= 1and 2 such that (n  m), and 

for every  K  G, where j =  , δ,  , pre, b, . 

Proof: () Assume that h  nm-ω-cl𝑗
𝜔(K) and T is 

n- open nbd of (g). Because of  is nm-j-ω- 

continuous, there exists a σn-open nbd S of g such 

that (cl𝑗
𝜔(S))  m -cl𝑗

𝜔(T). Since, cl𝑗
𝜔(S) ∩  K  , 

then m -cl𝑗
𝜔(T) ∩ (K)  . Thus, (g)  nm-ω-

cl𝑗
𝜔 (K). This shows that (nm-ω-cl𝑗

𝜔(K))  nm-ω-

cl𝑗
𝜔(K) for n, m = 1and 2 such that (n  m) 

() Clear. 

 

Theorem 14. A mapping   : (G, σ1, σ2)  (H, 1, 

2) is  weakly nm-j-ω-continuous if ( nm-ω-(K))  

nm-ω-cl𝑗
𝜔(K), for n, m = 1and 2 such that (n  m), 

and for every  K  G, where j =  , δ,  , pre, b, . 

 

Theorem 15. A mapping   : (G, σ1, σ2)  (H, 1, 

2) is strongly nm-j-ω- continuous  if ( nm-ω-

cl𝑗
𝜔(K))  nm-ω-(K), for n, m = 1and 2 such that 

(n  m), and for every  K  G, where j =  , δ,  , 

pre, b, . 

 

Theorem 16. A mapping   : (G, σ1, σ2)  (H, 1, 

2) is super nm-j-ω-continuous  if ( nm-ω-int-

cl𝑗
𝜔(K))  nm-ω-cl𝑗

𝜔(K), for n, m = 1and 2 such 

that (n  m), for every  K  G, where j =  , δ,  , 

pre, b, . 

 

Theorem 17. A mapping   : (G, σ1, σ2)  (H, 1, 

2) is  almost nm-ω-continuous  if ( nm-ω- (K))  

nm-ω-int-cl𝑗
𝜔(K), for n, m = 1and 2 such that (n  

m), and for every  K  G, where j =  , δ,  , pre, b, 

. 
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Theorem 18. A mapping   : (G, σ1, σ2)  (H, 1, 

2) be nm-j-ω-continuous and nm- j-ω-perfect, Then 

−1 preserves  nm-j-ω-rigidity, where j =  , δ,  , 

pre, b, . 

Proof:  Assume that L be an nm- j-ω-rigid set in H 

and suppose  be a filter base on G, then −1
(L) ∩ 

(nm- j-ω-cod ) = , since  is nm- j-ω-perfect and 

L ∩ ( nm- j-ω-cod ) = . By Theorem (3 (a)  

(c) ) then  L ∩ ( nm- j-ω-cod()) = , now L being 

an nm- j-ω-rigid set in H , there exists an M  

such that L ∩ ( nm-ω-cl𝑗
𝜔(M)) = , since  is nm- 

j-ω-continuous, by Theorem (14) it follows that  L 

∩  ( nm-ω-cl𝑗
𝜔(M)) = . Then −1(L) ∩ ( nm-ω-

cl𝑗
𝜔(M)) = . This proves that −1(L) is nm- j-ω-

rigid. 

 

Definition 18. A subset K of a bitopological space 

(G, σ1, σ2) is said to be  nm-j-ω-set in G if for every 

σn-open cover K  of  K, there is a finite sub 

collection L of  K  such that K   { cl𝑗
𝜔(S): L L}, 

where j =  , δ,  , pre, b, .  

 

Theorem 19. Let (G, σ1 , σ2 )  be a bitopological 

space, and  a subset K of space for every filter base 

 on K such that (nm-j-ω-cod ) ∩  K   , is an 

nm-j-ω-set, where j =  , δ,  , pre, b, . 

Proof: Let K be an σn-open cover of K, σm- j-ω-

closed of union of any finite subcollection of K is 

not cover K. So  = { K   cl𝑗
𝜔 

g( L (S L)): L is finite 

subcollection of K } is a filter base on K  and  (nm-j-

ω-cod ) ∩ K = , this contradiction yield that K is 

an nm- j-ω-set. 

 

Theorem 20. If  : (G, σ1, σ2)  (H, 1, 2) is nm-j-

ω-perfect, and L  H is nm- j-ω-set in H, then 

−1(L) is an nm- j-ω-set in G, for n, m = 1and 2 such 

that (n  m), and where j =  , δ,  , pre, b, . 

Proof: Assume that  be a filter base on −1(L), 

then () is a filter base on L. Because L is an nm- 

j-ω-set in H, such that L ∩ nm- j-ω-cod ()  , by 

Theorem (12). By Theorem (3 (a)  (c) ), L ∩ 

(nm- j-ω-cod )  , so −1(L) ∩ nm- j-ω-cod () 

 . Therefore by Theorem (12), −1(L) is an nm- j-

ω-set in G. 

 

The inversion of the Theorem (20) is not right, as 

shown by the example following: 

 

Example 6. Let  : (G, σ1, σ2)  (H, 1, 2) be an 

identity mapping and σ1, σ2 be the cofinite and 

discrete topologies respectively on G, and  1 , 2 

respectively denote the indiscrete and usual 

topologies on  H  such that G = H = ,then  every 

subset of either of (G, σ1, σ2)  and (H, 1, 2)  is a 12- 

j-ω-set. Now , any nonvoid finite set K  G is 12- j-

ω-closed in G, but (K) (i.e K ) is not 12-j-ω-closed 

in H, (in fact, the only 12- j-ω-closed subset of H 

are H and  ), where j =  , δ,  , pre, b, .  

 

The Theorem (20) and the above Example (6) 

allude the definition of a strictly weaker 

transcription of nm-j-ω- perfect mapping as given 

below. 

 

Definition 19. A mapping  : (G, σ1, σ2)  (H, 1, 

2) is said to almost nm-j-ω-perfect if for every nm-

j-ω-set K in H, −1(K) is nm-j-ω-set in G, where j = 

 , δ,  , pre, b, . 

 

By analogy to Theorem (20), amplest condition for 

a mapping to be almost nm-j-ω-perfect, is prove as 

follows. 

 

Theorem 21. Let   : (G, σ1, σ2)  (H, 1, 2) be 

any mapping such that 

(a) −1(h) is nm-j-ω-rigid in G, such that for every h 

 H  

(b)  is weakly nm- j-ω- closed. 

Then  is almost nm- j-ω-perfect, where j =  , δ,  

, pre, b, . 

Proof: Assume that L be an nm-j-ω-set in H and let 

that  be a filter base on −1(L), then () is a filter 

base on L. Also, by Theorem (20), (nm-j-ω-cod ) 

∩ L  , let h  [(nm- j-ω-cod )] ∩ L. Assume that 

 has no nm- j-ω-condensation point in −1(L), then 

(nm- j-ω-cod ) ∩ −1(h) = . Because of −1(h) is 

nm- j-ω-rigid in G, there exists an M  and a σn-

open S containing −1(h), such that M ∩ σn- cl𝑗
𝜔(S) = 

. By  is weakly nm- j-ω- closed, then there is a m 

–open nbd T of h, −1(m −cl𝑗
𝜔(T))   σn- cl𝑗

𝜔(S). 

Therefore which implies that −1(m −cl𝑗
𝜔(T)) ∩ M 

= , i.e., m - cl𝑗
𝜔(T) ∩ (M) = , which is a 

contradiction . Therefore by Theorem (20), −1(L) is 

an nm- j-ω-set in G. So  is almost nm-j-ω-perfect. 

 

Conclusion. 
 The main purpose of the present work is the 

starting point for some application of pairwise 

supra-ω-perfect mappings of abstract topological 

structures in filter base by using bitopological 

spaces. Definitions of characterizations theorems 

are used for an nm- j-ω-continuous mapping and 

weakly nm- j-ω-continuous mapping and strongly 

nm- j-ω-continuous mapping and super nm- j-ω-

continuous mapping and almost nm- j-ω-continuous 

mapping. 
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 بعض انواع التطبيقات في الفضاءات التبولوجية الثنائية
 

 يوسف يعكوب يوسف                    غيداء سعدون أشعيع

 
 قسم الرياضيات, كلية التربية للعلوم الصرفة )ابن الهيثم(, جامعة بغداد, بغداد, العراق

 

 :الخلاصة  
, الاتجاه  nm-j-ωقدمنا بعض المفاهيم في الفضاءات التبولوجية الثنائية وهي الاقتراب من المجموعة الجزئية من النمط  

,  nm- j-ω, صلابة المجموعة من النمط  nm- j-ω, التطبيقات المغلقة من النمط  nm- j-ωالمباشر لمجموعة من النمط 

في الفضاءات  nm- j-ω, والخط الرئيسي لهذا البحث هو التطبيقات التامة من النمط  nm- j-ωالتطبيقات المستمرة من النمط 

 .j =  , δ,  , pre, b, التبولوجية الثنائية. المميزات المتعلقة بهذه المفاهيم والعديد من المبرهنات قد درسنا حيث 

 
مجموعة صلبة  , nm-j-ωمن النمط التطبيقات المغلقة  , nm-j-ωمن النمط المرشحات الاساسية , التقارب  الكلمات المفتاحية :

 .nm-j-ωمن النمط التطبيقات التامة  , j-ωمن النمط 

 


