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ABSTRACT: The goal of this paper is to construct new fourth-degree hat functions (FDHFs) and study their
properties in order to develop a new numerical method for solving fractional integro-differential equations. The
equation under consideration is transformed into a set of algebraic equations by using FDHFs, which makes it
simple to solve the system using one of the iterative methods. In fact, this method’s advantage was that it was
easy to use and had fifth-order convergence, as we showed in the section on error analysis. The numerical results
demonstrate that the new technique works well through the presented examples.
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1. INTRODUCTION
In fractional calculus, the notion of derivatives and integrals is generalized to any real and even complex order. The

concept of fractional computation arose in 1695 when G.W Leibniz suggested that there was a possibility of fractional
differentiation of the order [1]. Many standard properties are broken by fractional differential and integral operators,
including the standard product (Leibniz) rule, the standard chain rule, the semi-group property for orders of derivatives,
and the semi-group property for dynamic maps [2–9]. The violation of the Leibniz rule’s standard form is a characteristic
property of non-integer order derivatives [2]. On the other hand, long-term memory and non-local dynamics are two of
the most important applications of fractional derivatives and integrals of non-integer order.

Fractional calculus has a long and illustrious history that goes back more than 300 years. Nevertheless, for a long time,
it was regarded as a pure mathematical field that lacked real-world applications. In the last few decades, the subject of
fractional-order calculus has gotten a lot of attention because it allows you to represent a system more precisely without (or
with minimal) approximation. Furthermore, this approach is a good tool for analyzing fractional dimension systems with
long-term "memory" and chaotic behavior, and it is advantageous to model the behavior of a process in fractional-order
because the response will include many values that would otherwise be ignored by integer-order due to approximations.
As a result, fractional calculus has piqued the interest of scientists and engineers alike. For instance, fractional calculus
models have been found to be a useful tool for describing the mechanics of viscoelastic materials and anomalous particle
transport in groundwater. Signal processing, control of dynamic systems, wave propagation, medicine, economics, and
finance are some of the other applications of fractional calculus models [12–20].

The modeling of many phenomena in physics and engineering relies heavily on nonlinear differential equations (DEs)
and integro-differential equations (IDEs) [21–25]. Many researchers have given a lot of attention to fractional differential
equations, which are a generalization of classical differential equations [26–30]. Several studies have been conducted in
the last decade or so to develop numerical schemes to deal with fractional integro-differential equations (FIDEs), both
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linear and nonlinear. FIDEs were dealt with using numerical approximation methods like variational iteration technique
[31], homotopy perturbation method [32], Runge-Kutta convolution quadrature method [33], Adomian decomposition
method [34, 35], finite element method [36], and finite difference method [37]. In dealing with various problems of
dynamical systems, estimation methods based on polynomial series and orthogonal functions have attracted a lot of
attention. The main feature of using orthogonal functions is that they reduce dynamical system problems to those of
solving a system of algebraic equations using differentiation or integration operational matrices. Special attention has been
given to applications of the block pulse functions [38, 39], spline wavelets [40], Legendre wavelets [41, 42], Chebyshev
polynomials [43, 44], Walsh functions [45], and wavelet collocation method [46].

In addition, hat basis functions are a common and effective method for solving all kinds of differential and integral
equations by using a piecewise polynomial approximation. Hat basis functions consist of a set of piecewise continuous
functions with the shape of hats when plotted in two-dimensional planes. It is also well known that the generalized hat
functions (GHFs) are constructed by using first-degree polynomials (segment lines), the modified hat functions (MHFs)
are constructed by using second-degree polynomials, and the adjustment hat functions (AHFs) are constructed by using
third-degree polynomials. These functions have many advantages, including the fact that they are easily defined and
that the equation in question is converted into a system of algebraic equations that can be solved using these functions
without the need for integration. The unknown coefficients of the function’s approximation on this basis can also be easily
calculated, and the proposed numerical method’s computational cost is low. As a result, a number of researchers have used
hat basis functions to solve various types of FIDEs; for example, see [47–51]. The basic idea behind this research paper
is to extend hat basis functions to FDHFs for solving FIDEs. The numerical study of the following FIDE is the subject of
this paper:

cDαy(t) = ω(t)+
∫ t

0
K(t, s)Q(y(s))ds, t ∈ [0,T ], (1)

with the initial condition,

y(i)(0) = γi, i = 0,1,2, . . . ,r−1, (2)

where y(t) is the unknown function that must be approximated, ω(t) and K(t, s) are well-known and continuous on [0,T ],
the initial state of y(t) is described by the values of γi (i = 0,1,2, . . . ,r−1), and r is the highest integer order greater than
the fractional derivative, cDα is the Caputo fractional derivative of order α, 0 < α < 1.

The following is how the current article is structured: Section 2 introduces the definition and properties of FDHFs,
as well as some fundamental definitions of fractional calculus theory. Section 3 is dedicated to the integer-order and
fractional-order operational matrices that are computed. The proposed numerical method for solving the problem under
study is discussed in Section 4. Our proposed method’s error estimate is proven in Section 5. We present some numerical
examples and our numerical results to demonstrate the accuracy of the FDHFs in Section 6. Finally, a summary of this
research paper is given in Section 7.

2. FRACTIONAL CALCULUS
Fractional calculus is a branch of mathematics that studies the properties of integrals and derivatives with non-integer

orders of integration and differentiation (called fractional integrals and derivatives). The Riemann-Liouville and Caputo
definitions are the most widely used for fractional integrals and derivatives. This article is based on the Caputo definition
of fractional derivative because it is the only one that has the same form as integer-order differential equations in initial
conditions.

Now, the fractional integral of Riemann-Liouville and the Caputo derivative are defined as follows:

Definition 2.1. [52] Let y(t) be a continuous function with t > 0. The Riemann-Liouville fractional integral operator of
order α, α ≥ 0 of the function y(t) is defined as follows:

Jαt y(t) =
{ 1
Γ(α)

∫ t
0 (t− s)α−1y(s)ds, α > 0,

y(t), α = 0,
(3)

where Γ(·) is the fractional-order gamma function.

Definition 2.2. [53] Let y(t) be a continuous function with t > 0. The Caputo fractional derivative of order α > 0 of the
function y(t) is defined as follows:

cDαy(t) =
1

Γ(q−α)

∫ t

0
(t− s)q−α−1y(q)(s)ds, (4)
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where y(q)(s) = dqy(s)
dsq , q ∈ N, and q−1 < α ≤ q.

The following formula establishes the relationship between the Caputo fractional derivative and the Riemann-Liouville
fractional integral:

(cDαJαt y)(t) = y(t), (5)

Jαt
cDαy(t) = y(t)−

q−1∑
r=0

y(r)(0)
tr

r!
, q−1 < α ≤ q. (6)

3. FOURTH-DEGREE HAT FUNCTIONS AND THEIR PROPERTIES
In order to construct the FDHFs, assume that the interval Ω = [0,T ] is divided into n equidistant subintervals, and then

each of these subintervals must be divided again into four equidistant subintervals with a length equal to h, where h = T
4n

and n ∈ N. The FDHFs form a set of (4n+ 1) linearly independent functions in L2[0,T ]. These functions are defined as
follows:

ξ0(t) =


(t−h)(t−2h)(t−3h)(t−4h)

24h4 , 0 ≤ t ≤ 4h,

0, otherwise,
(7)

if k = 1,2, ...,n−1,

ξ4k(t) =



(t−(4k−1)h)(t−(4k−2)h)(t−(4k−3)h)(t−(4k−4)h)
24h4 , 4(k−1)h ≤ t ≤ 4kh,

(t−(4k+1)h)(t−(4k+2)h)(t−(4k+3)h)(t−(4k+4)h)
24h4 , 4kh ≤ t ≤ 4(k+1)h,

0, otherwise,

(8)

if k = 1,2, . . .n,

ξ4k−1 (t) =


−(t−4kh)(t−(4k−2)h)(t−(4k−3)h)(t−(4k−4)h)

6h4 , (4k−4)h ≤ t ≤ (4k)h,

0, otherwise,
(9)

ξ4k−2 (t) =


(t−4kh)(t−(4k−1)h)(t−(4k−3)h)(t−(4k−4)h)

4h4 , (4k−4)h ≤ t ≤ 4kh,

0, otherwise,
(10)

ξ4k−3 (t) =


(t−(4k−2)h)(t−(4k−1)h)(t−4kh)(t−(4k−4)h)

6h4 , (4k−4)h ≤ t ≤ 4kh,

0, otherwise,
(11)

and

ξ4n(t) =


(t−(T−h))(t−(T−2h))(t−(T−3h))(t−(T−4h))

24h4 , T −4h ≤ t ≤ T,

0, otherwise.
(12)

According to the definition (3), FDHFs have the following properties:

(i) According to the definition of FDHFs, there is a significant relation:

ξi( jh) =
{

1, i = j,
0, i , j, i, j = 0,1,2, . . . ,4n. (13)
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(ii) The total sum of FDHFs is one, implying:

4n∑
i=0

ξi(t) = 1. (14)

(iii) The functions ξ0(t), ξ1(t), . . . , ξ4n(t) are linearly independent for all t ∈ [0,T ].

(iv) Any function y(t) ∈ L2[0,T ] can be approximated in terms of FDHFs as:

y(t) ≈ y4n(t) =
4n∑
κ=0

yκξκ(t) = YTΞ(t) = ΞT (t)Y, (15)

where Ξ(t) = [ξ0(t), ξ1(t), ξ2(t), ..., ξ4n(t)]T, and Y = [y0,y1, ...,y4n]T.

The use of FDHFs to approximate a function y(t) is significant because the coefficients yκ in Eq.(15) are given by:

yκ = y(κh), κ = 0,1, . . . ,4n. (16)

(v) Any function K(t, s) ∈ L2([0,T ]× [0,T ]) can be approximated in terms of FDHFs as:

K(t, s) ≈ K4n(t, s) =
4n∑

r=0

4n∑
κ=0

Kκrξκ(t)ξr(s) = ΞT(t)DΞ(s) = ΞT(s)DTΞ(t), (17)

where,
Kκr(t, s) = L(κh,rh), ∀κ,r = 0,1,2, ...,4n.

Lemma 3.1. For any constant vector YT = [y0,y1, ...,y4n], we have

Ξ(t)ΞT(t)Y ≈ ỸΞ(t), (18)

where Ỹ(4n+1)×(4n+1) = diag(y0,y1, ...,y4n). Also, if B(4n+1)×(4n+1) be any constant matrix, we have

ΞT(t)BΞ(t) ≈ B̃TΞ(t) = ΞT(t)B̃, (19)

where B̃ is a (4n+1)-vector with components equal to the diagonal entries of the matrix B.

Example 3.1. To clarify the definition of FDHFs on the interval [0,1] and n = 2, one can see Fig.1, which shows the 9-set
of FDHFs. Also, one can note that all the above properties of FDHFs are satisfied.

4. OPERATIONAL MATRICES OF FDHFS
In this section, we derive an integer-order operational matrix, which is symbolized by P, as well as a fractional-order

operational matrix of integration, which is symbolized by Pα, for FDHFs in Theorems 4.1 and 4.2, respectively.
To construct an operational matrix P that satisfies ∫ t

0
Ξ(s)ds ≈ PΞ(t), (20)

where Ξ(t) = [ξ0(t), ξ1(t), . . . , ξ4n(t)]T . Now we are attempting to write
∫ t

0 ξκ(s)ds as a linear combination of the functions
ξ0(t), ξ1(t), . . . , ξ4n(t) as follows: ∫ t

0
ξκ(s)ds ≈

4n∑
r=0

Pκ,rξr(t), ∀κ = 0,1,2, . . . ,4n. (21)

The coefficients Pκ,r can be calculated as follows:

Pκ,r =
∫ rh

0
ξκ(s)ds, ∀r, κ = 0,1,2, . . . ,4n. (22)

As a direct consequence of this, we can state the following theorem:
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FIGURE 1. Plot of FDHFs with T = 1 and n = 2.

Theorem 4.1. The integration of Ξ(t) can be estimated as follows:

∫ t

0
Ξ(τ)dτ = PΞ(t), t ∈ [0,T ], (23)

where P(4n+1)×(4n+1) is the operational matrix given by:

P =
h

720



0 φ1 φ2 φ2 φ2 φ2 · · · φ2 φ2
φ3 φ4 φ5 φ6 φ6 φ6 · · · φ6 φ6
φ3 φ7 φ4 φ5 φ6 φ6 · · · φ6 φ6
φ3 φ7 φ7 φ4 φ5 φ6 · · · φ6 φ6
φ3 φ7 φ7 φ7 φ4 φ5 · · · φ6 φ6
φ3 φ7 φ7 φ7 φ7 φ4 · · · φ6 φ6
...

...
...

...
...

. . .
. . .

. . .
...

φ3 φ7 φ7 φ7 φ7 φ7 · · · φ4 φ5
φ3 φ7 φ7 φ7 φ7 φ7 · · · φ7 φ4


, (24)
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where

φ1 = (251,232,243,224) , φ2 = (224,224,224,224) , φ3 = (0,0,0,0)T,

φ4 =


646 992 918 1024
−264 192 648 384

106 32 378 1024
−19 −8 −27 224

 , φ5 =


1024 1024 1024 1024

384 384 384 384
1024 1024 1024 1024

475 456 467 448

 ,

φ6 =


1024 1024 1024 1024

384 384 384 384
1024 1024 1024 1024

448 448 448 448

 , φ7 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Theorem 4.2. Let Ξ(t) be the FDHFs vector, and α > 0. Then,

Jαt Ξ(t) =
1
Γ(α)

∫ t

0
(t− s)α−1Ξ(s)ds ≈ PαΞ(t), t ∈ [0,T ], (25)

where Pα is a matrix of dimension (4n+1)× (4n+1) called the operational matrix of fractional integration of order α of
the FDHFs which can be calculated in the following manner.

Pα =
1

αΓ(α)



0 ς0,1(h) ς0,2(h) ς0,3(h) ς0,4(h) ς0,4(h) . . . ς0,4(h)
γ1 γ2 γ3 γ4 γ4 γ4 . . . γ4
γ1 γ5 γ2 γ3 γ4 γ4 . . . γ4
γ1 γ5 γ5 γ2 γ3 γ4 . . . γ4
γ1 γ5 γ5 γ5 γ2 γ3 . . . γ4
γ1 γ5 γ5 γ5 γ5 γ2 . . . γ4
...

...
...

...
...

...
. . .

...
γ1 γ5 γ5 γ5 γ5 γ5 . . . γ2


, (26)

where

γ2 =


β4k−3,4k−3 β4k−3,4k−2 β4k−3,4k−1 β4k−3,4k
ϕ4k−2,4k−3 ϕ4k−2,4k−2 ϕ4k−2,4k−1 ϕ4k−2,4k
ρ4k−1,4k−3 ρ4k−1,4k−2 ρ4k−1,4k−1 ρ4k−1,4k
η4k,4k−3 η4k,4k−2 η4k,4k−1 η4k,4k

 ,

γ3 =


β4k−3,4k β4k−3,4k β4k−3,4k β4k−3,4k
ϕ4k−2,4k ϕ4k−2,4k ϕ4k−2,4k ϕ4k−2,4k
ρ4k−1,4k ρ4k−1,4k ρ4k−1,4k ρ4k−1,4k
η4k,4k+1 η4k,4k+2 η4k,4k+3 η4k,4k+4

 ,

γ4 =


β4k−3,4k β4k−3,4k β4k−3,4k β4k−3,4k
ϕ4k−2,4k ϕ4k−2,4k ϕ4k−2,4k ϕ4k−2,4k
ρ4k−1,4k ρ4k−1,4k ρ4k−1,4k ρ4k−1,4k
η4k,4k+4 η4k,4k+4 η4k,4k+4 η4k,4k+4

 ,

γ5 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , γ1 =
(
0 0 0 0

)T
,

and

ς0, j(h) = ( jh)α+
∫ jh

0 ( jh− s)αξ′0(s)ds, j = 1,2,3,4,
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if k = 1,2, . . . ,n,

β4k−3, j =
∫ jh

(4k−4)h ( jh− s)αξ′4k−3(s)ds, j = 4k−3,4k−2,4k−1,4k,

ϕ4k−2, j =
∫ jh

(4k−4)h ( jh− s)αξ′4k−2(s)ds, j = 4k−3,4k−2,4k−1,4k,

ρ4k−1, j =
∫ jh

(4k−4)h ( jh− s)αξ′4k−1(s)ds, j = 4k−3,4k−2,4k−1,4k,

if k = 1,2, . . . ,n−1,

η4k, j =
∫ jh

(4k−4)h ( jh− s)αξ′4k(s)ds, j = 4k−3,4k−2,4k−1,4k,

and

η4k, j =

∫ 4kh

(4k−4)h
( jh− s)αξ′4k(s)ds

+

∫ jh

4kh
( jh− s)αξ′4k(s)ds, j = 4k+1,4k+2,4k+3,4k+4.

Proof. First, using the integration by parts formula to compute the Jαt ξ0(t), we get:

1
Γ(α)

∫ t

0
(t− s)α−1ξ0(s)ds =

tα

αΓ(α)
ξ0(0)+

1
αΓ(α)

∫ t

0
(t− s)αξ′0(s)ds

=
tα

αΓ(α)
+

1
αΓ(α)

∫ t

0
(t− s)αξ′0(s)ds. (27)

Furthermore, when the relation (27) is expanded in terms of FDHFs, we get:

1
Γ(α)

∫ t

0
(t− s)α−1ξ0(s)ds ≈

4n∑
j=0

µ(α)
0 j ξ j(t),

where

µ(α)
0 j =

1
Γ(α)

∫ jh

0
( jh− s)α−1ξ0(s)ds

=
( jh)α

αΓ(α)
+

1
αΓ(α)

∫ jh

0
( jh− s)αξ′0(s)ds, j = 0,1, . . . ,4n. (28)

Thence, from the relation (28) and the definition of ξ0(t), we obtain:

µ(α)
0 j =



0, j = 0,
1

αΓ(α)

(
hα+

∫ h
0 (h− s)αξ′0(s)ds

)
, j = 1,

1
αΓ(α)

(
2αhα+

∫ 2h
0 (2h− s)αξ′0(s)ds

)
, j = 2,

1
αΓ(α)

(
3αhα+

∫ 3h
0 (3h− s)αξ′0(s)ds

)
, j = 3,

1
αΓ(α)

(
4αhα+

∫ 4h
0 (4h− s)αξ′0(s)ds

)
, j ≥ 4,

where

ξ′0(s) =


1

12h4

(
2s3−15hs2+35h2s−25h3

)
, 0 < s < 4h,

0, otherwise,
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if k = 1,2, . . . ,n. So

1
Γ(α)

∫ t

0
(t− s)α−1ξ4k−1(s)ds =

1
Γ(α)

∫ t

(4k−4)h
(t− s)α−1ξ4k−1(s)ds

=
1

αΓ(α)

∫ t

(4k−4)h
(t− s)αξ′4k−1(s)ds. (29)

When the relation (29) is expanded in terms of FDHFs, we get:

1
Γ(α)

∫ t

0
(t− s)α−1ξ4k−1(s)ds ≈

4n∑
j=0

µ(α)
(4k−1) jξ j(t),

where

µ(α)
(4k−1) j =

1
Γ(α)

∫ jh

(4k−4)h
( jh− s)α−1ξ4k−1(s)ds

=
1

αΓ(α)

∫ jh

(4k−4)h
( jh− s)αξ′4k−1(s)ds. (30)

Thence, from the relation (30) and the definition of ξ4k−1(t), we obtain:

µ(α)
(4k−1) j =



0, j ≤ 4k−4,
1

αΓ(α)

∫ (4k−3)h
(4k−4)h ((4k−3)h− s)αξ′4k−1(s)ds, j = 4k−3,

1
αΓ(α)

∫ (4k−2)h
(4k−4)h ((4k−2)h− s)αξ′4k−1(s)ds, j = 4k−2,

1
αΓ(α)

∫ (4k−1)h
(4k−4)h ((4k−1)h− s)αξ′4k−1(s)ds, j = 4k−1,

1
αΓ(α)

∫ 4kh
(4k−4)h (4kh− s)αξ′4k−1(s)ds, j ≥ 4k,

where

ξ′4k−1(s) =


−
(
4s3−3(16k−9)hs2+2(96k2−108k+26)h2 s−(256k3−432k2+208k−24)h3

)
6h4 , (4k−4)h < s < 4kh,

0, otherwise,

and

1
Γ(α)

∫ t

0
(t− s)α−1ξ4k−2(s)ds =

1
Γ(α)

∫ t

(4k−4)h
(t− s)α−1ξ4k−2(s)ds

=
1

αΓ(α)

∫ t

(4k−4)h
(t− s)αξ′4k−2(s)ds. (31)

When the relation (31) is expanded in terms of FDHFs, we get:

1
Γ(α)

∫ t

0
(t− s)α−1ξ4k−2(s)ds ≈

4n∑
j=0

µ(α)
(4k−2) jξ j(t),

where

µ(α)
(4k−2) j =

1
Γ(α)

∫ jh

(4k−4)h
( jh− s)α−1ξ4k−2(s)ds

=
1

αΓ(α)

∫ jh

(4k−4)h
( jh− s)αξ′4k−2(s)ds. (32)
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Thence, from the relation (32) and the definition of ξ4k−2(t), we obtain:

µ(α)
(4k−2) j =



0, j ≤ 4k−4,
1

αΓ(α)

∫ (4k−3)h
(4k−4)h ((4k−3)h− s)αξ′4k−2(s)ds, j = 4k−3,

1
αΓ(α)

∫ (4k−2)h
(4k−4)h ((4k−2)h− s)αξ′4k−2(s)ds, j = 4k−2,

1
αΓ(α)

∫ (4k−1)h
(4k−4)h ((4k−1)h− s)αξ′4k−2(s)ds, j = 4k−1,

1
αΓ(α)

∫ 4kh
(4k−4)h (4kh− s)αξ′4k−2(s)ds, j ≥ 4k,

where

ξ′4k−2(s) =


(
2s3−12(2k−1)hs2+(96k2−96k+19)h2 s−(128k3−192k2+76k−6)h3

)
2h4 , (4k−4)h < s < 4kh,

0, otherwise,

and

1
Γ(α)

∫ t

0
(t− s)α−1ξ4k−3(s)ds =

1
Γ(α)

∫ t

(4k−4)h
(t− s)α−1ξ4k−3(s)ds

=
1

αΓ(α)

∫ t

(4k−4)h
(t− s)αξ′4k−3(s)ds. (33)

When the relation (33) is expanded in terms of FDHFs, we get:

1
Γ(α)

∫ t

0
(t− s)α−1ξ4k−3(s)ds ≈

4n∑
j=0

µ(α)
(4k−3) jξ j(t),

where

µ(α)
(4k−3) j =

1
Γ(α)

∫ jh

(4k−4)h
( jh− s)α−1ξ4k−3(s)ds

=
1

αΓ(α)

∫ jh

(4k−4)h
( jh− s)αξ′4k−3(s)ds. (34)

Thence, from the relation (34) and the definition of ξ4k−3(t), we obtain:

µ(α)
(4k−3) j =



0, j ≤ 4k−4,
1

αΓ(α)

∫ (4k−3)h
(4k−4)h ((4k−3)h− s)αξ′4k−3(s)ds, j = 4k−3,

1
αΓ(α)

∫ (4k−2)h
(4k−4)h ((4k−2)h− s)αξ′4k−3(s)ds, j = 4k−2,

1
αΓ(α)

∫ (4k−1)h
(4k−4)h ((4k−1)h− s)αξ′4k−3(s)ds, j = 4k−1,

1
αΓ(α)

∫ 4kh
(4k−4)h (4kh− s)αξ′4k−3(s)ds, j ≥ 4k,

where

ξ′4k−3(s) =


(
4s3−3(16k−7)hs2+2(96k2−84k+14)h2 s−(256k3−336k2+112k−8)h3

)
6h4 , (4k−4)h < s < 4kh,

0, otherwise.

Now, if k = 1,2, ...,n−1. So

1
Γ(α)

∫ t

0
(t− s)α−1ξ4k(s)ds =

1
Γ(α)

∫ t

(4k−4)h
(t− s)α−1ξ4k(s)ds

=
1

αΓ(α)

∫ t

(4k−4)h
(t− s)αξ′4k(s)ds. (35)
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When the relation (35) is expanded in terms of FDHFs, we get:

1
Γ(α)

∫ t

0
(t− s)α−1ξ4k(s)ds ≈

4n∑
j=0

µ(α)
4k jξ j(t),

where

µ(α)
4k j =

1
Γ(α)

∫ jh

(4k−4)h
( jh− s)α−1ξ4k(s)ds

=
1

αΓ(α)

∫ jh

(4k−4)h
( jh− s)αξ′4k(s)ds. (36)

Thence, from the relation (36) and the definition of ξ4k(t), we obtain:

µ(α)
4k j =



0, j ≤ 4k−4,

1
αΓ(α)

∫ (4k−3)h
(4k−4)h ((4k−3)h− s)αξ′4k(s)ds, j = 4k−3,

1
αΓ(α)

∫ (4k−2)h
(4k−4)h ((4k−2)h− s)αξ′4k(s)ds, j = 4k−2,

1
αΓ(α)

∫ (4k−1)h
(4k−4)h ((4k−1)h− s)αξ′4k(s)ds, j = 4k−1,

1
αΓ(α)

∫ 4kh
(4k−4)h (4kh− s)αξ′4k(s)ds, j ≥ 4k,

1
αΓ(α)

(∫ 4kh
(4k−4)h ((4k+1)h− s)αξ′4k(s)ds

+
∫ (4k+1)h

4kh ((4k+1)h− s)αξ′4k(s)ds
)
, j = 4k+1,

1
αΓ(α)

(∫ 4kh
(4k−4)h ((4k+2)h− s)αξ′4k(s)ds

+
∫ (4k+2)h

4kh ((4k+2)h− s)αξ′4k(s)ds
)
, j = 4k+2,

1
αΓ(α)

(∫ 4kh
(4k−4)h ((4k+3)h− s)αξ′4k(s)ds

+
∫ (4k+3)h

4kh ((4k+3)h− s)αξ′4k(s)ds
)
, j = 4k+3,

1
αΓ(α)

(∫ 4kh
(4k−4)h ((4k+4)h− s)αξ′4k(s)ds

+
∫ (4k+4)h

4kh ((4k+4)h− s)αξ′4k(s)ds
)
, j ≥ 4k+4,

where

ξ′4k(s) =



2s3−3(8k−5)hs2+(96k2−120k+35)h2 s−(128k3−240k2+140k−25)h3

12h4 , 4(k−1)h < s < 4kh,

2s3−3(8k+5)hs2+(96k2+120k+35)h2 s−(128k3+240k2+140k+25)h3

12h4 , 4kh < s < 4(k+1)h,

0, otherwise.

Finally, for k = 4n. So

1
Γ(α)

∫ t

0
(t− s)α−1ξ4n(s)ds =

1
Γ(α)

∫ t

T−4h
(t− s)α−1ξ4n(s)ds

=
1

αΓ(α)

∫ t

T−4h
(t− s)αξ′4n(s)ds. (37)

When the relation (37) is expanded in terms of FDHFs, we get:
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1
Γ(α)

∫ t

0
(t− s)α−1ξ4n(s)ds ≈

4n∑
j=0

µ(α)
4n jξ j(t),

where

µ(α)
4n j =

1
Γ(α)

∫ jh

T−4h
( jh− s)α−1ξ4n(s)ds

=
1

αΓ(α)

∫ jh

T−4h
( jh− s)αξ′4n(s)ds. (38)

Thence, from the relation (38) and the definition of ξ4n(t), we obtain:

µ(α)
4n j =



0, j ≤ 4n−4,

1
αΓ(α)

∫ T−3h
T−4h ((T −3h)− s)αξ′4n(s)ds, j = 4n−3,

1
αΓ(α)

∫ T−2h
T−4h ((T −2h)− s)αξ′4n(s)ds, j = 4n−2,

1
αΓ(α)

∫ T−h
T−4h ((T −h)− s)αξ′4n(s)ds, j = 4n−1,

1
αΓ(α)

∫ T
T−4h (T − s)αξ′4n(s)ds, j = 4n,

where

ξ′4n(s) =


(2s3−3(2T−5h))s2+(6T 2−30Th+35h2)s−(2T 3−15T 2h+35Th2−25h3)

12h4 , T −4h < s < T,

0, otherwise.

The proof is finished.

5. NUMERICAL METHOD
The aim of this section is to find a numerical solution to FIDEs based on FDHFs. A numerical method based on the

operational matrices based on FDHFs and other concepts defined in the previous section is proposed to solve problems
(1)-(2). Firstly, by taking the Riemann-Liouville fractional integration of the equation (1), we obtain:

y(t) = x0(t)+ Jαt (ω(t))+ Jαt (
∫ t

0
K(t, s)Q(y(s))ds), (39)

where

x0(t) =
q−1∑
τ=0

y(τ)(0)
tτ

τ!
.

To solve this equation, we must first approximate the functions y(t), x0(t),ω(t) and K(t, s) by the FDHFs as follows:

y(t) ≈ YTΞ(t) = ΞT(t)Y, (40)

x0(t) ≈ XTΞ(t) = ΞT(t)X, (41)

ω(t) ≈ ATΞ(t) = ΞT(t)A, (42)

K(t, s) ≈ ΞT(t)DΞ(s) = ΞT(s)DTΞ(t). (43)

Also, taking into account the approximations
h(t) = Q(y(t)), (44)

where
h(t) ≈ HTΞ(t) = ΞT(t)H, (45)
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where Y , X, A, and H are the coefficient vectors of the FDHFs y(t), x0(t),ω(t), and h(t), respectively, and D is the coefficient
matrix of K(t, s).
Now, by substituting the aforementioned approximations into Eq.(39), we get

YTΞ(t) = XTΞ(t)+ Jαt (ATΞ(t))+ Jαt (
∫ t

0
ΞT(t)DΞ(s)ΞT(s)Hds). (46)

So we have

YTΞ(t) = XTΞ(t)+ATJαt (Ξ(t))+ Jαt (ΞT(t)D
∫ t

0
Ξ(s)ΞT(s)Hds). (47)

In addition, from Lemma (3.1), we obtain:

YTΞ(t) = XTΞ(t)+ATJαt (Ξ(t))+ Jαt (ΞT(t)D
∫ t

0
H̃Ξ(s)ds). (48)

Now, using Eq.(23) in Eq.(48), we have

YTΞ(t) = XTΞ(t)+AT Jαt (Ξ(t))+ Jαt (ΞT (t)DH̃PΞ(t)). (49)

Take into account the following presumptions:
Θ = DH̃P.

Therefore
YTΞ(t) = XTΞ(t)+AT Jαt (Ξ(t))+ Jαt (ΞT (t)ΘΞ(t)), (50)

where Θ is an (4n+1)× (4n+1) matrix. Using Eq.(19), we get:

YTΞ(t) = XTΞ(t)+AT Jαt (Ξ(t))+ Jαt (Θ̃TΞ(t)), (51)

where Θ̃ = diag(Θ) is a (4n+1)-vectors whose elements are equal to the diagonal entries of the matrix Θ.
Now, from Eq.(25), we have:

YTΞ(t) = XTΞ(t)+AT PαΞ(t)+Θ̃TPαΞ(t). (52)

From Eqs.(44), (45) and (52) we can deduce the following:

HTΞ(t) ≈ h(t) = Q(y(t)) ≈ (XTΞ(t)+AT PαΞ(t)+Θ̃TPαΞ(t)).

Therefore
HTΞ(t) = (XTΞ(t)+AT PαΞ(t)+Θ̃TPαΞ(t)). (53)

The above equation is a nonlinear system of (4n+1) algebraic equations with (4n+1) unknown coefficients, from which
we find the unknown vector H by Newton’s iterative method. Afterward, we can get an approximate solution to the
problems (1)-(2) as follows:

y(t) ≈ y4n(t) = YTΞ(t) = XTΞ(t)+AT PαΞ(t)+Θ̃TPαΞ(t).

6. ERROR ANALYSIS
The goal of this section is to determine the convergence rate of the suggested method for solving FIDEs. Indeed, we

establish that the proposed method converges at an O(h5) rate. To do so, we define the norm.

∥y∥ = sup
t∈Ω
|y(t)| . (54)

Theorem 6.1. Suppose ω(t) ∈ C5(Ω) and ω4n(t) =
4n∑
κ=0

ω(tκ)ξκ(t), tκ = κh be the FDHFs expansion of ω(t). Also, suppose

E(t) = ω(t)−ω4n(t), t ∈Ω. Then we have
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∥ω(t)−ω4n(t)∥ ≤ ψ1h5, (55)

where ψ1 is a constant; consequently, the order of convergence is five. That is:

∥E(t)∥ ≈ O(h5).

Proof. Assume

Ei(t) =


ω(t)−ω4n(t), t ∈ Vi,

0, t ∈Ω−Vi,

where Vi = {t|ih ≤ t ≤ (i+4)h, h = T
4n }, i = 0,4,8, ...,4n−4. Then, we get

Ei(t) = ω(t)−ω4n(t) = ω(t)−
4n∑
κ=0

ω(κh)ξκ(t),

Ei(t) = ω(t)− [ω(ih)ξi(t)+ω((i+1)h)ξi+1(t)+ω((i+2)h)ξi+2(t)+ω((i+3)h)ξi+3(t)
+ω((i+4)h)ξi+4(t)].

By using a fourth-degree interpolation error, we have [54].

Ei(t) =
(t− ih)(t− (i+1)h)(t− (i+2)h)(t− (i+3)h)(t− (i+4)h)

120
·

d5ω(χi)
dt5 ,

where χi ∈ (ih, (i+4)h).
Let us suppose σ(t) = (t− ih)(t− (i+1)h)(t− (i+2)h)(t− (i+3)h)(t− (i+4)h). Since σ(t) is a continuous function and Vi is
compacted, we have:

sup
t∈Vi

|σ(t)| =max
t∈Vi
|σ(t)| = 3.6314h5.

Consequently, we have

|Ei(t)| ≤
1

120
|σ(t)|

∣∣∣∣∣∣d5ω(χi)
dt5

∣∣∣∣∣∣ .
Therefore, we now have

∥E(t)∥ = max
i=0,4,...,4n−4

sup
t∈Vi

|Ei(t)| ≤ max
i=0,4,...,4n−4

0.03026h5

∣∣∣∣∣∣d5ω(χi)
dt5

∣∣∣∣∣∣ .
After that, there’s ν ∈ {0,4,8, . . . ,4n−4}, we get:

∥E(t)∥ ≤ max
i=0,4,...,4n−4

0.03026h5

∣∣∣∣∣∣d5ω(χi)
dt5

∣∣∣∣∣∣ = 0.03026h5

∣∣∣∣∣∣d5ω(χν)
dt5

∣∣∣∣∣∣ .
Finally, using the relation (54), we get:

∥E(t)∥ ≤ 0.03026h5

∣∣∣∣∣∣d5ω(χν)
dt5

∣∣∣∣∣∣ ≤ 0.03026h5

∥∥∥∥∥∥d5ω(t)
dt5

∥∥∥∥∥∥ ≤ ψ1h5. (56)

Based on the relation (56), we obtain:

∥E(t)∥ ≈ O(h5).

The proof was eventually finished.
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Theorem 6.2. Assume K(t, s) ∈ C5(Ω×Ω) and K4n(t, s) =
4n∑
i=0

4n∑
j=0

K(ih, jh)ξi(t)ξ j(s) be the FDHFs expansion of K(t, s).

Also, assume E4n(t, s) = K(t, s)−K4n(t, s) be the truncation error, t ∈G = (Ω×Ω). Then we have

∥K(t, s)−K4n(t, s)∥ ≤ ψ2h5, (57)

where ψ2 is a constant; consequently, the order of convergence is five. That is:

∥E(t, s)∥ ≈ O(h5).

Proof. Assume

Eℓυ(t, s) =


K(t, s)−K4n(t, s), (t, s) ∈ Vℓυ,

0, (t, s) ∈G−Vℓυ,

where Vℓυ = {(t, s)|ℓh ≤ t ≤ (ℓ+4)h,υh ≤ s ≤ (υ+4)h, h = T
4n }, ℓ,υ = 0,4,8, ...,4n−4. Then, we get

Eℓυ(t, s) = K(t, s)−K4n(t, s) = K(t, s)−
4n∑
i=0

4n∑
j=0

K(ih, jh)ξi(t)ξ j(s),

Eℓυ(t, s) = K(t, s)− (K(ℓh,υh)ξℓ(t)ξυ(s)+K(ℓh, (υ+1)h)ξℓ(t)ξυ+1(s)+ · · ·
+K(ℓh, (υ+4)h)ξℓ(t)ξυ+4(s)+ · · ·+K((ℓ+4)h, (υ+4)h)ξℓ+4(t)ξυ+4(s)).

By using a fourth-degree interpolation error, we have [54].

Eℓυ(t, s) =
(t− ℓh)(t− (ℓ+1)h)(t− (ℓ+2)h)(t− (ℓ+3)h)(t− (ℓ+4)h)

120
·
∂5K(χℓ, s)

∂t5

+
(s−υh)(s− (υ+1)h)(s− (υ+2)h)(s− (υ+3)h)(s− (υ+4)h)

120
·
∂5K(t,ηυ)

∂s5

−
(t− ℓh)(t− (ℓ+1)h) . . . (t− (ℓ+4)h)(s−υh) . . . (s− (υ+4)h)

14400
·
∂10K(χ̄q, η̄υ)
∂t5∂s5 ,

where χℓ, χ̄ℓ ∈ (ℓh, (ℓ+4)h) and ηυ, η̄υ ∈ (υh, (υ+4)h).
We consider u (t)= (t−ℓh)(t− (ℓ+1)h)(t− (ℓ+2)h)(t− (ℓ+3)h)(t− (ℓ+4)h) and γ(s)= (s−υh)(s− (υ+1)h)(s− (υ+2)h)(s−
(υ+3)h)(s− (υ+4)h).
Consequently, we have

|Eℓυ(t, s)| ≤
1

120
|u (t)|

∣∣∣∣∣∣∂5K(χℓ, s)
∂t5

∣∣∣∣∣∣+ 1
120
|γ(s)|

∣∣∣∣∣∣∂5K(t,ηυ)
∂s5

∣∣∣∣∣∣
+

1
14400

|u (t)| |γ(s)|

∣∣∣∣∣∣∂10K(χ̄ℓ, η̄υ)
∂t5∂s5

∣∣∣∣∣∣ .
Since sup

t∈(ℓh,(ℓ+4)h)
|u (t)| = 3.6314h5, and sup

s∈(υh,(υ+4)h)
|γ(s)| = 3.6314h5, we obtain

∥E(t, s)∥ = max
ℓ=0,4,...,4n−1
υ=0,4,...,4n−1

sup
(t,s)∈Vℓυ

|Eℓυ(t, s)|

≤ 0.03026h5 max
ℓ=0,4,...,4n−1
υ=0,4,...,4n−1

sup
(t,s)∈Vℓυ

(∣∣∣∣∣∣∂5K(χℓ, s)
∂t5

∣∣∣∣∣∣+
∣∣∣∣∣∣∂5K(t,ηυ)

∂s5

∣∣∣∣∣∣
+0.03026h5

∣∣∣∣∣∣∂10K(χ̄ℓ, η̄υ)
∂t5∂s5

∣∣∣∣∣∣
)
.
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After that, there are β, ι ∈ {0,4, ...,4n−4}, we get:

∥E(t, s)∥ ≤ 0.03026h5 sup
(t,s)∈Vℓυ

∣∣∣∣∣∣∂5K(χβ, s)
∂t5

∣∣∣∣∣∣+
∣∣∣∣∣∣∂5K(t,ηι)

∂s5

∣∣∣∣∣∣+0.03026h5

∣∣∣∣∣∣∂10K(χ̄β, η̄ι)
∂t5∂s5

∣∣∣∣∣∣
 .

Finally, using the relation (54), we get:

∥E(t, s)∥ ≤ 0.03026h5
(∥∥∥∥∥∥∂5K(t, s)

∂t5

∥∥∥∥∥∥+
∥∥∥∥∥∥∂5K(t, s)

∂s5

∥∥∥∥∥∥+0.03026h5

∥∥∥∥∥∥∂10K(t, s)
∂t5∂s5

∥∥∥∥∥∥
)

≤ ψ2h5. (58)

Based on the relation (58), we obtain:
∥E(t, s)∥ ≈ O(h5).

The proof was eventually finished.

Theorem 6.3. Assume that y(t) and y4n(t) are the exact and approximate solutions of (1), respectively. Furthermore,
assume that the following assumptions are met:
(i) ∥Q(y(t))∥ ≤ Υ, t ∈Ω,
(ii) ∥K(t, s)∥ ≤ N, t ∈Ω×Ω,
(iii)1− Tα+1Nϖ

Γ(α) −
Tα+1ψ2ϖh5

Γ(α) > 0.
(iv) The nonlinear term Q(y(t)) satisfies the Lipschitz condition:

∥Q(y(t))−Q(y4n(t))∥ ≤ϖ∥y(t)− y4n(t)∥ , t ∈Ω.

Furthermore, we can deduce from Theorem 6.1 that∥∥∥∥∥∥∥∥
q−1∑
τ=0

y(τ)(0)
tτ

τ!
−

q−1∑
τ=0

y(τ)
4n (0)

tτ

τ!

∥∥∥∥∥∥∥∥ ≤ ψh5. (59)

Following that, we have

∥y(t)− y4n(t)∥ ≤
(ψ+ Tα

Γ(α)ψ1+
Tα+1

Γ(α) ψ2Υ)h5

1− Tα+1Nϖ
Γ(α) −

Tα+1ψ2ϖh5

Γ(α)

,

and ∥y(t)− y4n(t)∥ ≈ O(h5).

Proof. The system (39) can be rewritten as follows:

y(t) =
q−1∑
τ=0

y(τ)(0)
tτ

τ!
+

1
Γ(α)

∫ t

0
(t− x)α−1ω(x)dx

+
1
Γ(α)

∫ t

0
(t− x)α−1

(∫ x

0
K(x, s)Q(y(s))ds

)
dx. (60)

Now, we can approximate Eq.(60) using the FDHFs as follows:

y4n(t) =
q−1∑
τ=0

y(τ)
4n (0)

tτ

τ!
+

1
Γ(α)

∫ t

0
(t− x)α−1ω4n(x)dx

+
1
Γ(α)

∫ t

0
(t− x)α−1

(∫ x

0
K4n(x, s)Q(y4n(s))ds

)
dx. (61)

Now we can deduce the following equation from Eqs.(60) and (61):

y(t)− y4n(t) =
q−1∑
τ=0

y(τ)(0)
tτ

τ!
−

q−1∑
τ=0

y(τ)
4n (0)

tτ

τ!
+

1
Γ(α)

∫ t

0
(t− x)α−1(ω(x)−ω4n(x))dx

+
1
Γ(α)

∫ t

0
(t− x)α−1

(∫ x

0
(K(x, s)Q(y(s))−K4n(x, s)Q(y4n(s)))ds

)
dx.
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Hence

∥y(t)− y4n(t)∥ =

∥∥∥∥∥∥∥∥
q−1∑
τ=0

y(τ)(0)
tτ

τ!
−

q−1∑
τ=0

y(τ)
4n (0)

tτ

τ!

∥∥∥∥∥∥∥∥
+

1
Γ(α)

∫ t

0

∥∥∥(t− x)α−1
∥∥∥∥ω(x)−ω4n(x)∥dx

+
1
Γ(α)

∫ t

0

∥∥∥(t− x)α−1
∥∥∥(

∫ x

0
∥K(x, s)Q(y(s))−K4n(x, s)Q(y4n(s))∥ds)dx.

Since max{|t− x|α−1,0 ≤ t ≤ T,0 ≤ x ≤ T } = Tα−1, where T ≥ 1 and 0 < α < 1, so

∥y(t)− y4n(t)∥ ≤

∥∥∥∥∥∥∥∥
q−1∑
τ=0

y(τ)(0)
tτ

τ!
−

q−1∑
τ=0

y(τ)
4n (0)

tτ

τ!

∥∥∥∥∥∥∥∥+ Tα−1

Γ(α)

∫ t

0
∥ω(x)−ω4n(x)∥dx

+
Tα−1

Γ(α)

∫ t

0

∫ x

0
∥K(x, s)Q(y(s))−K4n(x, s)Q(y4n(s))∥dsdx.

Because t < T, x < T , then

∥y(t)− y4n(t)∥ ≤

∥∥∥∥∥∥∥∥
q−1∑
τ=0

y(τ)(0)
tτ

τ!
−

q−1∑
τ=0

y(τ)
4n (0)

tτ

τ!

∥∥∥∥∥∥∥∥+ Tα

Γ(α)
∥ω(t)−ω4n(t)∥

+
Tα+1

Γ(α)
∥K(x, s)Q(y(s))−K4n(x, s)Q(y4n(s))∥ . (62)

Based on Theorem 6.2 and assumptions (i), (ii), and (iv), we arrive at the following conclusion:

∥K(x, s)Q(y(s))−K4n(x, s)Q(y4n(s))∥
≤ ∥K(t, s)∥ ∥Q(y(t))−Q(y4n(t))∥+ ∥K(t, s)−K4n(t, s)∥∥Q(y(t))−Q(y4n(t))∥

+ ∥K(t, s)−K4n(t, s)∥ ∥Q(y(t))∥

≤ Nϖ∥y(t)− y4n(t)∥+ψ2ϖh5 ∥y(t)− y4n(t)∥+ψ2Υh5. (63)

Using Eqs.(63), (62), and (59), as well as Theorem 6.1 and assumption (iii), we have

∥y(t)− y4n(t)∥ ≤
(ψ+ Tα

Γ(α)ψ1+
Tα+1

Γ(α) ψ2Υ)h5

1− Tα+1Nϖ
Γ(α) −

Tα+1ψ2ϖh5

Γ(α)

. (64)

Based on the relation (64), we obtain:
∥y(t)− y4n(t)∥ ≈ O(h5).

The proof was eventually finished.

7. NUMERICAL EXAMPLES
This section tests the proposed method on several examples to ensure its applicability, efficiency, and accuracy.
The goal of this study is to see if the numerical technique presented here can be used to solve nonlinear fractional

integro-differential equations with initial conditions such as Eqs.(1)-(2). The figures show the exact and approximate
solutions for different values of n and α at different intervals. Indeed, five examples have been solved by using four base
functions, including GHFs, MHFs, AHFs, and FDHFs. We use the same length of subintervals (same h = T

mn , where m is
the degree of polynomials used in the definition of the basis function in each method) to ensure a fair comparison between
these base functions; that is, we use the same number of basis functions in each method. Also, all the calculations were
done using Maple 2020 on a laptop Windows and 11th Gen Intel(R) Core(TM) i9-11900H 2.5HzG with RAM 40Gb.
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(a) (b)

(c) (d)

FIGURE 2. The comparison between the numerical solutions of (a) GHFs, (b) MHFs, (c) AHFs, and (d) the proposed method
for different values of n and the exact solution in Example 7.1.

(a) (b)

(c) (d)

FIGURE 3. The comparison between the numerical solutions of (a) GHFs, (b) MHFs, (c) AHFs, and (d) the proposed method
for different values of n and the exact solution in Example 7.2.
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(a) (b)

(c) (d)

FIGURE 4. The comparison between the numerical solutions of (a) GHFs, (b) MHFs, (c) AHFs, and (d) the proposed method
for different values of n and the exact solution in Example 7.3.

(a) (b)

(c) (d)

FIGURE 5. The comparison between the numerical solutions of (a) GHFs, (b) MHFs, (c) AHFs, and (d) the proposed method
for different values of n and the exact solution in Example 7.4.
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Example 7.1. Consider the following FIDE:

cDαy(t) = ω(t)+
∫ t

0
sy(s)etds, t ∈ [0,1],0 < α < 1, (65)

where

ω(t) =

√
2Γ( 3

4 )
π

(
409600

663
t

17
4 −

50176
39

t
13
4 +

13744
15

t
9
4 −

1251
5

t
5
4 +

81
4

t
1
4 )

+ et(
−100

7
t7+

245
6

t6−
859
20

t5+
1251

64
t4−

27
8

t3+
27
128

t2).

The problem has an exact solution y(t)= 1
64 (10t−1)2(4t−3)3 with the initial condition y(0)= −27

64 . Figure 2 displays the
exact solution in Example 7.1 compared with the numerical solutions of GHFs, MHFs, AHFs and the proposed method
for different values of n and with α = 0.75. As shown in this figure, the FDHFs technique provides an accurate estimate
solution that is in good agreement with the exact solution for all values of t in the interval [0,1]. Additionally, we can see
that there is an apparent convergence as the value of n is increased.

Example 7.2. Consider the following FIDE:

cDαy(t) = ω(t)+
∫ t

0
sy(s)etds, t ∈ [0,1],0 < α < 1, (66)

where

ω(t) =
−2
√

2Γ( 3
4 )

16575π
t

1
4 (5120000t4−10444800t3+7107360t2−1840488t+145197)

+
100

7
ett7−40ett6+

201
5

ett5−
347
20

ett4+
73
25

ett3−
9

50
ett2.

The problem has an exact solution y(t) = −1
25 (10t−1)2(5t−3)2(t − 1) with the initial condition y(0) = 9

25 . Figure 3
displays the exact solution in Example 7.2 compared with the numerical solutions of GHFs, MHFs, AHFs and the proposed
method for different values of n and with α = 0.75. As shown in this figure, the FDHFs technique provides an accurate
estimate solution that is in good agreement with the exact solution for all values of t in the interval [0,1]. Additionally, we
can see that there is an apparent convergence as the value of n is increased.

Example 7.3. Consider the following FIDE:

cDαy(t) = ω(t)+
∫ t

0
ts2y2(s)ds, t ∈ [0,2], 0 < α < 1, (67)

where
ω(t) =

11318
5333

t
47
20 −

57359
11501

t
27
20 +

46064
20525

t
7

20 −
1
9

t10+
3
4

t9−
13
7

t8+2t7−
4
5

t6.

The problem has an exact solution y(t) = t3 − 3t2 + 2t with the initial condition y(0) = 0. Figure 4 displays the exact
solution in Example 7.3 compared with the numerical solutions of GHFs, MHFs, AHFs and the proposed method for
different values of n and with α = 0.65. As shown in this figure, the FDHFs technique provides an accurate estimate
solution that is in good agreement with the exact solution for all values of t in the interval [0,2]. Additionally, we can see
that there is an apparent convergence as the value of n is increased.

Example 7.4. Consider the following FIDE:

cDαy(t) = ω(t)+
∫ t

0
sy2(s)cos2(t)ds, t ∈ [0,1],0 < α < 1, (68)

where

ω(t) = (
−25

3
t12+10t10+

200
9

t9−
25
8

t8−
260

7
t7−

50
3

t6+16t5+40t4−32t2)cos2(t)

+
42889
1594

t
22
5 −

19794
1967

t
12
5 −

152765
9488

t
7
5 .
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The problem has an exact solution y(t) = 10t5 −5t3 −10t2 +8 with the initial condition y(0) = 8. Figure 5 displays the
exact solution in Example 7.4 compared with the numerical solutions of GHFs, MHFs, AHFs and the proposed method
for different values of n and with α = 0.6. As shown in this figure, the FDHFs technique provides an accurate estimate
solution that is in good agreement with the exact solution for all values of t in the interval [0,1]. Additionally, we can see
that there is an apparent convergence as the value of n is increased.

8. CONCLUSION
This study proposed a different approach depending on the FDHFs that have been built and implemented to provide

a computational solution for solving FIDEs. Numerical estimations were performed on four test examples using the
proposed method with different values of α and different intervals, and the obtained results indicate that the FDHFs work
well and achieve the required accuracy. This method converts the given equation into a system of algebraic equations
that can be solved using Newton’s iterative method. The FDHFs method is also demonstrated to be convergent, with a
convergence order of O(h5).
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[20] N. Ö. Ö. TUĞRUL, E. ERGÜN, D. C. KÖSEOĞLU, K. Karacuha, K. ŞİMŞEK, and E. Karacuha, “Modeling of telecommunication revenue as a
percentage of gross domestic product’s for countries with fractional calculus,” The Journal of Cognitive Systems, vol. 6, no. 1, pp. 28–34, 2021.

[21] A. R. Alharbi, M. Almatrafi, and K. Lotfy, “Constructions of solitary travelling wave solutions for ito integro-differential equation arising in plasma
physics,” Results in Physics, vol. 19, p. 103533, 2020.

[22] R. Indiaminov, R. Butaev, N. Isayev, K. Ismayilov, B. Yuldoshev, and A. Numonov, “Nonlinear integro-differential equations of bending of
physically nonlinear viscoelastic plates,” in IOP Conference Series: Materials Science and Engineering, vol. 869, p. 052048, IOP Publishing,
2020.

[23] S. Ray, Nonlinear differential equations in physics. Springer, 2020.
[24] Z. A. Lazima and S. L. Khalaf, “Optimal control design of the in-vivo HIV fractional model,” Iraqi Journal of Science, pp. 3877–3888, sep 2022.
[25] S. L. Khalaf, M. S. Kadhim, and A. R. Khudair, “Studying of COVID-19 fractional model: Stability analysis,” Partial Differential Equations in

Applied Mathematics, vol. 7, p. 100470, jun 2023.
[26] N. Adjimi, A. Boutiara, M. S. Abdo, and M. Benbachir, “Existence results for nonlinear neutral generalized caputo fractional differential

equations,” Journal of Pseudo-Differential Operators and Applications, vol. 12, no. 2, pp. 1–17, 2021.
[27] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland

Mathematics Studies). USA: Elsevier Science Inc., 2006.
[28] M. S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Ali, and M. B. Jeelani, “On nonlinear pantograph fractional differential equations

with Atangana–Baleanu–Caputo derivative,” Advances in Difference Equations, vol. 2021, no. 1, pp. 1–17, 2021.
[29] K. D. Kucche and S. T. Sutar, “Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative,” Chaos,

Solitons & Fractals, vol. 143, p. 110556, 2021.
[30] M. Manigandan, M. Subramanian, P. Duraisamy, and T. N. Gopal, “On Caputo-Hadamard type fractional differential equations with nonlocal

discrete boundary conditions,” Discontinuity, Nonlinearity, and Complexity, vol. 10, no. 02, pp. 185–194, 2021.
[31] Y. Nawaz, “Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations,” Computers

& Mathematics with Applications, vol. 61, no. 8, pp. 2330–2341, 2011.
[32] P. Das, S. Rana, and H. Ramos, “Homotopy perturbation method for solving caputo-type fractional-order Volterra-Fredholm integro-differential

equations,” Computational and Mathematical Methods, vol. 1, no. 5, p. e1047, 2019.
[33] G. Zhang and R. Zhu, “Runge–kutta convolution quadrature methods with convergence and stability analysis for nonlinear singular fractional

integro-differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 84, p. 105132, 2020.
[34] S. Momani and M. A. Noor, “Numerical methods for fourth-order fractional integro-differential equations,” Applied Mathematics and

Computation, vol. 182, no. 1, pp. 754–760, 2006.
[35] A. Panda, S. Santra, and J. Mohapatra, “Adomian decomposition and homotopy perturbation method for the solution of time fractional partial

integro-differential equations,” Journal of Applied Mathematics and Computing, pp. 1–18, 2021.
[36] L. Kumar, S. G. Sista, and K. Sreenadh, “Finite element analysis of time fractional integro-differential equations of kirchhoff type for non-

homogeneous materials,” arXiv preprint arXiv:2111.06708, 2021.
[37] S. Santra and J. Mohapatra, “A novel finite difference technique with error estimate for time fractional partial integro-differential equation of

Volterra type,” Journal of Computational and Applied Mathematics, vol. 400, p. 113746, 2022.
[38] F. Mohammadi, “Fractional integro-differential equation with a weakly singular kernel by using block pulse functions,” UPB Sci. Bull., Ser. A,

vol. 79, no. 1, pp. 57–66, 2017.
[39] S. Najafalizadeh and R. Ezzati, “A block pulse operational matrix method for solving two-dimensional nonlinear integro-differential equations of

fractional order,” Journal of Computational and Applied Mathematics, vol. 326, pp. 159–170, 2017.
[40] H. Mesgarani, H. Safdariı, A. Ghasemian, and Y. Esmaeelzade, “The cubic b-spline operational matrix based on haar scaling functions for solving

varieties of the fractional integro-differential equations,” Journal of Mathematics, vol. 51, no. 8, pp. 45–65, 2019.
[41] M. R. M. Shabestari, R. Ezzati, and T. Allahviranloo, “Numerical solution of fuzzy fractional integro-differential equation via two-dimensional

legendre wavelet method,” Journal of Intelligent & Fuzzy Systems, vol. 34, no. 4, pp. 2453–2465, 2018.
[42] L. Wu, Z. Chen, and X. Ding, “A minimal search method for solving fractional integro-differential equations based on modified legendre

multiwavelets,” Journal of Applied Mathematics and Computing, pp. 1–17, 2021.
[43] K. K. Ali, M. A. Abd El Salam, E. M. Mohamed, B. Samet, S. Kumar, and M. Osman, “Numerical solution for generalized nonlinear fractional

integro-differential equations with linear functional arguments using chebyshev series,” Advances in Difference Equations, vol. 2020, no. 1, pp. 1–
23, 2020.

[44] K. Sadri, K. Hosseini, D. Baleanu, A. Ahmadian, and S. Salahshour, “Bivariate chebyshev polynomials of the fifth kind for variable-order time-
fractional partial integro-differential equations with weakly singular kernel,” Advances in Difference Equations, vol. 2021, no. 1, pp. 1–26, 2021.

[45] A. Khajehnasiri, R. Ezzati, and A. Jafari Shaerlar, “Walsh functions and their applications to solving nonlinear fractional Volterra integro-
differential equation,” International Journal of Nonlinear Analysis and Applications, vol. 12, no. 2, pp. 1577–1589, 2021.

[46] M. Faheem and A. Khan, “A wavelet collocation method based on gegenbauer scaling function for solving fourth-order time-fractional integro-
differential equations with a weakly singular kernel,” Applied Numerical Mathematics, vol. 184, pp. 197–218, feb 2023.

[47] S. Nemati and P. M. Lima, “Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification
of hat functions,” Applied Mathematics and Computation, vol. 327, pp. 79–92, 2018.

[48] K. Amirahmad, M. A. Kermani, and R. Ezzati, “Fractional order operational matrix method for solving two-dimensional nonlinear fractional
Volterra integro-differential equations,” Kragujevac Journal of Mathematics, vol. 45, no. 4, pp. 571–585, 2021.

[49] E. Aryani, A. Babaei, and A. Valinejad, “An accurate approach based on modified hat functions for solving a system of fractional stochastic
integro-differential equations,” JOURNAL OF MATHEMATICAL EXTENSION, vol. 15, 2021.

[50] F. Mirzaee and N. Samadyar, “Application of hat basis functions for solving two-dimensional stochastic fractional integral equations,”
Computational and Applied Mathematics, vol. 37, no. 4, pp. 4899–4916, 2018.

[51] S. Nemati and D. F. Torres, “A new spectral method based on two classes of hat functions for solving systems of fractional differential equations
and an application to respiratory syncytial virus infection,” Soft Computing, vol. 25, no. 9, pp. 6745–6757, 2021.

[52] Y. Wang and L. Zhu, “Solving nonlinear Volterra integro-differential equations of fractional order by using euler wavelet method,” Advances in
difference equations, vol. 2017, no. 1, pp. 1–16, 2017.

[53] A. E. Aboanber, A. A. Nahla, and A. M. Edress, “Developed mathematical technique for fractional stochastic point kinetics model in nuclear
reactor dynamics,” Nuclear Science and Techniques, vol. 29, jul 2018.

[54] S. Nemati, P. Lima, and Y. Ordokhani, “Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre
polynomials,” Journal of Computational and Applied Mathematics, vol. 242, pp. 53–69, apr 2013.

30


	Introduction
	Fractional calculus 
	Fourth-degree hat functions and their properties 
	Operational Matrices of FDHFs
	Numerical Method
	Error analysis
	Numerical examples
	Conclusion

