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ABSTRACT:Digital data stored in computers or transmitted over computer 
networks are constantly subject to error due to the physical medium in which they 
are stored or transmitted. Error-correction codes are means of introducing 
redundancy in the data so that even if part of it is corrupted or completely lost, the 
original data can be recovered. Error correcting codes are used in modern 
technology to protect information from errors. Burst error correcting codes are 
needed in virtually uncountable applications. Such codes will be called complete 
burst error correcting codes. There are quite a few constructions for complete burst 
error correcting codes. This paper presents an error correcting code based on the 
concept and the theory of the Latin Squares, where it employ the characteristics of 
the orthogonal Latin Squares to correct the errors. That is not complete burst error 
correcting codes, since it can correct most burst pattern of length i ≤ n, but not all of 
them. However, if the number of uncorrectable patterns is sufficiently small, this 
code can be used in practice as a burst error correcting code. 
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Introduction 
Information is passes every day in our 

society. It is essential that interference in the 
communication of this information hinders 
the information from being received as little 
as possible. Error-correcting codes provide 
us with this ability. Error-correcting codes 
allow us to receive a piece of information, 
identify any errors, locate them, and correct 
them. Cyclic codes are an especially useful 
kind of error-correcting code, and BCH 
codes and QR codes are especially useful 
kinds of cyclic codes. Error-correcting code 
theory has also been used in areas outside of 
information communication. Error 
correcting code theory is an important 

subject to study. A digital message is a 
sequence of 0’s and 1’s which encodes a 
given message. More data will be added to a 
given binary message that will help to 
detect if an error has been made in the 
transmission of the message; adding such 
data is called an error-detecting code. More 
data may also be added to the original 
message so that errors made in 
transmission may be detected, and also to 
figure out what the original message was 
from the possibly corrupt message that was 
received. Development of algorithmically 
efficient error correcting codes has 
attracted attention of engineers, computer 
scientists and applied mathematicians for 
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past five decades. If a message needs to be 
received quickly and without error, merely 
knowing where the errors occurred may not 
be enough; the second condition is not 
satisfied as the message will be incomplete. 
Error Correcting Code 

When a message is transmitted, it has 
the potential to get scrambled by noise. This 
is certainly true of voice messages, and is also 
true of the digital messages that are sent to 
and from computers. Now even sound and 
video are being transmitted in this manner. A 
digital message is a sequence of 0’s and 1’s 
which encodes a given message. More data 
will be added to a given binary message that 
will help to detect if an error has been made 
in the transmission of the message; adding 
such data is called an error-detecting code. 
More data may also be added to the original 
message so that errors made in transmission 
may be detected, and also to figure out what 
the original message was from the possibly 
corrupt message that was received. This type 
of code is an error-correcting code. The 
encoder transforms an n-letter word x into 
an m-letter word y with m > n. The decoder 
must be able to recover x correctly when up 
to r letters of y are corrupted in any way. 

Several schemes exist to achieve error 
detection, and are generally quite simple. All 
error detection codes (which include all 
error-detection-and-correction codes) 
transmit more bits than were in the original 
data. Most codes are "systematic" — the 
transmitter sends the original data bits, 
followed by check bits — extra bits (usually 
referred to as redundancy in the literature) 
which accompany data bits for the purpose of 
error detection. 
Repetition Code 

When sending information over a 
noisy channel, on the highest level of 
abstraction we distinguish only the cases 
whether a symbol is transmitted correctly or 
not. Then the difference between the input 

sequence and the output sequence is 
measured by the Hamming distance. 

 
Definition 1 (Hamming distance 

/weight ) [4]: 
 The Hamming distance between two 

sequences x = (x1 . . .xn) and y = (y1 . . . yn) 
is the number of positions where x and y 
differ, i.e., 
dHamming(x, y) = |{i : 1 ≤ i ≤ n | xi ≠ yi}|. 

If the alphabet contains a special 
symbol 0, we can also define the Hamming 
weight of a sequence which equals the 
number of nonzero positions.  

In order to be able to correct errors, 
we use only a subset of all possible 
sequences. In particular, we may take a 
subset of all possible sequences of length n.  

Definition 2 (block code) [4]:  
A block code B of length n is a 

subset of all possible sequences of length n 
over an alphabet A, i.e., B ⊆ An. The rate of 
the code is: 

An
B

A

B
R

n log
log

log

log
==  

i.e., the average number of symbols 
encoded by a codeword. 

The simplest code that can be used 
to detect or correct errors is the repetition 
code. A repetition code with rate 1/2 
transmits every symbol twice. At the 
receiver, the two symbols are compared, 
and if they differ, an error is detected. 
Using this code over a channel with error 
probability p, the probability of an 
undetected error is p2. Sending more than 
two copies of each symbol, we can decrease 
the probability of an undetected error even 
more. But at the same time, the rate of the 
code decreases since the number of 
codewords remains fixed while the length of 
the code increases. A repetition code can 
not only be used to detect errors, but also to 
correct errors. For this, we send three 
copies of each symbol, i.e., we have a 
repetition code with rate 1/3. At the 
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receiver, the three symbols are compared. If 
at most one symbol is wrong, the two error-
free symbols agree and we assume that the 
corresponding symbol is correct. Again, 
increasing the number of copies sent 
increases the number of errors that can be 
corrected. For the general situation, we 
consider the distance between two words of 
the block code B. 

Definition 3 (minimum distance) [4]:  
The minimum distance of a block code 

B is the minimum number of positions in 
which two distinct codewords differ, i.e.  

dmin(B) := min{dHamming(x, y) : x, y 
∈ B | x ≠ y}. 

The error-correcting ability of a code 
is related to its minimum distance. 

Theorem 1: Let B be a block code with 
minimum Hamming distance d. Then one can 
either detect any error that acts on no more 
than d positions or correct any error that acts 
on no more than  (d − 1)/2 positions. 

Proof: From the definition of the 
minimum distance of the code B it follows 
that at least d positions have to be changed in 
order to transform one codeword into 
another. Hence any error acting on less than 
d − 1 positions can be detected. If strictly less 
than d/2 positions are changed, there will be 
a unique codeword which is closest in the 
Hamming distance. Hence up to (d − 1)/2 
errors can be corrected [4]. 

Definition 4: An (m, n, d)-error-
correction code is a subset C ⊆ Zqm of size 
qn such that d(x, y) ≥ d for every pair of 
distinct elements x, y ∈ C. The parameter d is 
called the minimum distance of the code, and 
elements of C are called codewords [13]. 

Variations on this theme exist. Given a 
stream of data that is to be sent, the data is 
broken up into blocks of bits, and in sending, 
each block is sent some predetermined 
number of times. For example, if we want to 
send "1011", we may repeat this block three 
times each.  

Suppose we send "1011 1011 1011", 
and this is received as "1010 1011 1011". As 
one group is not the same as the other two, 
we can determine that an error has 
occurred. This scheme is not very efficient, 
and can be susceptible to problems if the 
error occurs in exactly the same place for 
each group (e.g. "1010 1010 1010" in the 
example above will be detected as correct in 
this scheme). The scheme however is 
extremely simple, and is in fact used in 
some transmissions of numbers stations. 
Hamming Code 

In telecommunication, a Hamming 
code is a linear error-correcting code 
named after its inventor, Richard 
Hamming [5]. Hamming codes can detect 
and correct single-bit errors. In other 
words, the Hamming distance between the 
transmitted and received code-words must 
be zero or one for reliable communication. 
Alternatively, it can detect (but not correct) 
up to two simultaneous bit errors. 
In contrast, the simple parity code cannot 
correct errors, nor can it be used to detect 
more than one error (such as where two 
bits are transposed). 
In mathematical terms, Hamming codes are 
a class of binary linear codes. For each 
integer m > 1 there is a code with 
parameters: [2m − 1, 2m − m − 1, 3]. The 
parity-check matrix of a Hamming code is 
constructed by listing all columns of length 
m that are pair-wise independent. 
We now give a simple example of an error-
correction code: a Hamming or repetition 
code. In this example, redundancy is 
introduced directly into a message by 
repeating each bit (or number in Zq) three 
times. 
For example, consider messages which are 
3-bit strings, so n = 3. Each bit in the string 
is repeated three times, so the resulting 
message length is m = 9. 
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Message Codeword 
000 000000000 
001 000000111 
010 000111000 
011 000111111 
100 111000000 
101 111000111 
110 111111000 
111 111111111 

Note that the minimum distance 
between the messages may be 1, but the 
minimum distance of the repetition code is 3. 
This means that any 1-bit error in the 
codewords may be corrected. Indeed, if we 
look at the three blocks of three bits each in a 
received message, we can recover the original 
bit by taking the most common bit among the 
three. If no error has occurred, the three bits 
would be 000 or 111, and if a single bit flip 
has occurred, the bits would be 100, 010, or 
001 in case a zero was encoded, and 011, 101, 
or 110 if a one was encoded. In either case, 
the most common bit gives us the correct 
answer [13]. 

Error Correcting Codes only succeed 
if the errors made in the individual bit 
positions are relatively uncorrelated, so that 
the number of simultaneous errors in many 
bit positions is small. If there are many 
simultaneous errors, the error-correcting 
code will not be able to correct them 
(Peterson & Weldon, 1972). 
 
  Sequenceable Group and 

Communication 
Anon – trivial finite group G of order 

n is said to be sequenceable if its elements can 
be arranged in a sequence  
(b1, b2,………, bn) in such a way that the 
partial products  
(a1, a2, ……., an) where ai = b1b2 ……… bi 
are distinct. 

      The sequence (b1, b2, …… , bn) is 
called a sequencing for G. 

      If (b1, b2, …… , bn) is a 
sequencing for G then b1= e where e is the 
identity of G. 

      A Latin square of order n is an n 
× n array defined on a set X with n 
elements such that every element of X 
appears once in each row and once in each 
column.  

A Latin is said to be based on a 
group G if the Latin square can be 
bordered with the elements of G to form the 
clayey table of G. 

      An n × n Latin is said to be row 
complete if every pair  
{x, y} of distinct elements of X occurs 
exactly once in each order in adjacent 
vertical cells. If a Latin square is both row 
complete and column complete then it is 
said to be complete [15]. 

Theorem 2: Let G be a sequenceable 
group and (b1, b2, …… , bn) be a 
sequencing with a associated directed 
product (a1, a2, ……., an). then L=(Lij) 
where Lij = a i -1 aj  for 1 ≤  i, j  ≤ n. is a 
complete Latin square. 

Proof: Suppose Lij = Lik for some 
1≤  i, j  ≤ n. then a i -1 aj = a i -1  ak giving 
aj=ak.. 

Therefore j = k and L has no 
repeated entries in any row. Similarly, L 
has no repeated entries in any column 
therefore L is a Latin square. To show that: 

L is row complete we need ai -1aj=X 
and        ai -1aj+1 = Y to have a unique 
solution for i and j given any ordered pair 
(x, y) of distinct elements of G [15].  

Inverting both sides of the first 
equation and post – multiplying by the 
second gives ai -1aj = x -1y.  

That is bj+1 = x-1 y, uniquely 
determining j. 

Now ai -1aj  = x uniquely determines 
i and L is row complete. By same way we 
can show that L is also column complete. 
Therefore L is a complete Latin square. 
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Classifying  Sequenceable Group  
In this section we introduced 

completely classified sequenceable groups. 
Abelian groups  

Tthe following  theorem exactly which 
abelian groups are sequenceable. A finite 
abelian group G is sequenceable if and only if 
G is a binary group. The binary group is 
defined to be a group with a single element of 
order 2. 
3-1-2 Dihedral groups 

 Let n ≥ 3 we describe the 
dihedral group D2n, as the set of ordered 
pairs ( x, Є) with x ∈ Zn and Є ∈ Z2   

Defined by  (x, 0) (y, δ) = (x+y, δ). 
 (x, 1) (y, δ) = ( x – y, 1 +  δ ). 
In 1976 Anderson [1] showed that D2p 

is a sequenceable if p is a prime with a 
primitive root r such that 3r ≡ -1 ( mod p). 
also in 1976 Friedlander [14] showed that 
D2p is sequenceable if p is prime and p ≡ 1 
(mod 4) and where p is a prime such that 

 p ≡ 7 (mod 8) and p has a primitive 
root r such that 2r ≡ -1 (mod p) and by [10] 
the dihedral groups D2n of order 2n. are 
sequenceable for all n. where n ≠ 3 ( D6 is not 
sequenceable ) and  n ≠ 4k and  the dihedral 
groups D2n are sequenceable when n = 4k, 
except when n = 4. 

Therefore, the following groups are 
known to be sequenceable. 

Some groups of order pq where p and 
q are odd prime, direct product, of some of 
the groups of the previous type if both p and 
q are congruent to 3 modulo 4,  at least one of 
the non – abelian groups of order pm, for p 
an odd prime and m ≥ 3, non – abelian 
groups of order n, where 10 ≤ n ≤ 32. and A5, 
S5.  
Orthogonality: 

    Definition 5: Tow Latin squares A = 
( aij) and B = (bij) are orthogonal if the set  

   { (aij, bij): 1 ≤ i, j ≤ n} contains all 
possible paris.  

 

Example:- The following tow Latin 
squares are orthogonal  

1 2 3 4 1 4 3 2 
2 1 4 3 3 2 1 4 
3 4 1 2 2 3 4 1 
4 3 2 1 4 1 2 3 

 
Theorem 3: If A1, A2, …., Am are 

mutually orthogonal Latin squares of order 
n then 

 m ≤ n-1 
Proof: Let Ak= ( aij(k))nxn. By ( if A 

and B are orthogonal Latin squares. Then 
the standard form of A and B is A* and B* 
respectively, are orthogonal) [18].  

We may assume that all A1,…., Am 
are in standard form,  
otherwise we standardizes them, without 
affecting orthogonally. i.e. ajk(k)=1. 
Consider the set S= { (i, j, k): aij (k)= 1}. 

Clearly the number of elements of S 
is equal to the total number of 1's in A1, 
….., Am, so that  

 | S | = n m ……………… (1) 
Consider a triple (i, j, k) ∈ S, each of 

the squares has 1 in the position (1, 1). 
Hence, if  i = j = 1 then k can be 

arbitrary. Also, no other entry in the 
position (1, j) or 
 (i,1) can be 1 so that we can not have 
 i = 1 ≠ j or i ≠ 1 = j, finally, if i ≠ 1 and j ≠ 
1, then because of orthogonally, there may 
exit at most one k such that (i, j, k) ∈ S. 

We conclude that 
 | S | ≤  m + ( n-1) 2. ……………. (2)  

Combining (1) and (2) we obtain m ≤ n -1. 
 Latin squares from finite fields: 
In this section we introduce a method of 
constructing orthogonal Latin squares from 
finite fields. 
Theorem 4: If n = pt. where p is a prime 
and t ≥ 1, then there exist n-1 mutually 
orthogonal Latin squares of order n [19]. 
Example:- Let us use the finite field Z5 to 
construct 4 mutually orthogonal Latin 
squares of order 5.  
First, we Let f1= 1, f2 = 2, f3 = 3, f4 = 4, f5 = 0. 
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The first Latin squares A1 = (aij(1))5×5 is 
given by aij(1)= fi + fj. 
 

            j  
fj 
 i      fi 

1    2    3     4    5 
1    2    3     4    5 

1      1           
2      2 
3      3 
4      4 
5      0 

2    3    4     0    1 
3    4    0     1    2 
4    0    1     2    3 
0    1    2     3    4 
1    2    3     4    0 

Similarly, the second Latin square A2 = (aij
(2)) 

is given by aij
(2) = 2fi + fj  

  
        j  
 fj 
 i      fi    2fi 

1    2    3     4    5 
1    2    3     4    5 

1      1     2       
2      2     4 
3      3     1 
4      4     3 
5      0     0 

3    4    0     1    2 
0    1    2     3    4 
2    3    4     0    1 
4    0    1     2    3 
1    2    3     4    0 

Repeating similar calculation for A 3  and A 4  
we obtain the squares: 
 
 

2 3 4 0 1 
  3 4 0 1 2 
A1  =    4 0 1 2 3   
 0 1 2 3 4 
 1 2 3 4 0  
 

3  4 0 1 2 
  0  1 2 3 4 
A 2  =    2  3 4 0 1 
            4  0 1 2 3 
 1  2 3 4 0 
 

4 0 1 2 3  
  2 3 4 0 1  
A 3 =    0 1 2 3 4 
 3 4 0 1 2 
 1 2 3 4 0 
 

0  1 2 3 4 
 4  0 1 2 3 
A 4  =    3  4 0 1 2 
 2  3 4 0 1 

1  2 3 4 0 
 
Definition 5: Let A = (aij)m × m and B = (bij)n × 

n two Latin square. Their direct product  
C = A × B is an mn × mn array, in dexed by 
the elements of {1, ……,m} × {1,……..,n} 
and entries C(I,j), (k,l) = (aik, bjl) [19]. 
Example:- consider the following tow Latin 
square  
 1 2  2 3 1 
 2 1 , 3 1 2 
    1 2 3 
 
Their direct product, according to 
definition, is  

 (1,1),(1,2),(1,3),(2,1),(2,2),(2,3) 
(1,1) 
(1,2) 
(1,3) 
(2,1) 
(2,2) 
(2,3) 

(1,2),(1,3),(1,1),(2,2),(2,3),(2,1) 
(1,3),(1,1),(1,2),(2,3),(2,1),(2,2) 
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3) 
(2,2),(2,3),(2,1),(1,2),(1,3),(1,1) 
(2,3),(2,1),(2,2),(1,3),(1,1),(1,2) 
(2,1),(2,2),(2,3),(1,1),(1,2),(1,3) 

After renumbering this becomes 
 2          3 1 5 6 4 
 3 1 2 6 4 5 
 1 2 3 4 5 6 
 5 6 4 2 3 1 
 6 4 5 3 1 2 
 4 5 6 1 2 3 
Theorem 5: If A and B are orthogonal 
Latin squares of order m, and if C and D 
are orthogonal Latin squares of order n. 
then A × C and B × D are orthogonal Latin 
square [19]. 
Corollary : If n ≠ 2 (mod 4) then there 
exists a pair of orthogonal Latin squares of 
order n. 
Proof: Let n p1a1 p2a2…. Pkak be the 
decomposition of n into a product of 
primes, with p1 < …< pk, since n ≠ 2 (mod 
4) it follows that p1a1 > 2, and so  piai >2 
foe every i, by theorem  (4), for each i ( 1 ≤ i 
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≤ k) there exist a pair Ai, Bi of orthogonal 
Latin squares of order pia1, but then the 
Latin squares A = A1 × …× Ak  and B = B1 × 
…× Bk  are orthogonal by theorem (5) and 
have order n [19]. 
The Proposed Latin Square Error 

Correcting Code (LSECC) 
This section obtain who we can exploit the 
characteristics of the orthogonal Latin 
Squares mentioned to design a new technique 
of the Error Correcting Code we call it: Latin 
Square Error Correcting Code (LSECC). 
The proposed new technique is an Error 
Correcting code method that is used to save 
the information from the lost may be occur in 
the transmission media. The new technique is 
uses the characteristics of the Orthogonal 
Latin Squares and employ it to correct most 
of the simultaneous errors in bits caused by 
noise.   
Definition 6: A code is said to be t-error 
correcting if when no more than t-error has 
occurred in the transmissions of codeword. 
We note that if we have n × n Latin Square 
(ai j), we can build n2 codewords, by using 
ordered triples (i, j, ai j). 
These triples are of Hamming distances of at 
least 2 a part because of constructions Latin 
square. 
Example:- Let the Latin Square of group Z3, 
the codewords are:      
The Latin Square: 

















102
021
210

 

The code words: 
   (0, 0, 0), (0, 1, 1), (0, 2, 2), 
   (1, 0, 1), (1, 1, 2), (1, 2, 0), 
   (2, 0, 2), (2, 1, 0), (2, 2, 1), 
A single error detecting code formed from Z3 
and its corresponding code words. 
Theorem 6: Any pair of orthogonal Latin 
Square of order n yields a 1-error correcting 
code with n2 code words. 
 

Proof: Let the n2 code words of length 4 
over the alphabet {0, 1, …., n-1} the code 
words are merely the 4-tuples code words 
of the form (i, j, aij, bi j) 0 ≤ i, j ≤ .n-1. 
Such that [ai j] = A and [bi j] = B forming 
two Latin Squares. 
Suppose that w = (i, j, ai j, bi j) and w` = (i`, 
j`, ai j`, bi j` ) are two such words. 
If i = i` and j = j` clearly the two words are 
the same, if ai j=ai` j` and bi j=bi` j` they 
must be the same words A and B are 
orthogonal. If i = i` and ai j=ai` j` then the 
words are same, since, A is Latin Square 
[14]. 
The other cases are all similar. 
Thus any two codewords of distances 3 
which will be corrected one error. 
       Now, from this theorem we can use sets 
of orthogonal Latin Squares to construct 
codes. 
If we have q × q Latin Squares L1, L2, …., 
Ln, we construct codewords by taking a 
coordinate pair and adjoining the 
corresponding element from each Latin 
Squares  
 (i, j, L1, L2, …., Ln). 
These q2 codewords have hamming 
distance of at least 2t + 1 from each other. 
    We can show that any pair of orthogonal 
Latin Squares of order n yields a 1-error 
correcting code with n2 code words of 
length 4 over the alphabet {0, 1, …., n-1}. 
Thus any two code words at distance 2 or 
less are the same and have a code of 
distance 3 which will correct one error.   
   
Example:- Let the following cayley table of 
Z4 and one of its orthogonal mates is: 



















=

0123
1032
2301
3210

A

   


















=

2103
0321
3012
1230

B

 
 (0, 0, 0, 0), (0, 1, 1, 3), (0, 2, 2, 2), (0, 3, 3, 1), 
(1, 0, 1, 2), (1, 1, 0, 1), (1, 2, 3, 0), (1, 3, 2, 3), 
(2, 0, 2, 1), (2, 1, 3, 2), (2, 2, 0, 3), (2, 3, 1, 0), 
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(3, 0, 3, 3), (3, 1, 2, 0), (3, 2, 1, 1), (3, 3, 0, 2)  
The codewords generated from the above 
Orthogonal Latin Squares are. 
When the sender want to transmit the 
following bits: 
 10 11 01 10 00 01 11 01 
The sender do the following for each four 
bits: 
Takes the four bits to make it pair of two bits 
numbers (i, j). 
Takes the codeword correspond to i and j 
from possible code words as    (i, j, ai j, bi j). 
Send the codeword (i, j, ai j, bi j). 
He send the following code words as obtained 
below: 
10b = 2d  
11b = 3d 
Then he send the codeword:  (2, 3, 1, 0) 
≡ 10 11 01 00 
01b = 1d 
10b = 2d 
Then he send the codeword:  (1, 2, 3, 0) 
≡ 01 10 11 00 
00b = 0d 
01b = 1d 
Then e send the codeword:  (0, 1, 1, 3) ≡ 00 01 
01 11 
11b =3d 
01b =1d 
Then he send the codeword:  (3, 1, 2, 0) 
≡ 11 01 10 00 
And so on for other bits in the transmission 
media, 
Therefore, the data:  1011 0110 0001 1101   
is encoded into:     1011 0100 0110 1100 
0001 0111 1101 1000  
and transmitted. 
Suppose the transmitted bits affect by noise 
cause the following errors: 
1001 0100 0101 1100 1101 0111 1101 0000 
The receiver takes each eight bits to convert 
it into corresponding codeword and match 
with its possible code words and do the 
following for each eight bits: 
1.If the received codeword match with one of 

the possible code words there is no error. 

He takes the first two symbols of the 
codeword as four bits    

2.If the received codeword no match with 
one of the possible code words there is an 
error, search the code words to find 
almost match three symbols of the 
codeword and correct it. He takes the first 
two symbols of the corrected codeword as 
four bits 

3.Otherwise there is damage in the 
transmission and send an 
acknowledgement to the sender to 
retransmit the data. 

Take the first eight bits (codeword): 1001 
0100 has a single error; the third bit is 
changed from 1 to 0.  
Where the error codeword is  1001 0100 ≡ 
(2, 1, 1, 0). 
Therefore, there is no more other the single 
codeword (2, 3, 1, 0) of the possible 
codeword match three elements of the error 
codeword. Then he receive 1011.  
Take the second eight bits (codeword): 0101 
1100 have two simultaneous errors; the 
third bit is changed from 1 to 0 and the 
fourth bit is changed from 0 to 1, 
Where the error codeword is  0101 1100 ≡ 
(1, 1, 3, 0).        
Therefore, there is no more other single 
codeword (1, 2, 3, 0) of the possible 
codeword match three elements of the error 
codeword. Then he receive 0110. 
Take the third eight bits (codeword): 1101 
0111 have two simultaneous errors; the first 
bit is changed from 0 to 1 and the second 
bit is changed from 0 to 1. 
Where the error codeword is  1101 0111 ≡ 
(3, 1, 1, 3).        
Therefore, there is no more other single 
codeword (0, 1, 1, 3), of the possible 
codeword match three elements of the error 
codeword. Then he receive 0001. 
 
Take the fourth eight bits (codeword): 1101 
0000 has single bit errors; the fifth bit is 
changed from 1 to 0. 
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Where the error codeword is  1101 0000 ≡ (3, 
1, 0, 0).        
Therefore, there is no more other single 
codeword (3, 1, 2, 0), of the possible 
codeword match three elements of the error 
codeword Then he receive 1101.  
Finally, he receives the data 1011 0110 0001 
1101.  
Latin Square Error Correcting Code 

Algorithm 
The previous example explain the idea of 
LSECC, it is correct even most the two 
simultaneous bits errors, if the sender uses 
two orthogonal Latin Squares 8 × 8 (i.e. 
cayley table of Z8), the three simultaneous 
bits errors may be corrected, therefore, the 
using of the cayley table of Z2n may be 
correct the n-simultaneous bits errors.  We 
can construct the following LSECC 
Algorithm:  
Algorithm: (LSECC) 
1- Initialization 
1.1- Choose m = 2n, where m represent the 
dimension of the Latin Square. 
1.2- Build two orthogonal Latin Squares A 
and B of dimension m×m (i.e. cayley table of 
Zm). 
1.3- Construct all possible 4-tuples 
codewords of the form (i, j, aij, bi j).  
2- Coding and Sending 
The sender separates the data into 2n-bits 
words, and then does the following for each 
2n-bits: 
2.1- Takes the 2n-bits to make it pair of n-
bits numbers (i, j). 
2.2- Takes the codeword correspond to i and 
j from possible codewords as (i, j, ai j, bi j). 
2.3- Send the codeword (i, j, ai j, bi j). 
3- Decoding and Receiving 
The receiver takes each 4n-bits to convert it 
into corresponding codeword and match with 
its possible code words and do the following 
for each 4n-bits: 
3.1- If the received codeword match with one 
of the possible code words there is no error. 

He takes the first two symbols of the 
codeword as two n-bits received data.    
3.2- If the received codeword do not match 
with one of the possible code words there is 
an error, search the code words to find 
almost match three symbols of the 
codeword and correct it. He takes the first 
two symbols of the corrected codeword as 
two n-bits received data.     
3.3- Otherwise there is damage in the 
transmission and send an acknowledgement 
to the sender to retransmit the data. 
Conclusion 
Error-correcting code theory is essential to 
our modern life. The rapid growth of the 
amount of information needed to be 
transmitted makes it very important to 
continue our study of this subject. Codes 
that are more efficient to transmit, correct 
more errors, and are more efficient to 
decode are always needed. The proposed 
LSECC is a good algorithm and more 
efficient than some previous ECC 
techniques, which is correct all 1-error and 
the most of the burst errors n-error. The 
main advantages of LSECC are the n-error 
correcting code, the second, it is the 
redundancy code have length equal the 
length of the data we want to transmit, i.e. 
no more than the length of the original data 
such as the previous techniques. The 
advantages of the non-complete burst error 
correcting code presented in this paper are 
the very efficient and simple decoding 
algorithm, the low redundancy, and the fact 
that it is systematic.    
Finally, the using of the cayley table of Z2n 
may be correct the n-simultaneous bits 
errors. The more efficient way to Error 
Correcting codes would be very helpful. 
With increase demands for information 
transfer, in addition to new uses for the 
subject in other areas, the importance of 
research in error-correcting code theory 
will only increase as time goes on. 
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  تصحيح خطأ الرموز باستخدام المربع اللاتيني
  

  كارم عبد الواحد عبد الجبارعلي مكي صغير        م
Email: ali_makki_sagheer@yahoo.com 

  الخلاصة
البيانات الرقمية التي تخزن في الحاسبات أَو التي ترسل عبر شبكات الحاسوب بالتاكيد خاضعة للخطأ بسبب الوسط الفيزيـائي                   

هي وسائل تستخدم فضلة من البيانات حتـى إذا تعـرض     (ECC) ان رموز تصحيح الخطأ. الارسالالمستخدم في الخزن او 
تستخدم في التقنية الحديثـة   (ECC) رموز تصحيح الخطأ. يمكنها ان تسترجع البيانات الأصلية فجزء منها للخطأ أَو الفقدان، 

مثل هـذه الرمـوز تـدعى       .  المختلفة رموز تصحيح الخطأ المتتابع مطلوبة في التطبيقات      . لكي نحمي المعلومات من الأخطاء    
 .هناك عدد محدود نسبياً من رموز تصحيح الخطأ المتتابع الكامل. رموز تصحيح الخطأ المتتابع الكامل
 رموز تصحيح الخطأ تستند على مفهوم ونظريـة المربعـات اللاتينيـة، حيـث يـستخدم                 يقدم هذا البحث طريقة مقترحة من     

ان الطريقة المطورة هي ليست من طـرق رمـوز تـصحيح الخطـأ              . خصائص المربعان اللاتينية المتعامدة لتصحيح الأخطاء     
علـى أيـة حـال، إذا كانـت     . كـل ، لكن ليس الn ≥  i   بطول المتتابع الكامل، لكن يممكن أن تصحح أكثر تتابع من الاخطاء

 .مكن أَن تستخدم كطريقة من طرق رموز تصحيح الخطأ المتتابعمالاخطاء صغيرة بما فيه الكفاية، فان هذه الطريقة 
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