Pseudo-prime radical submodule

Firas adel fawzi

Department of mathematics College of computer science and Mathematics Tikrit University, Tikrit , Iraq
(Received: 26 / 4 / 2012 ---- Accepted: 28 / 5 / 2012)

Abstract

: Let R be acommutative ring with identity, and M be a unitary R-module .Aproper submodule N of M is called pseudo-prime submodule if whenever $\mathrm{abm} \in \mathrm{N}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $\mathrm{m} \in \mathrm{M}$,then either $a^{n} m \in N$ or $b^{k} \in N$ for $n, k \in Z^{n}$.In this paper we Introduce pseudo-prime radical of asubmodule N as ageneralization of aprime -radical of asubmoudule N where a pseudo-prime radical of asubmodule N denoted by PP-rad ${ }_{M}(N)$ is define to the as the intersection of all pseudo prime submodule of M that contain N. also ,we Introduce the concept pseudo - prime radical submodule where aproper submodule N of M which satisfies PP$\operatorname{rad}_{\mathrm{M}}(\mathrm{N})=\mathrm{N}$ is called pseudo -prime radical submodule ofM. We give some basic properties of these concepts.

Introduction:

Let R be a commutative ring with unity, and M be a unitary R-module. A Proper sub module N of an R-module , M is called a prime if $r m \in N$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $r \in[N: M]$.the prime radical of an R-sub module N of M denoted By $\operatorname{rad}_{\mathrm{m}}(\mathrm{N})$ is defined as the intersection of all prime submodule of M containing N , if them is no prime sub module of M containing N , then $\operatorname{rad}_{\mathrm{m}}(\mathrm{N})=\mathrm{M}$ [1]. pseudo -prime sub module are generalization of a prime submodule are introduce in [4], where a proper sub module N of an R -module M is called pseudoprime if $x y m \in N$, where $x, y \in R, m \in M$ then $x^{n} m \in N$ or $y^{x} m \in N \quad n, k \in Z^{+}$, in this paper we introduce the concept of pseudo-prime radical of a sub module as a generalization of prime radical of sub module in section one , and in section two we introduce the concept of pseudo radical sub module as a generalization of a prime radical sub module and give some basic proportion of concept.

Section 1:pseudo-prime radical of a submodule

 In this section, we introduce the concept of pseudoprime radical of asubmodule as a generalization of prime radical of asubmodule and gives some of its basic properties:
Definition 1-1

Let M be an R -module , and let N be asubmodule of M ,the pseudo -prime radical of N denoted by pp$\operatorname{rad}_{\mathrm{M}}(\mathrm{N})$ is the intersection of all pseudo-prime submodule of M containing N .If there is no pseudoprime submodule of M containing N , we write pp$\operatorname{rad}_{\mathrm{M}}(\mathrm{N})=\mathrm{M}$.
We start this section by the following proposition:

Proposition 1.2

Let M and M' be two R-modules with $f: M \rightarrow M^{\prime}$ is an epi-morphism N is asubmodule of M with kerf $\subseteq N$, then the following are satisfiy
$1-\mathrm{f}\left(\mathrm{pp}-\mathrm{rad}_{\mathrm{M}}(\mathrm{N})\right)=\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{f}(\mathrm{N}))$
$2-\mathrm{f}\left(\operatorname{pp}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})\right)=\operatorname{PP}-\operatorname{rad}_{\mathrm{M}}\left(f^{-1}\left(N^{\prime}\right)\right.$, whene $\quad \mathrm{N}^{\prime} \quad$ is asubmodule of M^{\prime}.

$\underline{\text { Proof }}_{(1)}$

Since pp-rad(n)= C L , whene the intersection is over all pseudo-prime submodule of M with $N \subseteq L$,so that
$\mathrm{f}\left(\mathrm{pp}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})\right)=\mathrm{f}(\cap L)$. Since $\operatorname{kerf} \complement_{\mathrm{N}} \subseteq_{\mathrm{L}}$ then by[1] we have $\mathrm{f}\left(\mathrm{pp}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})\right)=\cap \mathrm{F}(\mathrm{L})$ where the intersection is over all pseudo-prime submodules $f(\mathrm{~L})$ of M^{\prime} With $\mathrm{f}(\mathrm{n}) \complement_{\mathrm{f}}(\mathrm{L})$. This $\left.\mathrm{f}\left(\mathrm{pp}-\mathrm{rad}_{\mathrm{M}}(\mathrm{N})\right)=\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})\right)$.
(2):let N'be a submodule of M', then pp-rad ${ }_{M}\left(N^{\prime}\right)$ $=\cap L^{\prime}$, Whene the intersection is over all pseudoprime submodule L^{\prime} of M^{\prime} with $\mathrm{N}^{\prime} \subseteq_{\mathrm{L}} \mathrm{L}^{\prime}$.Then by [3] $f^{-1}\left(\mathrm{pp}-\operatorname{rad}_{\mathrm{M}^{\prime}}\left(\mathrm{N}^{\prime}\right)\right)=f^{-1}\left(\cap^{\prime}\right)$, where the intersection is over all pseudo-prime submodule $f^{-1}\left(\mathrm{~L}^{\prime}\right)$ of M with $f^{-1}\left(\mathrm{~N}^{\prime}\right) \subseteq f^{-1}\left(\mathrm{~L}^{\prime}\right)$.
Thus $f^{-1}\left(P P-\operatorname{rad}_{M^{\prime}}\left(N^{\prime}\right)\right)=P P-\operatorname{rad}_{M}\left(f^{-1}\left(N^{\prime}\right)\right)$.
The following proposition gives some basic properties of pseudo-prime radical ofasubmodule.

Proposition 1.3

Let N and L be asubmodules of anR-module M Then the following are satisfy
$1-\mathrm{N} \subseteq \mathrm{PP}-\mathrm{rad}_{\mathrm{M}}(\mathrm{N})$
$2-\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}\left(\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})\right)=\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})$
$3-\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L}) \subseteq \mathrm{PP}-\mathrm{rad}_{\mathrm{M}}(\mathrm{N}) \cap \mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{L})$

$\underline{\operatorname{Proof}(1)}$

Since pp-rad $(N)=\cap L$, Where the intersection is over all psudo-prime submodules L of M with $N \subseteq L$,then $\mathrm{N} \subseteq$ PP- $-\mathrm{rad}_{\mathrm{M}}(\mathrm{N})$.
(2):From part (1)we have pp-rad ${ }_{\mathrm{M}}(\mathrm{N}) \subseteq$ PP-rad ${ }_{\mathrm{M}}(\mathrm{PP}-$ $\operatorname{rad}_{\mathrm{M}}(\mathrm{N})$). From definition of pseudo-prime radical of asubmodule we have pp-rad ${ }_{\mathrm{M}}\left(\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})\right)=\cap \mathrm{L}$, where the intersection is over all pseudo-prime submodule L withpp- $\operatorname{rad}_{M}(N) \subseteq$ L. Then by part(1) we have $\mathrm{N} \subseteq$ PP-rad $\mathrm{M}_{\mathrm{M}}(\mathrm{N})$ and hence pp-rad $\left.{ }_{\mathrm{M}}(\mathrm{N})\right) \subseteq$ PP$\operatorname{rad}_{\mathrm{M}}(\mathrm{N})$. Hence $\mathrm{pp}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})$.
(3)let P be apseudo-prime submodule of M containing L.But $\mathrm{N} \cap \mathrm{L} \subseteq \mathrm{L} \subseteq \mathrm{P}$, Then pp-rad ${ }_{\mathrm{M}}$ $(\mathrm{N} \cap \mathrm{L}) \subseteq \mathrm{P}$. Hence pp-rad $(\mathrm{N} \cap \mathrm{L}) \subseteq$ PP-rad ${ }_{\mathrm{M}}(\mathrm{L})$. Also,we have pp-rad $(N \cap L) \subseteq P P-\operatorname{rad}_{M}(N)$. Hence pp-rad ${ }_{M}(N \cap L) \subseteq$ PP- $-\operatorname{rad}_{M}(N) \cap \operatorname{PP-rad}{ }_{M}(L)$.
The following proposition gives condition where which the equality of prop.1.3.(3) hold.

Proposition1.4

Let N and L are asubmodules of an R -module M such that every pseudo -prime submodule ofM with contains is completely irreducible submodule Then $p p-\operatorname{rad}_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L})=\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N}) \cap \operatorname{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{L})$.

Proof

From prop-1.3 we have pp-rad ${ }_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L}) \subseteq$ PP$\operatorname{rad}_{\mathrm{M}}(\mathrm{N}) \cap \mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{L})$.Now if pp-rad${ }_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L})=\mathrm{M}$, then $\operatorname{pp}^{-r a d}{ }_{M}(\mathrm{~N})=P P-\operatorname{rad}_{\mathrm{M}} \quad(\mathrm{L})=\mathrm{M}$, then pp$\operatorname{rad}_{\mathrm{M}}(\mathrm{N})=$ PP- $-\operatorname{rad}_{\mathrm{M}}(\mathrm{L})=\mathrm{M}$. But , if pp-rad$(\mathrm{N}) \neq \mathrm{M}$, then there exist apsudo-prime submodule k of M such that $\mathrm{N} \cap \mathrm{L} \subseteq_{\mathrm{K}}$. Hence pp-rad $\mathrm{ra}_{\mathrm{M}}(\mathrm{N}) \complement_{\mathrm{K}}$ or pp-rad$(\mathrm{L}) \complement_{\mathrm{K}}$, and then $p p-\operatorname{rad}_{\mathrm{M}}(\mathrm{N}) \subseteq \cap_{\mathrm{K}}$ or pp-rad$(\mathrm{L}) \subseteq \cap \mathrm{K}$, where $\mathrm{N} \cap \mathrm{L} \subseteq \mathrm{K}$. It follows that pp-rad $\mathrm{m}_{\mathrm{M}}(\mathrm{N}) \subseteq$ PP$\operatorname{rad}_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L})$ or $\mathrm{pp}-\operatorname{rad}_{\mathrm{M}}(\mathrm{L}) \subseteq \mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N} \cap \mathrm{K})$ and then pp-rad ${ }_{M}(\mathrm{~N}) \cap$ PP-rad ${ }_{\mathrm{M}}(\mathrm{L}) \subseteq$ PP- $\operatorname{rad}_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L})$ Thus pp$\operatorname{rad}_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L})=\mathrm{PP}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L})=$ PP-rad${ }_{M}(\mathrm{~N}) \cap \mathrm{PP}-$ $\operatorname{rad}_{\mathrm{M}}(\mathrm{L})$.
We need to introduce the following lemma.

Lemma 1.5

Let P be a pseudo-prime submodule of M , and L, N be submodule of M such that $N \cap L \subseteq_{P}$ such that $[\mathrm{N}: \mathrm{M}]=\mathrm{R}$. Then $\mathrm{L} \subseteq \mathrm{P}$.

Proof

Since $[N: M]+[P: M]=R$, then there exist $a \in[N ; M]$ and $b \in[P ; M]$ such that $a+b=1$ Now,let $x \in L$,then $a x+b x=x$, but $a x \in N$ and $a x \in L . H e n c e ~ a x \in N \cap L$ and $b x \in P$,then $x=a x+b x \in P$. Thenfor $L \subseteq_{K}$.

proposition 1.6

let N and L be any two submodule of an R-module M ,such that $[\mathrm{N}: \mathrm{M}]+[\mathrm{K}: \mathrm{M}]=\mathrm{R}$ for each pseudo-prime submodule k containing $\mathrm{N} \cap \mathrm{L}$.Thenpp- $\operatorname{rad}_{\mathrm{M}}(\mathrm{N} \cap \mathrm{L})$
$=P P-\operatorname{rad}_{M}(N) \cap P P-\operatorname{rad}_{M}(L)$.

Proof

Let $\mathrm{N} \cap \mathrm{L} \subseteq_{\mathrm{K}}$, hence by Lemma 1.5 ,we have $\mathrm{L} \subseteq_{\mathrm{K}}$
.Thus k is completely irreducible and hence by prop.1.4 we have pp-rad $(\mathrm{N} \cap \mathrm{L})=$ PP- $-\mathrm{rad}_{\mathrm{M}}(\mathrm{N}) \cap \mathrm{PP}-$ $\operatorname{rad}_{\mathrm{M}}(\mathrm{L})$.

Section 2: pseudo-prime radical submodules

In this section we introduce the definition of pseudoprime radical submodule and gives some of it's basic properties.

Definetion 2.1

A proper submodule k of an R -module M is called pseudo-prime radical submodule if $\mathrm{pp}-\operatorname{rad}_{\mathrm{M}}(\mathrm{N})=\mathrm{N}$
Recall that an R-module M satisfies the ascending chain condition if everyAscending chain of submodule of M is finite [2]

Proposition 2.2

Let M be an R -module such that M satisfies the ascending chain condition for pseudo-prime radical submodule, then every pseudo-prime radical
submodule of M is the intersection of finite number of pseudo-prime submodules.

Proof

Let N be a pseudo-prime radical submodule of M , and let $\mathrm{N}=\bigcap_{i \in \lambda} \mathrm{~N}_{\mathrm{i}}$, where N_{i} is pseudo-prime submodule of M , for each $i \in \lambda$, and the expression isReduced .
Assume that λ is infinite induce set .without loss of generality we may assume that λ is countable then $\mathrm{N}=\bigcap_{i=1}^{\infty} \mathrm{N}_{\mathrm{i}} \subseteq \bigcap_{i=1}^{\infty} N_{i} \subseteq \bigcap_{i=1}^{\infty} N_{i} \subseteq \ldots$ is an ascending chain of pseudo-prime radical submodules Then by prop-1.3 we have $\cap_{i \in \lambda} N_{i} \subseteq P P-\operatorname{rad}_{M}\left(\cap_{i \in \lambda} N_{i}\right) \subseteq P P-\operatorname{rad}_{M}\left(N_{i}\right)=\bigcap_{i \in \lambda} N_{i}$. But this ascending chain must terminate ,so there exist $j \in \lambda$ such that $\cap_{i=j}^{\infty} N_{i}=\cap_{i=j+1}^{\infty} N_{i}$.Therefore $\cap_{i=j+1} \mathrm{~N}_{\mathrm{i}} \subseteq \mathrm{N}_{\mathrm{j}}$ which contradicts that the expression $\mathrm{N}=\cap_{i=1}^{\infty} \mathrm{N}_{\mathrm{i}}$ is reduced ,therefore λ must be finite and hence $\mathrm{N}=\cap_{i=1}^{n} N_{i}$

Proposition 2.3

Let M be an R-module such that M satisfies the ascending chain condition for pseudo-prime radical submodule.then every proper submodule of M is a pseudo-prime radical submodule of finitely generated submodule.

Proof

Assume that there exist aproper submodule N OF M which is not pseudo-prime radical of finitely generated submodule of it .let $m_{1} \in \mathrm{~N}$ and $N_{1}=\mathrm{pp}-$ $\operatorname{rad}_{\mathrm{M}}\left(\mathrm{Rm}_{1}\right)$,then $\mathrm{N}_{1} \subset \mathrm{~N}$,Thus there exist $\mathrm{m}_{2} \in \mathrm{~N}-\mathrm{N}_{1}$, let $N_{2}=P P-\operatorname{rad}_{M}\left(R m_{1}+R m_{2}\right)$,then $N_{1} \subset N_{2} \subset N$, hence there exist $\mathrm{m}_{3} \in \mathrm{~N}-\mathrm{N}_{3}$, This implies that an ascending chain of pseudo-prime radical submodule $\mathrm{N}_{1} \subset \mathrm{~N}_{2} \subset \mathrm{~N}_{3} \ldots$ Which does not terminate and this is contradiction.
We end this section by the following proposition .

Proposition 2.4

Let M be afinitely generated R-module .if every pseudo-prime submodule of M is a pseudo-prime submodule of M is apseudo-prime radical of a finitely generated submodule of it. Then M satisfies the ascending chainCondition for pseudo-prime submodules.

Proof

Let $\mathrm{N}_{1} \subseteq \mathrm{~N}_{2} \subseteq \mathrm{~N}_{3} \subseteq \ldots$ be ascending chain of pseudoprime submodule of M .Since M .since M is finitely generated ,then $\mathrm{N}=\mathrm{U} \mathrm{N}_{\mathrm{j}}$ is a pseudo-prime submodule of M.Thus by hypothesis , N is pseudo-prime radical submodule of M for some finitely generated submodule $\mathrm{L}=\mathrm{Rm}_{1}+\mathrm{Rm}_{2}+\ldots+\mathrm{Rm}_{\mathrm{n}}$, where $\mathrm{m}_{\mathrm{i}} \in \mathrm{M}$ for all $\mathrm{i}=1,2, \ldots, \mathrm{n}$ Hence $\mathrm{L} \subseteq \mathrm{PP}_{-\operatorname{rad}_{\mathrm{M}}(\mathrm{L})=\mathrm{N}=\mathrm{U} N_{i} \text {, then }}$ there exist $\mathrm{j} \in I$ Such that $\mathrm{L} \subseteq N_{\mathrm{j}}$.there for $\cup N_{i}=N_{i}$
hence the chain of pseudo-prime submoudule N_{i} terminates
Before we introduce the next resut we introduce the following definition

Definition 2.5

An R-module M is called pseudo-compactly packed if every proper submodule of M is pseudo-compactly packed submodule where a proper submodule N of M is called pseudo-compactly packed if for each family $\left\{N_{\alpha}\right\}_{\alpha \in \lambda}$ of pseudo-prime-submodule of M with $\mathrm{N} \subseteq \mathrm{U}_{\alpha \in \lambda} N_{\alpha}$,there exists $\alpha_{1,} \alpha_{2}, \ldots \alpha_{n} \in \lambda$ such that $\mathrm{N} \subseteq \mathrm{U}_{i=1}^{n} N_{\alpha}$.

Proposition 2.6

If M is pseudo-compactly packed R -module with $\mathrm{J}(\mathrm{M}) \neq M$ then M satisfies the ascending chain condition for pseudo-prime submodules

References

[1]Mc Casland, R.L \& Moore, M.E.((on Radical of submodule of finitely generated module))Canada Math .Bull. 29 (1986),37-39.
[2] Iarsen, M.D \& McCarthy op. J.((on multiplication theory of ideals)) Acadimic press , new York 1971

Proof

Let $N_{1} \subseteq N_{2} \subseteq \cdots$ be ascending chain of pseudoprime submodule of M , and $\mathrm{N}=\mathrm{U}_{i=1}^{\infty} N_{i}$, we prove that $\mathrm{N}=\mathrm{M}$ and H is a maximal submodule of M ,then $\mathrm{H} \subseteq \mathrm{U}_{\mathrm{i}=1}^{\infty k} N$.But M is pseudo-compactly packed $\mathrm{H} \subseteq N_{n_{m}}$ But H is maximal submodule of M ,then $\mathrm{H}=N_{n_{m}}$ and hence $\mathrm{M}=\cap_{i=1}^{k} N_{n_{i}}=N_{n_{m}}$ where is a contradiction Thus N is a proper submodule of M.Thus ,there exist $N_{1} \subseteq N_{2} \subseteq \cdots$ is a scending chain ,so there exist $\mathrm{m} \in\{1,2,3, \ldots, k\}$ such that $\mathrm{U}_{i=1}^{k} N_{n_{i}}=N_{n_{m}}$, that is $\mathrm{U}_{i=1}^{k} N_{n_{m}}$, so $N_{1} \subseteq N_{2} \subseteq \ldots N_{n}$. therefor M satisfies the ascending chain condition For pseudo-prime submodule.
[3] Lu ,c.p. ((on prime submodules))J .Math .33, (1984), 61-96.
[4] Wassan, s.J. ((Modules in which annihilator of every submodule is primary ideal)) Msc. thesis , univ . of Tikrit 2005.

> المقاسات الجزئيـة الجذريـة (الكاذبـة اولياً
> فراس عادل فوزي
> قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، نكريت ، العرلـو

لنكنR حلقة إبداليه بمحايد وM مقاساً احادياً. المقاس الجزئي الفعلي M M وعى مقاس اولي كاذب اذا كان abmE N حيث . في هذا البحث قدمنا الجزء الاولي الكاذب للمقاس الجزء $\mathrm{n}, \mathrm{k} \in Z^{+}, a^{k} m \in N$ او $a^{\mathrm{l}} a^{\mathrm{n}} \mathrm{m} \in \mathrm{N}$ فانه اما $m \in M, a, b, m \in R$ N مفهوم الدقاس الجزئي للجذر الاولي الكاذب .حيث ان يقال لمقاس جزئي N من M الذي يحقق الخاصية PP-radM(N)=N بالمقاس الجزئي للجذر الاولى الكاذبة .اعطينا بعض الخواص الاساسية لهذه المفاهيم.

