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Abstract

In this paper, the concepts of edge(arc) extension of
graphs(digraphs) and the edge(arc) extensible class of
graphs(digraphs) have been introduced. The  classes of regular
and eulerian graphs(digraphs) which are not edge(arc) extensible
classes have also been introduced.
The concept of edge(arc) extensibility number has been
introduced as well as the characterization of extensibility number
of regular graphs(digraphs). Also the extensibility number of
eulerian graphs(digraphs) has been characterized.
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للبیــانات والبیــانات المتجــھــھالحــواف توسیـــــــع
اكـــرم  بــرزان عطــــــار

صالملخـ

حواف جدیدة  ودراسة البیانات القابلة في ھذا البحث تم تقدیم مفھوم توسیع البیانات باضافة
كذلك تم تقدیم مفھوم عدد التوسیع للبیانات وإیجاد قیمتھ للبیانات . للتوسیع والغیر قابلة للتوسیع

.المنتظمة وبیانات اویلر

1. Introduction
Kharat and Waphare [6] introduced the concept of reducibility
number for posts in lattices theory. Akram [3] introduced
analogous concept in graph theory, in fact, he studied the
reducibility of graphs (digraphs) and the characterization of
reducibility number for some classes of graphs(digraphs). Akram
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[2] introduced the concept of contractibility number of graphs. In
Akram [1] the concept of vertex extension of graphs had been
introduced. In this work, we studied the concept of edge(arc)
extension of graphs(digraphs) and the edge(arc) extensibility
number for some classes of graphs(digraphs).

A graph ))(),(( GEGVG  consists of  two finite sets, )(GV , the
vertex set of the graph, often denoted by just V , which is a
nonempty set of elements called vertices, and E(G), the edge set
of the graph, often denoted by just E , which is a possibly empty
set of elements called edges, such that each edge e in E is
assigned an unordered pair of vertices ),( vu called the end vertices
of e .The number of vertices of G will be called the order of G , and
will usually be denoted by p ; the number of edges of G will
generally be denoted byq . If for a graph G , 1p then G is called
trivial graph; if 0q then G is called a null graph. We shall usually
denote the edge corresponding to ),( wv where (v and w are
vertices of G ) by .vw
If e is an edge of G having end vertices wv, then e is said to
join the vertices v and w , and these vertices are then said to be
adjacent. An independent set of vertices in G is a set of vertices of
G no two of which are adjacent.
Let v be a vertex of the graph G . If v joined to itself by an edge,
such an edge is called loop. The degree )(vd is the number of
edges of G incident with v , counting each loop twice. If two (or
more) edges of G have the same end vertices then these edges
are called parallel. A graph is called simple if it has no loops and
parallel edges. We say that G is r-regular graph if the degree of
every vertex is .r

A graph G is connected if there is a path joining each  pair of
vertices of G ;  a graph which is not connected is called
disconnected.

A directed graph ),( AVD  consists of two finite sets V , the
vertex set, a nonempty set of elements called the vertices of D
and A , the arc set, a possible empty set of elements called the
arcs of D , such that each arc a in A is assigned  an ordered pair
of vertices ),( vu .

If a is an arc, in the directed graph D , with associated
ordered pair of vertices ),( vu , then a is said to join u to v .

A vertex v of the digraph D is said to reachable from a vertex u
if there is a directed path in D from u to v . A digraph D is said to
be connected if its underlying graph is connected. A digraph D is



called simple if, for any pair of vertices u and v of D , there is at
most one arc from u to v and there is no arc from u to itself.

Let v be a vertex in the digraph D . The indegree )(vid of v is
the number of arcs of D that have v as its head, i.e., the number
of arcs that "go to" v . Similarly, the outdegree )(vod of v is the
number of arcs of D that have v as its tail, i.e., that "go out" of v .

For the undefined concepts and terminology we refer the
reader to Wilson[9], Clark[4], Harary[5], West[8] and Tutte[7].

All the graphs(digraphs) through out this paper are nontrivial
and simple.

2. Edge Extensibility of Graphs.
In this section, we introduced the concepts of  edge extension

set of graph, edge extensible class of graphs and the edge
extensibility number of graph. Further, we characterized the edge
extensibility number of regular and eulerian graphs.
Definition 2.1: LetG be a nontrivial (not complete) simple graph.
The simple graph  obtained from G by adding a nonempty set of
edges S such that every edge in S join two nonadjacent vertices
in G is called edge extension graph, and denoted by SG  , S is
called edge extension set. In particular, if S consists of a single
element e , then e is called extension edge, and the graph
denoted by eG  .
We can see that the graph SG  have vertex set and edge set as
follows:

),()( GVSGV 

SGESGE )()( 

Definition 2.2: Let  be a class of graphs satisfy certain property.
Then  is called edge extensible class, if for every graph G ,
either G is complete, or there exists an extension edge e such
that  eG .
Examples 2.3:

1. The class of connected graphs is edge extensible class.
2. The class of regular graphs is not edge extensible class.
3. The class of eulerian graphs is not edge extensible class.

Definition 2.4: let  be a class of graphs with certain property,
and G be a nontrivial. The edge extensibility number of G with
respect to  is the smallest positive integer m , if exists, such that
there exists an edge extension set S of cardinality m in such
away the graph  SG . We write )(Gextm


 . If such a number



does not exist for G , then we say that the corresponding edge
extensibility number is  .

One can see that the tree T with respect to the class of trees 
has extensibility number is  . Further,  the class of graphs  is
edge extensible if and only if for every graph G either G is
complete or G has extensibility number one.

Now we characterize the edge extensibility number for regular
graphs.
Theorem 2.5: Let  be the class of regular graphs, and R be
a nontrivial simple r-regular graph of order P with 1 Pr . Then




)(Rexte  evenisPifonlyandif2P
oddisPifonlyandifP

Proof: Let R be an r-regular graph of order P with 1 Pr . Then
Rurud )( . Let S be a nonempty set of edges. If SR  is

regular, then SRvhrvd )( . That means the degree of
every vertex in R increased by h where h is a positive integer. It
is clear that this happened when S forms an n-factor in the graph

SR  .
Suppose that P is even. As 1 Pr , then every vertex in R is not
adjacent to at least one vertex. Let },...,,{ 221 peeeS  be a set of
edges and join every edge in S to two nonadjacent vertices in R
such that S forms a 1-factor in the graph SR  . Then

SR wrwd  1)( . Thus the graph SR  is  )1(r regular and
S is edge extension set of cardinality 2p of R . Hence

2)( pRexte 


. If 2)( pRexte 


, then there exists an edge
extension set },...,,{ 21 neeeL  with 2pn  such that  LR which
is impossible as L can not be a 1-factor in LR  and then joining
the nonadjacent vertices of R by the edges of L does not give a
regular graph. Hence 2)( pRexte 


.

Suppose that P is odd. Let },...,,{ 21 PeeeS  be a set of edges and
join every edge in S to two nonadjacent vertices in R such that S
forms a 2-factor in the graph SR  . Then the graph SR  is

 )2(r regular and S is edge extension set of cardinality P of R .
Then PRexte 


)( . If PRexte 


)( ,  then there exists an edge

extension set },...,,{ 21 neeeF  with Pn  such that  FR . Thus
F forms an n-factor which is impossible as Pn  and P is odd.
Hence PRexte 


)( .

Conversely, suppose that 2)( pRexte 


, then by definition
2.4, there exists an edge extension set S of cardinality 2p , and



2p is the smallest positive integer such that  SR . As 2p is
integer P must be even.
Suppose that PRexte 


)( . By definition 2.4, there exists an edge

extension set S of cardinality P , and S is the smallest set such
that  SR . If P is even then there exists an edge extension set
A with cardinality 2p such that  AR and  by part one

2)( pRexte 


, which is a contradiction to our assumption. Hence
P is odd. □

In the following theorem, we characterize the edge extensibility
number for eulerian  graphs.
Theorem 2.6: Let  be the class of eulerian graphs, and G .
Then 3)( 


Gexte if and only if G contains a set of three

independent vertices.
Proof: Suppose that 3)( 


Gexte . Then by definition 2.4, there

exists an edge extension set },,{ 321 eeeS  of cardinality 3 such that
 SG , and S is the smallest such set.

As G is eulerian, then G is connected and the degree of every
vertex in G is even. By definition 2.1, SG  is simple, then the set
of edges },,{ 321 eeeS  in the graph SG  take one of the five forms
,3 1P 21 PP  , 3P , 3,1K or 3C .

As SG  is eulerian, every vertex in SG  has even degree, and it
is clear this happened only when S of the form 3C . Hence 21 ,ee
and 3e are the edges of the cycle 3C . As every edge in S join two
nonadjacent vertices in G , then the vertices of 3C are
independent set of vertices in G.

Conversely, suppose that },,{ 321 vvvA  is a set of  independent
vertices in the eulerian graph G ; let },,{ 321 eeeS  be a set of edges
. Join every edge in S to two nonadjacent vertices in A . Thus S
forms a cycle 3C in the graph SG  . That is every vertex in SG 

has an even degree. As adding the edges to a connected graph
preserves the connectedness, then SG  is connected. Hence

SG  is eulerian and S is edge extension set of cardinality 3.
Hence 3)( 


Gexte .

Suppose that 2)( 


Gexte . Then there exists an edge extension
set },{ 21 eeL  of cardinality 2 such that  LG , which is



impossible , as by definition 2.1, LG  is simple, the set L in the
graph LG  take one of the two forms 2P or 12P , it is obvious in
each case  LG .
As eG  is simple , eG  is not eulerian. Hence 1)( 


Gexte .

Thus 3)( 


Gexte . □
3. Arc Extension Digraphs

In this section the arc extension digraph has been introduced.
Further, the arc extensibility number for regular and eulerian
digraphs has been characterized. First we need to define the
symmetric digraph.

Definition 3.1: Let D be a digraph, the pair of vertices vu, in D is
called symmetric if there is an arc from u to v and arc from v to u
. If every pair of vertices in D is symmetric then D is called
symmetric digraph. If D does not contain any symmetric pair,
then D is called antisymmetric.

By similar way to that in definition 2.1, we define the arc
extension digraph
Definition 3.2: Let D be a not symmetric (nontrivial) simple
digraph. The simple digraph  obtained from D by adding a
nonempty set of arcs S such that every arc in S join a pair of
vertices vu, in which there is no arc  from u to v is called arc
extension digraph, denoted by SD  , S is called arc extension set.
Inparticular, if S consists of a single element a , then a is called
extension arc, and the digraph denoted by aD  .

Now we define the arc extensible class of digraphs.
Definition 3.3: Let D be a class of digraphs satisfying certain
property. The class D is called arc extensible if for every D D
either D is symmetric or there exists an extension arc a such that

 aD D.
One can see that the class of connected digraphs is arc

extensible, but neither the class of regular digraphs nor the class
of eulerian digraphs is arc extensible.

The definition of arc extensibility number is similar to that in
definition 2.4, only replace each graph by a "digraph" and each
edge by an "arc" as follows:

Definition 3.4: let D be a class of a digraphs with certain
property, and D D  be a nontrivial. The arc extensibility number



of D with respect to D is the smallest positive integer m , if exists,
such that there exists an arc extension set S of cardinality m in
which the digraph  SD D  . We write )(

D
Dextam  . If such a

number does not exist for D , then we say that the corresponding
arc extensibility number is  .
Definition 3.5: Two (or more) directed cycles in the digraph D
are called disjoint if its arcs and vertices are distinct.

Here we characterized the arc extensibility number for the
regular digraphs.
Theorem 3.6: Let D be a class of regular digraphs, D D  be an

antisymmetric simple regular digraph of P vertices. Then
PDexta  )(

D
if and only if D contains a set of disjoint directed

cycles C such that every vertex in D belongs to a cycle in C.
Proof: Suppose that PDexta  )(

D
. Then by definition 3.4, there

exists an arc extension set },,{ 1 a...,aaS p2 of cardinality P such
that  SD D and S is the smallest such set.
As SD  is regular digraph, then SDvrvodvid  ,)()( . As the
cardinality of S equals to P and SD  is regular, then either S
forms a directed  Hamiltonian cycle in SD  or S forms a set of
disjoint  directed cycles pass through all the vertices of D .
Suppose that S forms the directed cycle 132211 uau...uauau pp in the
digraph SD  . By the definition 3.2, SD  is simple digraph. Then
we must have the directed cycle 11111 ufu...ufufu 2pppp  in D .
Suppose that S forms a set of disjoint directed cycles pass
through all the vertices of D . Then by similar argument for all the
cycles in S as above, D must have a set of disjoint cycles pass
through all the vertices of D .

Conversely, suppose that D contains a set of disjoint directed
cycles C such that every vertex in D belongs to a cycle in C.
We discuss the proof when C consists of a single element and the
other cases is by similar argument.
Suppose that C consists of a unique directed cycle

132211 vf...vvfvfv pp in D . By assumption every vertex in D belongs to
a cycle in C. Then 132211 vf...vvfvfv pp is Hamiltonian directed cycle in
D .
Let },,{ h...,hhH p21 be a set of arcs. As D is antisymmetric, we
can join 1v to pv by ph ; pv to 1pv by 1ph ; …; 2v to 1v by 1h . Then



112111 ... vhvvhvhv pppp  is a Hamiltonian directed cycle in the digraph
HD  and rwodwid  )()( HDw  . Thus HD  is regular

digraph and H is arc extension set of cardinality P . Hence
PDexta  )(

D
. If PDexta  )(

D
, then there exists an arc extension set

},...,,{ 1 n2 lllL  with Pn  such that  LD D.
As  LD D, then LDvrvodvid  ,)()( . That means either
L forms a Hamiltonian directed cycle or L forms a set of disjoint
directed cycles pass through all vertices of D , which is
impossible as pn  .
Hence PDexta  )(

D
.

□
Now, we characterize the arc extensibility number for the

eulerian digraphs.
Theorem 3.7: Let  be the class of eulerian digraphs, ED be a
simple. Then 2)(

E
 Dexta if and only if D contains two

independent vertices.
Proof: Suppose that 2)(

E
 Dexta , by definition 3.4, there exists an

arc extension set },{ 1 2aaS  of cardinality two such that ESD  ,
and S is the smallest such set.
As the digraph SD  is eulerian, then SD  is connected and

SDvvodvid  ),()( , clearly this happen when the set of arcs S
forms a directed cycle. As S consists of two arcs 2aa ,1 , then S
forms a directed cycle of length two in SD  , in such away 2aa ,1
are joined two  independent vertices in D .

Conversely, suppose that vu, are two independent vertices in
the eulerian digraph D , and },{ 1 2aaS  is a set of two arcs.
Join the vertex u to v by the arc 1a and v to u by 2a . Then S
forms a directed cycle of length two. Thus SD wwodwid  )()( .
As the addition of arcs to a connected graph preserves the
connectedness, then SD  is connected. Hence the digraph SD 
is eulerian, and S is arc extension set of cardinality 2. That is

2)(
E

 Dexta . If 2)(
E

 Dexta , then there exists an extension arc a

such that EaD  which is clearly impossible. Hence 2)(
E

 Dexta .
□

Theorem 3.8: Let  be the class of eulerian digraphs, ED be a
simple and antisymmetric. Then 2kk,Dexta  )(

E
if and only if

D does not contain two independent vertices and the smallest
directed cycle in D has a length k .



Proof: Suppose that 2kk,Dexta  )(
E

, by definition 3.4, there
exists an arc extension set },,{ 1 k2 a...,aaS  of cardinality k such that

ESD  , and S is the smallest such set.
If D contains two independent vertices, then by theorem 3.7,

2)(
E

 Dexta a contradiction to our assumption that 2k .
As SD  is eulerian, then SD  is connected and

SD wwodwid  )()( . As D is antisymmetric and
SD wwodwid  )()( , then  either S forms a directed cycle or S

forms a union of directed cycles in SD  .
Suppose that S forms the directed cycle 12211 ... uauauau kk in SD  .
As by definition 3.2, SD  is simple, we must have the directed
cycle 112111 ... ubuububu kkkk  in D . Thus D contains the direct cycle kC
of length k .
Suppose that D contains a directed cycle nC of length kn  and
denote nC by 12211 ... vdvdvdv nn , then there exists an arc extension set

},,{ 1 f...,ffH n2 such that 112111 ... vfvvfvfv nnnn  forms a cycle in SD  ,
that is HDvvodvid  )()( , and as the adding of arcs to a
connected graph preserves the connectedness, SD  is eulerian
and nDexta  )(

E
which is a contradiction to our assumption that

kDexta  )(
E

. Hence kC is the smallest directed cycle in D .
Suppose that S forms a union of cycles in SD  , then by consider
each of these cycles and using the same argument above, we get
a contradiction to the minimality of k .

Conversely, suppose that D does not contain two independent
vertices and the smallest directed cycle in D has a length k .
Let 132211 ... ubuububu kk be a cycle of length k in D ; let },,{ 1 k2 a...,aaS 

be a set of arcs. Join 1u to ku by ka ; ku to 1ku by 1ka ;...; 2u to 1u by
1a . Then 112111 ... uauuauau kkkk  forms a directed cycle in SD  . Then

the digraph SD  is connected and SD wwodwid  )()( . Hence
SD  is eulerian and S is an arc extension set of cardinality k .

Thus kDexta  )(
E

. If kDexta  )(
E

, then there exists an arc
extension set },,{ 1 f...,ffH n2 with kn  such that EHD  . By
part one H must be forms a directed cycle in HD  , say

132211 ... vfvvfvfv nn . In this case 112111 ... vhvvhvhv nnnn  is a directed cycle
in D . Hence D contains  a cycle of length kn  a contradiction to
the smallestness  of k . Hence kDexta  )(

E
. As D does not

contain two independent vertices, then 2k .
□
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