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Abstract

In this paper, the concepts of edge(arc) extension of
graphs(digraphs) and the edge(arc) extensible class of
graphs(digraphs) have been introduced. The classes of regular
and eulerian graphs(digraphs) which are not edge(arc) extensible
classes have also been introduced.

The concept of edge(arc) extensibility number has been
introduced as well as the characterization of extensibility number
of regular graphs(digraphs). Also the extensibility number of
eulerian graphs(digraphs) has been characterized.
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1. Introduction
Kharat and Waphare [6] introduced the concept of reducibility
number for posts in lattices theory. Akram [3] introduced
analogous concept in graph theory, in fact, he studied the
reducibility of graphs (digraphs) and the characterization of
reducibility number for some classes of graphs(digraphs). Akram
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[2] introduced the concept of contractibility number of graphs. In
Akram [1] the concept of vertex extension of graphs had been
introduced. In this work, we studied the concept of edge(arc)
extension of graphs(digraphs) and the edge(arc) extensibility
number for some classes of graphs(digraphs).
A graph G = (V(G),E(G))consists of two finite sets, 7(G), the
vertex set of the graph, often denoted by just 7, which is a
nonempty set of elements called vertices, and E(G), the edge set
of the graph, often denoted by just E, which is a possibly empty
set of elements called edges, such that each edge ein Eis
assigned an unordered pair of vertices (u,v) called the end vertices

of ¢.The number of vertices of G will be called the order of G, and
will usually be denoted by p; the number of edges of G will

generally be denoted byq. If for a graph G, p =1 then Gis called
trivial graph; if ¢ =0 then G is called a null graph. We shall usually
denote the edge corresponding to (v,w) where (v and w are

vertices of G ) by ww.
If e is an edge of G having end vertices v,w then e is said to

Join the vertices v and w, and these vertices are then said to be
adjacent. An independent set of vertices in G is a set of vertices of
G no two of which are adjacent.

Let v be a vertex of the graph G . If v joined to itself by an edge,
such an edge is called loop. The degree d(v) is the number of
edges of Gincident with v, counting each loop twice. If two (or
more) edges of G have the same end vertices then these edges
are called parallel. A graph is called simple if it has no loops and
parallel edges. We say that G is r-regular graph if the degree of
every vertex is r.

A graph G is connected if there is a path joining each pair of
vertices of G; a graph which is not connected is called
disconnected.

A directed graph D = (v, 4) consists of two finite sets 1, the
vertex set, a nonempty set of elements called the vertices of D
and 4, the arc set, a possible empty set of elements called the
arcs of D, such that each arc « in 4 is assigned an ordered pair
of vertices (u,v).

If « is an arc, in the directed graph D, with associated
ordered pair of vertices (,v), then « is said to join u to v.

A vertex v of the digraph D is said to reachable from a vertex u
if there is a directed path in D from « to v. A digraph D is said to
be connected if its underlying graph is connected. A digraph D is



called simple if, for any pair of vertices « and v of D, there is at
most one arc from « to v and there is no arc from « to itself.
Let v be a vertex in the digraph D. The indegree id(v) of v is

the number of arcs of D that have v as its head, i.e., the number
of arcs that "go to" v. Similarly, the outdegree od(v) of v is the

number of arcs of D that have v as its tall, i.e., that "go out" of v.
For the undefined concepts and terminology we refer the
reader to Wilson[9], Clark[4], Harary[5], West[8] and Tutte[7].
All the graphs(digraphs) through out this paper are nontrivial
and simple.

2. Edge Extensibility of Graphs.

In this section, we introduced the concepts of edge extension
set of graph, edge extensible class of graphs and the edge
extensibility number of graph. Further, we characterized the edge
extensibility number of regular and eulerian graphs.

Definition 2.1: LetG be a nontrivial (not complete) simple graph.
The simple graph obtained from G by adding a nonempty set of
edges S such that every edge in S join two nonadjacent vertices
in G is called edge extension graph, and denoted byG+5,S is
called edge extension set. In particular, if s consists of a single
element ¢, then e is called extension edge, and the graph
denoted by G+e.
We can see that the graph G+ have vertex set and edge set as
follows:

V(G +8)=V(G),

E(G +S)=EG)US

Definition 2.2: Let 3 be a class of graphs satisfy certain property.
Then Jis called edge extensible class, if for every graph Ge 3,
either G is complete, or there exists an extension edge ¢ such
that G+ee 3.
Examples 2.3:

1. The class of connected graphs is edge extensible class.

2. The class of regular graphs is not edge extensible class.

3. The class of eulerian graphs is not edge extensible class.

Definition 2.4: let 5 be a class of graphs with certain property,
and G <3 be a nontrivial. The edge extensibility number of G with
respect to 3 is the smallest positive integer m, if exists, such that
there exists an edge extension set s of cardinality » in such
away the graph G+Se3. We write m = ext(G) . If such a number



does not exist for G, then we say that the corresponding edge
extensibility number is «.

One can see that the tree 7with respect to the class of trees 3
has extensibility number is «. Further, the class of graphs 3 is
edge extensible if and only if for every graph G e 3 either G is
complete or G has extensibility number one.

Now we characterize the edge extensibility number for regular
graphs.

Theorem 2.5: Let % be the class of regular graphs, and ReR be

a nontrivial simple r-regular graph of order P with » = P-1. Then
P/2 if andonlyif P iseven

e=ert®={ p" ifand onlyif Pis odd

Proof: Let R be an r-regular graph of order P with »=P-1. Then

duy=r YueR.Let S be anonempty set of edges. If R+S is

regular, then d(v)=r+h VveR+S. That means the degree of

every vertex in R increased by » where 7 is a positive integer. It

is clear that this happened when s forms an n-factor in the graph

R+S.

Suppose that P is even. As » = P-1, then every vertex in R is not

adjacent to at least one vertex. Let S={e.e,....¢,,} be a set of

edges and join every edge in s to two nonadjacent vertices in R
such that s forms a 1-factor in the graph r+S. Then
dw)=r+1 YVweR+S. Thus the graph rR+S is (r+1)-regular and

S is edge extension set of cardinality p/2 of r. Hence
e—e%ct(R) <p/2.If e—eg{ct(R) # p/2, then there exists an edge

extension set L ={e,,e,,..,e,} With n< p/2 such that R+ L e®R which
is impossible as L can not be a 1-factor in R+ L and then joining
the nonadjacent vertices of R by the edges of L does not give a
regular graph. Hence e—ext(R) = p/2.

Suppose that P is odd. Let S={ee,.....e,} be a set of edges and
join every edge in S to two nonadjacent vertices in R such that s

forms a 2-factor in the graph r+5S . Then the graph R+S is
(r+2)-regular and S is edge extension set of cardinality P of R.

Then e—ext(R)<P. If e—ext(R) # P, then there exists an edge

extension set F ={e,e,.....e,} With n< P suchthat R+Fe®R. Thus

F forms an n-factor which is impossible as » <P and P is odd.
Hence e—ext(R)=P.

Conversely, suppose that e—ext(R) = p/2, then by definition
2.4, there exists an edge extension set s of cardinality p/2, and



p/2 is the smallest positive integer such that R+Se®R. As p/2 is

integer P must be even.
Suppose that e—ext(R)=P. By definition 2.4, there exists an edge

extension set s of cardinality P, and S is the smallest set such
that R+Sen. If P is even then there exists an edge extension set
A4 with cardinality p/2 such that R+ 4e® and by part one

e—ext(R) = p/2, which is a contradiction to our assumption. Hence
P is odd. O

In the following theorem, we characterize the edge extensibility
number for eulerian graphs.
Theorem 2.6: Let E be the class of eulerian graphs, and GeE.
Then e—ext(G)=3 if and only if G contains a set of three

independent vertices.
Proof: Suppose that e—ext(G)=3. Then by definition 2.4, there
exists an edge extension set S = {e ,e,,e,} Of cardinality 3 such that

G+SeE, and S is the smallest such set.

As G is eulerian, then G is connected and the degree of every
vertex in G is even. By definition 2.1, G+ S is simple, then the set
of edges S ={e,,e,.e,} inthe graph G+ S take one of the five forms

3p, RUPR, P, K, Or C;.

As G+5 is eulerian, every vertex in G+S has even degree, and it
is clear this happened only when s of the form C,. Hence e,,e,
and e, are the edges of the cycle c,. As every edge in § join two
nonadjacent vertices in G, then the vertices of ¢, are

independent set of vertices in G.
Conversely, suppose that 4={v,,v,,v,} is a set of independent

vertices in the eulerian graph G; let S ={e¢,,e,,e,} be a set of edges

. Join every edge in § to two nonadjacent vertices in4. Thus §
forms a cycle ¢, in the graph G+S. That is every vertexin G+5§

has an even degree. As adding the edges to a connected graph
preserves the connectedness, then G+ Sis connected. Hence
G+S is eulerian and S is edge extension set of cardinality 3.
Hence e—ext(G)<3.

Suppose that e—ext(G)=2. Then there exists an edge extension
set L ={e,e,} Of cardinality 2 such that G+ L eE, which is



impossible , as by definition 2.1, G+ L is simple, the set L in the
graph G+ L take one of the two forms P, or 2P, it is obvious in

eachcase G+L¢E.
As G+e is simple, G+e is not eulerian. Hence e—ext(G)#1.

Thus e—ei:ct(G) =3. O

3. Arc Extension Digraphs

In this section the arc extension digraph has been introduced.
Further, the arc extensibility number for regular and eulerian
digraphs has been characterized. First we need to define the
symmetric digraph.

Definition 3.1: Let b be a digraph, the pair of vertices u,v in D is

called symmetric if there is an arc from « to v and arc from v to «
. If every pair of vertices in D is symmetric then D is called
symmetric digraph. If D does not contain any symmetric pair,
then b is called antisymmetric.

By similar way to that in definition 2.1, we define the arc
extension digraph
Definition 3.2: Let b be a not symmetric (nontrivial) simple
digraph. The simple digraph obtained from D by adding a
nonempty set of arcs S such that every arc in s join a pair of
vertices u,v in which there is no arc from « to v is called arc
extension digraph, denoted by D+, S is called arc extension set.
Inparticular, if Sconsists of a single element «, then « is called
extension arc, and the digraph denoted by D +a.

Now we define the arc extensible class of digraphs.
Definition 3.3: Let D be a class of digraphs satisfying certain
property. The class D is called arc extensible if for every bDe D
either D is symmetric or there exists an extension arc « such that
D+ae D.

One can see that the class of connected digraphs is arc
extensible, but neither the class of regular digraphs nor the class
of eulerian digraphs is arc extensible.

The definition of arc extensibility number is similar to that in
definition 2.4, only replace each graph by a "digraph" and each
edge by an "arc" as follows:

Definition 3.4: let D be a class of a digraphs with certain
property, and D e D be a nontrivial. The arc extensibility number



of D with respect to D is the smallest positive integer m, if exists,
such that there exists an arc extension set s of cardinality » in
which the digraph b+Se D . We write m=a —ext(D). If such a

number does not exist for D, then we say that the corresponding
arc extensibility number is «.

Definition 3.5: Two (or more) directed cycles in the digraph D
are called disjoint if its arcs and vertices are distinct.

Here we characterized the arc extensibility number for the
regular digraphs.
Theorem 3.6: Let D be a class of regular digraphs, be D be an

antisymmetric simple regular digraph of P vertices. Then
a-ext(D)=P if and only if D contains a set of disjoint directed

cycles C such that every vertex in b belongs to a cycle in C.
Proof: Suppose that a-ext(D)=P. Then by definition 3.4, there

exists an arc extension set S={q,,q,,...a,} Of cardinality P such

that D+5e D and s is the smallest such set.

As D+S is regular digraph, then id(v)=od(v)=r, VveD+S.As the
cardinality of s equals to P and D+ S is regular, then eithers
forms a directed Hamiltonian cycle in D+5 or s forms a set of
disjoint directed cycles pass through all the vertices of D.
Suppose that s forms the directed cycle u,au,a,u; ...u,a,u, in the

digraph D+S. By the definition 3.2, b+ S is simple digraph. Then
we must have the directed cycle wu fu,f, u,, ..u,fu, in D.

Suppose that s forms a set of disjoint directed cycles pass
through all the vertices of b. Then by similar argument for all the
cycles insas above, b must have a set of disjoint cycles pass
through all the vertices of D.

Conversely, suppose that D contains a set of disjoint directed
cycles C such that every vertex in b belongs to a cycle in C.
We discuss the proof when C consists of a single element and the
other cases is by similar argument.
Suppose that C consists of a unique directed cycle
v fiv, fovsv, £, in D . By assumption every vertex in D belongs to

acycle in C. Then v, fv, f,v,..v, f,v, is Hamiltonian directed cycle in

D.
Let H={h,,h, .. h,} beasetofarcs. As D is antisymmetric, we

can join v, to v, by #,; v, to v, by & _;...; v, to v by . Then

p? p-17



vih,v,h, v, .v,hv is @ Hamiltonian directed cycle in the digraph
D+H and id(w)=od(w)=r VYweD+H.Thus D+ His regular

digraph and # is arc extension set of cardinality ». Hence
a-ext(D)<P. If a-ext(D)# P, then there exists an arc extension set

L=1{l,1l,,.,1} with n<P suchthat b+Le D.

As D+Le D, then id(v)=o0d(v)=r, VveD+L.That means either
L forms a Hamiltonian directed cycle or L forms a set of disjoint
directed cycles pass through all vertices of D, which is
impossible as n< p.

Hence a - ext(D) = P.

O
Now, we characterize the arc extensibility number for the
eulerian digraphs.
Theorem 3.7: Let E be the class of eulerian digraphs, be E be a
simple. Then a-ext(D)=2 if and only if D contains two

independent vertices.
Proof: Suppose that « —ext(D) =2, by definition 3.4, there exists an

arc extension set S ={a,,q, ! of cardinality two such that D+SeE,
and s is the smallest such set.
As the digraph D+ is eulerian, then D+ S is connected and
id(v)=o0d(v), YveD+S, clearly this happen when the set of arcs s
forms a directed cycle. As s consists of two arcs q,,q,, then S
forms a directed cycle of length two in D+, in such away aq,,q,
are joined two independent vertices inD.

Conversely, suppose that «,v are two independent vertices in
the eulerian digraph D, and S =1{a,,a,} is a set of two arcs.
Join the vertex « to v by the arc ¢, and v to « by a,. Thens
forms a directed cycle of length two. Thus id(w) = od(w) YweD+S.
As the addition of arcs to a connected graph preserves the
connectedness, then D+ S is connected. Hence the digraph D+ S
is eulerian, and S is arc extension set of cardinality 2. That is
a-ext(D)<2. If a —ext(D) #2, then there exists an extension arc a

such that D +a e Ewhich is clearly impossible. Hence a-ext(D)=2.

O
Theorem 3.8: Let E be the class of eulerian digraphs, e E be a
simple and antisymmetric. Then a-ext(D)=k k>2 if and only if

D does not contain two independent vertices and the smallest
directed cycle inD has alength & .



Proof: Suppose thata—e%ct(D) =k k>2 , by definition 3.4, there

exists an arc extension set S ={q,,q,,..,a, } Of cardinalityx such that

D+SeE,and S is the smallest such set.
If b contains two independent vertices, then by theorem 3.7,
a —ei:ct(D) =2 a contradiction to our assumption that x> 2.

As D+S is eulerian, then D+ Sis connected and

id(w)=o0d(w) YVweD+S.As D is antisymmetric and

id(w)=o0d(w) Ywe D+S,then either s forms a directed cycle or s
forms a union of directed cyclesin D+S.

Suppose that s forms the directed cycle w,a,u,a,..u,a,u, in D+S.
As by definition 3.2, b+ S is simple, we must have the directed
cycle u,bu,b, u,,..u,bu, in D. Thus D contains the direct cycle C,
of length «.

Suppose that D contains a directed cycle ¢, of length » <k and
denote C, by vdv.d,..v,d, v,, then there exists an arc extension set
H={f,f.f,}suchthat v,fv . v _,.v, fv, formsacyclein D+S§,

that is id(v)=0d(v) Yve D+ H, and as the adding of arcs to a

connected graph preserves the connectedness, D+ S is eulerian
and a—ext(D)=n which is a contradiction to our assumption that

a-ext(D)=k. Hence C, is the smallest directed cycle in D.

Suppose that sforms a union of cycles in D+ , then by consider
each of these cycles and using the same argument above, we get
a contradiction to the minimality of «.

Conversely, suppose that b does not contain two independent
vertices and the smallest directed cycle inD has a length & .
Let ubu,b,u,..u.bu, be acycle oflength £ in D;let S={a,,a,..,a,}
be a set of arcs. Join u, t0o u, by a,; u, tO u, , by a,,;...; u,t0 u, by
a,. Then wau,a, u,  ..u,au forms a directed cycle in D+5S. Then
the digraph D+ 5 is connected and id(w)=od(w) YweD+S . Hence
D+ S is eulerian and S is an arc extension set of cardinality .
Thus a—ext(D)<k . If a—ext(D) #k, then there exists an arc
extension set H ={f,, f,,.. f, } With n<k suchthat b+ cE. By
part one # must be forms a directed cycle in D+ &, say
v fiv, fovsev, fov, - In this case v,h v b v,  .v,hv, is a directed cycle
in D. Hence D contains a cycle of length » <k a contradiction to
the smallestness of 4. Hence a—e%ct(D):k . As D does not

contain two independent vertices, then © > 2.
O
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