
Journal of Al-Nahrain University Vol.16 (4), December, 2013, pp.233-240 Science

233

Development of a Message-Oriented Middleware for a Heterogeneous

Distributed Database Systems

Lamia H. Khalid* and Manal F. Younis**

* Computer Science Department, College of Science, University of Baghdad.
** Computer Department, College of Engineering, University of Baghdad.

Abstract
Middlewares are enabling technologies for the development, deployment, execution and

interaction of applications. These software layers are standing between the operating systems and

applications. They have evolved from simple beginnings hiding network details from applications

into sophisticated systems that handle much important functionality for distributed applications

providing support for distribution, heterogeneity and mobility.

This paper concerns with the development of a Message_Oreinted Middleware (MOM) for a

distributed database system. Middleware is a distributed software layer, or ‘platform’ which

abstracts over the complexity and heterogeneity of the underlying distributed environment with its

multitude of network technologies, machine architectures, operating systems and programming

languages. The role of this middleware is to ease the task of designing, programming and managing

distributed database applications by providing a simple, consistent and integrated distributed

programming environment. It provides integrity and security to these databases.

Keyword: Distributed Database Systems (DDS), Middleware, Client-Server, Message Oreinted

Middleware (MOM).

Introduction

Distributed Database Systems have

recently become an important area of

information processing. Distributed Databases

eliminate many of the shortcomings of

centralized databases and fit more naturally in

the decentralized structure of many

organizations.

The main advantages of distributed

systems that it can provide a simple, fault-

tolerant and scalable architecture as well as

high performance, but there are multiple points

of failure in a distributed system, system

components need to communicate with each

other through a network, which complicates

communication and opens the door for

security attacks, middleware has been devised

in order to conceal these difficulties from

application engineers as much as possible; and

it is increasingly used in this capacity [1].

As shown in Fig.(1), middleware is a

software layer on top of an operating system

that makes developing applications easier, by

providing tools, libraries, and services.

Recently, many researchers have been

specially studying about middleware

architecture of client-server system. The idea

of using middleware to build a distributed

system is comparable to using a distributed

database management system when building

an information system [2].

Fig. (1) Middleware in Distributed System

Construction.

Several models have been used for

Distributed Database and Middleware. The

following are the most related works:

 Song X., Zhang R., [3].

This article describes middleware by

adopting a horizontal and a vertical layer

views. Middleware are enabling technologies

for application development and execution in

ubiquitous environments. In the horizontal

view, it finds most types of middleware

developed so far, such as Message Oriented

Middleware (MOM), Object Request Broker

Lamia H. Khalid

234

(ORB) middleware, databases middleware and

more recently service-oriented architectures

(SOA). Two new concepts emerged in this

category: the “middleware of sensors” and the

“middleware of middlewares”.

 Choi J., Baek K., [4].

This paper presents a distributed event

driven middleware architecture for situational

awareness and intelligent decision making for

command and control of geographically

distributed networked battlefield agents. They

tackle the important and challenging issues of

distributed agents scheduling, synchronization,

load balancing, and terrain database

distribution/management/allocation in a

distributed virtual battlefield environment.

 Abood A.H., [5].

This thesis tries to design a Distributed

Database Management System that provides

fast retrieval to any database tuple without

taking in account the size of that database.

 Murtadhaa S.K., [6].

The objective of this research is to design

and implement a distributed database with new

layer of middleware which provides Security,

Data integrity, Concurrency, Transparency,

Error handling and recovery.

 Carvalho R. L., [7].

This paper proposes an approach to

improve the level of quality of experience

(QoE) that distributed database systems

provide. Quality of experience is a measure of

user’s satisfaction when using a certain service

or application. Therefore, the main objective

of this paper is to provide mechanisms to

increase user’s satisfaction when accessing

distributed database systems.

The remainder of this paper is organized as

follows. Section 2 explains Communications

Middleware. Section 3 reviews the test and

results. Finally, Section 4 provides

conclusions.

Communications Middleware:

The main component in distributed

computing is the communication middleware

that is used to connect the system’s

heterogeneous components and to manage the

interactions between these components.

Middleware is connectivity software that

consists of a set of enabling services that allow

multiple processes running on one or more

machines to interact across a network.

Middleware is essential to migrate mainframe

applications to client/server applications

and to provide for communication across

heterogeneous platforms. Middleware services

are sets of distributed software that exist

between the application and the operating

system and network services on a system node

in the network see Fig.(2) [9].

Fig. (2) Middleware for distributed systems.

Middleware services provide a more

functional set of application program

interfaces (API) than the operating system and

network services to allow an application to [9]:

• locate transparently across the network,

providing interaction with another

application or service.

• be independent from network services.

• be reliable and available.

• scale up in capacity without losing

function.

Database Middleware:

Database middleware is a software layer

on top of an operating system that makes

developing database applications easier, by

providing tools, libraries, and services [4].

There are three main components in the

database middleware as shown in Fig.(3)[8]:

 Application programming interface

(API)

 Database translator

 Network translator

http://libhub.sempertool.dk.tiger.sempertool.dk/libhub?func=search&query=au:%22Costa,%20Rogério%20Luís%20de%20Carvalho%22&language=en

Journal of Al-Nahrain University Vol.16 (4), December, 2013, pp.233-240 Science

235

Fig. (3) Database Middleware Components.

Database middleware software can be

classified according to the way clients and

servers communicate across the network.

There are four different kinds of middleware

that have been developed. These vary in terms

of the programming abstractions they provide

and the kinds of heterogeneity they provide

beyond network and hardware:

 Distributed Tuples (DT): A distributed

relational database offers the abstraction of

distributed tuples. Its SQL allows

programmers to manipulate sets of these

tuples (a database). Distributed relational

databases also offer the abstraction of a

transaction [10].

 Remote Procedure Call (RPC): Remote

procedure call middleware extends the

procedure call interface familiar to

virtually all programmers to offer the

abstraction of being able to invoke a

procedure whose body is across a network

[10].

 Distributed Object Middleware (DOM):
Distributed object middleware provides the

abstraction of an object that is remote yet

whose methods can be invoked just like

those of an object in the same address

space as the caller. Distributed objects

make all the software engineering

benefits of object-oriented techniques.

Encapsulation, inheritance, and

polymorphism are available to the

distributed application developer [10].

 Message-Oriented Middleware (MOM):
Message Oriented Middleware is a

popular asynchronous message exchange

mechanism in heterogeneous distributed

applications. It provides the applications in

a distributed environment to send and

receive messages, but still being loosely

coupled. The Message based integration

provides automation and simplifies the

time consuming integration tasks like

create, deploy and manage integration

solutions. Asynchronous Messaging

is a backbone for many of the event

driven architectures due to the obvious

advantages of asynchronous systems where

the message client need not maintain the

connection and session with the message

receiver; no confirmation is required from

the receiving application [10]. MOM

provides the abstraction of a message

queue that can be accessed across a

network. It is very flexible in how it can be

configured with the topology of programs

that deposit and withdraw messages from a

given queue. Many MOM products offer

queues with persistence, replication, or

real-time performance [9].

The Methodology of the Proposed

Middleware

The proposed middleware provides simple

authentication mechanism based on the user

name and password to ensure that only

authorized users can access the database. This

middleware applied on two computers as a

three-tier client/server model. It is designed to

increase the interoperability, portability, and

flexibility of an application by allowing the

application to be distributed over multiple

heterogeneous platforms. It reduces the

complexity of developing applications that

span multiple operating systems and network

protocols by insulating the application

developer from the details of the various

operating system and network interfaces-

APIs.

The designed middleware is a software that

resides in both portions of client/server

architecture. This proposed middleware

increases the flexibility of architecture by

enabling applications to exchange messages

with other programs without having to

know what platform or processor the other

application resides on within the network. The

proposed system provides a message queue

between two interoperating middlewares, so if

the destination middleware is busy or not

connected, the message is held in a temporary

storage location until it can be processed.

Lamia H. Khalid

236

As shown in Fig.(4), a connection must be

established between the client and the server

where each of them has a middleware where

each computer can be client or server (i.e peer

– to – peer); the two middlewares use two

queues, one on the client side and the other on

the server side. These queues contain all

requests issued by two computers. One queue

includes the requests of the client (computer1

or computer2) and the other queue includes the

requests of the server (computer1 or

computer2). The middleware at the client

sends the request as sql statement to

middleware at the server. The middleware at

the server serves the request and sends reply to

middleware at the client. The queues are

managed as first-come first-serve including the

data using HTML.

Fig. (4) Structure of Proposed Middleware.

The suggested middleware is a Message-

oriented middleware (MOM) which uses

messaging to communicate asynchronously

between the client and the service provider.

It is designed to be suitable in a

heterogonous Relational Distributed

Database Management System (RDDBMS)

environment, where two different DBMS are

used (Oracle database and SQL Server 2008

database) running on two different platforms.

The first platform is Pentium 4 running under

windows seven, while, the second platform is

Pentium 4 running under Windows vista. The

proposed distributed system is a three-tier

client/server architecture for database

application. It includes: application

programming interface (API), database

translator and network translator. Fig.(5)

shows the proposed middleware structure.

Fig. (5) Middleware Accessing Multiple

Database Servers.

SQL is used in the proposed middleware as

generic query language to access different and

multiple database servers. Functions are

defined, using SQL queries, to allow the users

to manipulate two different databases (Oracle

and SQL Server databases). The functions are

Insert, Delete, Update and Select.

The designed middleware also ensures the

Integrity of the databases. Database integrity

refers to the correctness and consistency of

stored data. It can be considered as another

type of database protection. While it is related

to security, it has wider implications; integrity

is concerned with the quality of data itself.

Integrity is usually expressed in terms of

constraints, which are the rules the database is

not permitted to violate. Therefore, Integrity is

protecting database against authorized users.

The proposed middleware connects these

two different databases using Open Database

Connectivity (ODBC) which provides a

standards interface to data regardless of the

database platform in which it resides. Access

to data through ODBC requires appropriate

driver for a particular data source.

The ODBC architecture consists of four

components: API, driver manager, driver, and

data source. Fig.(6) illustrates the ODBC

architecture and how its components interact.

Journal of Al-Nahrain University Vol.16 (4), December, 2013, pp.233-240 Science

237

Fig. (6) ODBC architecture.

The suggested middleware was tested on

two RDBMDs. They are : (i) Library database

built using SQL Server database and , (ii)

Student database built using Oracle database.

The Library database includes two tables

(Publishers and Books) see Table (1) and (2).

The two tables are bind by a field contains a

unique value.

Table (1) Publishers.

Name Address Email ID

Ahmed Ali Baghdad Ahmed@yahoo.com 1

Muna Ahmed Mousal Muna@yahoo.com 2

Primary key

Table (2) Books.

BID Book Name Book Year ID

004-23 Operating system 2002 1

004-55 Data structure 2003 1

004-66 Image processing 2002 2

Primary Key Foreign key

The two tables (Publishers and Books)

tables are related by the ID field. This field is

primary key in publishers table and foreign

key in books table.

The Oracle database includes two tables

these are (Student and Course) tables see

Table (3) and (4).

mailto:Ahmed@yahoo.com
mailto:Muna@yahoo.com

Lamia H. Khalid

238

Table (3) Student.

Student Name Address Birthdates Phone_num Department Class Year SID

Ahmed Ali Kirkuk 1978/3/4 5566778 Computer Second 2004 1

Primary key

Table (4) Course.

Crs_Code Prof_name Class-Subject SID

1001 Dr. Hasan Ali Data structure 1

1002 Dr. Ahmed kamal System analysis 1

Primarykey Foreign key

These two tables are related by SID field.

This field is primary key in student table and

foreign key in Course table.

To illustrate this work the following

windows will be listed. The main interface is

shown in Fig.(7).

Fig. (7) Main Interface.

In this interface the user can select the

Host Computer wether he wants to work with

the local database, or selects Remote

Computer or he wants to work with remote

database. If the user wants to use the remote

database, the user enters the Database Name,

User Name and Password as shown in Fig.(8).

If the user wants to use the local database, he

enters the Database Name, User Name and

Password database then the menu is shown in

Fig.(9).

Fig. (8) Main Interface of Remote Databases.

Fig. (9) Local Databases Interface.

If the information is correct press enter and

the menu in Fig.(10) is presented, if not the

massage will the displayed in the dialog box

“This database does not exist”.

Journal of Al-Nahrain University Vol.16 (4), December, 2013, pp.233-240 Science

239

Fig. (10) The main Interface of the Oracle

Database application.

As an example if the user selects the

Search option then the window in Fig.(11) will

be displayed.

Fig. (11) Interface of the Search from

Remote database by Author Name.

The user can send a request by printing the

Author name and Email. The middleware on

the remote computer replys to the request

using html web browser. The reply is a table

contains all information of the Author, but if

the record is not exist it replys the message

‘This record does not exist’.

The two middlewares can send requests to

each other at the same time, and each can

receive the request and send the required

record if it is exist.

Conclusions
The conclusions that can be drawn from

this work are listed as follows:

1. The designed middleware manages the

complexity and heterogeneity inherent in

distributed systems.

2. The designed middleware provides

transparency using a common

programming language through

distributed database systems such as

Oracle database and SQL Server database.

3. The designed middleware provides

connectivity between database servers

using SQL statements.

4. The designed middleware helps to ease

the task of designing and managing

distributed database systems.

References

[1] Ibrahim N., “Orthogonal Classification

of Middleware Technologies”, Third

International Conference on Mobile

Ubiquitous Computing, Systems, Services

and Technologies, Grenoble Informatics

Laboratory, Grenoble, France, pp. 45-46,

2009.

[2] Megherbi D. B., Pandit D., ”An Event-

Driven Multi-Agent Middleware

Architecture and Protocol Design for

Intelligent Geographically Distributed

Battlefield Training, Modeling and

Simulation”, CMINDS Research Center,

ECE Department, University of

Massachusetts Lowell, USA, pp. 21-23,

2011.

[3] Song X., Zhang R., "Research on

Constructing Distributed Large Database

based on J2EE”, IEEE 3rd International

Conference on Communication Software

and Networks, pp.50, 2011.

[4] Choi J., Baek K., “A Middleware

Architecture for Composing Robot

Services on Distributed System

Environments”, School of Computer

Science and Engineering, Soongsil

University, 5th International Conference on

New Trends in Information Science and

Service Science, V.1, pp.50-51, 2011.

[5] Abood A.H., “Design and Implementation

of Fast Retrieval Distributed Database

Management System”, College of Science/

Saddam University, pp.20-23, 2002.

[6] Murtadhaa S.K., “Design and

Implementation of a Distributed Database

Lamia H. Khalid

240

Middleware”, College of Science/

Baghdad University, pp. 16-17, 2004.

[7] Carvalho R. L., “Quality of experience in

distributed databases”, Journal: Distributed

and Parallel Databases ISSN: 09268782,

V.29 No:5 pp. 361-396 2011.

[8] BATES J., “Software Engineering and

Middleware”, Wolfgang Emmerich, Dept.

of Computer Science /University College

London, pp.117-120, 2000.

[9] PETER R., and CARLOS C., "Database

Systems Design, Implementation, and

Management", an International Thomson

Publishing Company ITP, 3rd Edition,

U.S.A, pp. 475-477, 2007.

[10] BLAHA M. and PREMERLANI W.,

“Object-Oriented Modeling and Design for

Database Applications”, Prentice-Hall, Inc.

Simon and Schuster, A Viacom Company

Upper Saddle River, New Jersey 07458,

U.S.A., pp.34-36, 1998.

[11] Ravi K. G ., Babu A.V., "Self-regulating

Message Throughput in Enterprise

Messaging Servers – A Feedback Control

Solution", Bangalore, India, Hyderabad,

India, (IJACSA) International Journal of

Advanced Computer Science and

Applications, Vol. 3, No. 1, pp. 148-148,

2012.

 الخلاصة
فيذ تنالتطوير و لل الحديثة التكنولوجيات الوسائطتمكن

 ةبرمجيالطبقات توضع هذه النشر والتفاعل بين التطبيقات. الو
من البرمجيات تطورت حيث بين أنظمة التشغيل والتطبيقات.

بدايات بسيطة تخفي تفاصيل الشبكة من التطبيقات في نظم
متطورة التي تتعامل مع الكثير من وظائف هامة للتطبيقات

 .تقدم الدعم لعدم التجانس والتوزيع والتنقل التي الموزعة

رسالة من نوع وضع الوسيطةفي ا البحثهذيهتم
الوسيطة هي طبقة و لنظام قاعدة البيانات الموزعة. الموجه

التي تجرد أكثر تعقيد وعدم تجانس توزيع البرمجيات الموزعة،
البيئة الأساسية مع العديد من تقنيات الشبكات، هندسة

وأنظمة التشغيل ولغات البرمجة. دور هذه الوسيطة الآلات،
دارة تطبيقات قواعد هو تسهيل مهمة تصميم وبرمجة وا

ذات البيانات الموزعة من خلال توفير بيئة البرمجة الموزعة
بسيطة ومتسقة ومتكاملة. أنها توفر السلامة والأمن خاصية

 .قواعد البياناتل

http://libhub.sempertool.dk.tiger.sempertool.dk/libhub?func=search&query=au:%22Costa,%20Rogério%20Luís%20de%20Carvalho%22&language=en
http://libhub.sempertool.dk.tiger.sempertool.dk/gmt/ivsl/springer/09268782_2011_29_5_361-396/10619.1.029.005.0361_DOI_s10619-011-7083-x
http://libhub.sempertool.dk.tiger.sempertool.dk/gmt/ivsl/springer/09268782_2011_29_5_361-396/10619.1.029.005.0361_DOI_s10619-011-7083-x

