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Abstract  
 

       In this paper ,we introduce the notions of  

smarandache  completely semi prime ideal 

(S.C.S.P.I),and  smarandache completely semi 

prime ideal  with respect to an element x                

of  a near ring  N denoted by (x-S.C.S.P.I) , and  

smarandache completely semi prime ideal  with 

respect to an element x  near ring  .Also we give 

some properties of these notions   . 
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Introduction 

Throughout this paper N will be a left near ring . In 

1989 the notion of completely semi prime ideal of  a 

near ring (C.S.P.I) was introduced by P.DHeena [6] . 

In 2011 H.Hadi and Showq M. the notions of  

completely semi prime ideal with respect to an 

element x of a near ring  and the completely semi  

 

prime  ideals with respect to an element  near ring 

(x-C.S.P.I near ring )  [4] . They established many 

results and obtained many correspondents between 

(C.S.P.I) and (x-C.S.P.I) of a near ring .  The 

purpose of this paper is as mention in the abstract . 

 

1. Preliminaries   

     In this section we give some basic concepts that 

we need in the second section.   

 Definition  (1.1) [2] 

       A  left near ring is a set N together with two 

binary operations “+” and ”.” such that  

a. (N,+) is a group (not necessarily abelian ) 

b. (N, .) is a semigroup. 

c. (n1 + n2) . n3 = n1 . n3 + n2 . n3 

For all n1, n2, n3,   N; 

 

Definition   (1.2) [3]: 
 

      Let N be a near-ring. A normal subgroup I of 

(N,+) is called a left   ideal of N if 

i. IN I. 

ii.   n, n1 N and for all i  I , 

 n.(n1 + i) – n.n1 I. 
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Remark (1.3) [7] 
    We will  refer that all   near rings and ideals    in 

this paper are  left   . 

 

Definition  (1.4)( [ 8 ]   
 

     Let Jj{Nj  be a family of near rings , J is  an 

index  set and  

  Jj all  ,:){( 


forNxxN jjj

Jj

j } be the 

directed product of Nj with the component wise 

defined operations „+‟ and „.‟,  is called the direct 

product near ring of the near  rings Nj  . 

 

 
Definition  (1.5(  [ 1  ]    
 

    If I1 and  I2  are ideals of a near ring N then   

 22112121 ,: IiIiiiII  .  

 

Definition  (1.6) [8] 
  A near ring   N is called an integral domain if N 

has non -zero divisors   

 

Definition  (1.7) [ 8  ]     
 

      Let N1 and N 2 be two near-rings. The mapping  

f : N1 →N2 is called a near-ring homomorphism if 

for all m, n N1 

f(m + n) = f(m) + f(n)  and  f(m. n) = f(m) f(n). 

Theorem (1.8)  [ 8  ]  

     Let  21: NNf   is homomorphism  

(1) If I is ideal of a near ring N1  then f(I)  is 

ideal of a near ring N2. 

       (2) If J is ideal of a near ring N2then f
-1

(J)  is 

ideal of  a near ring N1. 

 

 

Definition  (1.9)   [6 ] 
       An ideal I of N is called completely semi prime 

ideal(C.S.P.I) of a near ring .if 

N.any    xfor   I  ximples 2  Ix  

 

 

 

Definition  (1.10 )[7] 

      

     Let I be an ideal of a   near ring N. Then  I its 

called  completely  prime ideal  of N  if        

  Iyor  I  ximplies  Iy   ., ,  xNyx , 

denoted by C.P.I of  N . 

 

Definition  (1.11 )[4] 

  let N be a near ring  and Nx , I is called  

completely semi prime ideal  with respect to an  

element x denoted by (x-C.S.P.I) or( x- completely 

semi prime ideal )of N  if  for all 
2

 ,if  x y  I  implies  y I  y N     . 

Definition (1.12) [8]  

  Anon- empty set N is said to be  a near field if on 

N is defined by  two binary operations “+”,”.”  such 

that  

(1) (N,+)   is  a group , 

(2) (N\{0},  .)  is a group , 

(3) a.(b+c)=a.b+a.c  for  all a,b,c  belong to N . 

Definition (1.13) [8]   

  The near ring  ( N,+,.) is said to be a smarandache  

near ring denoted by          (S-near ring ) if it    has  

a proper subset M such that (M,+,.) is a  near field . 

Definition(1.14) [8]  

   Let N be S-near ring  ,a normal subgroup I of N is 

called a  smarandache  ideal (S-ideal  ) of N related 

to M  if , 

(1)  y,z M   and   i I,  y.(z+i)-y.z I ,

where M is the near field  contained in N.

    

(2) I.M I  

Definition  (1.15) [8]    

     Let j J  
j

{N } be a family of near-rings which 

has at least one S-near ring. Then this direct product   

N
jj J




with component wise defined operations 
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„+‟ and „.‟ is called Smarandache direct product    

(S-direct product) of near-rings. 

 

Theorem (1.16) [8]       

     The S-direct product of family of  near rings  is a 

S-near-ring. 

 

Definition (1.17) [8]   

      Let( N1,+,.) and 2( N   ,+ ,. )   be two S-near-

rings,  a function f : N1  N2   is called a 

Smarandache near-ring homomorphism (S-near-ring 

homomorphism) if for all    m, n  M1 (M1  is a 

proper subset of N1 which is a near-field) we have                                   

f(m + n) = f(m) + f(n)  and  f(m. n) = f(m) . f(n) ,  

where f (m) and f (n)  M 2 (M 2 is a proper subset 

of N2  which is a near-field) 

Definition (1.18)[8]   

      Let( N1,+,.) and 2( N   ,+ ,. )   be two S-near-

rings,  a function f : N1  N2   is called a 

Smarandache near-ring homomorphism (S-near-ring 

homomorphism) if for all m, n  M1 (M1  is a 

proper subset of N1 which is a near-field) we have 

f(m + n) = f(m) + f(n)  and  f(m. n) = f(m) . f(n) ,  

where f (m) and f (n)  M 2 (M 2 is a proper subset 

of N2  which is a near-field) 

 

2.  The main Results 

 

     This section is devoted to study Smarandache  as  

completely semi prime ideal with respect to an 

element of a near ring . 

  

 

 

Definition  (2.1)  

     A  S- ideal  I of the  S- near ring N related to the 

near field M   is called  a smarandache completely 

semi prime ideal  with respect  to an element x of N  

denoted  by  x- S. C.S.P.I of N if 

2.  implies y I  for all y M.x y I    

Example (2.2) 

        Consider the S- near ring  N =z12 ,the ideal  I 

={0,3,6,9}  is S-ideal related to the near field 

M={0,8,4}, I is 2-S.C.S.P.I of N since  

22.  implies y I  for all y M.y I   

 

Remark (2.3)   

   In general not all  x-S.C.S.P.I related to the near 

field M  of a  near ring N are   x- C.S.P.I   of  N    

 

Example (2.4) 

   Consider the S- near ring   N   in example (2.2) 

The S-ideal  {0 } is    7-S.C.S.P.I related to the near 

field M of N  but is not    7-C.S.P.I of N   . 

Remark (2.5) 

    Let N1 and N2 be two S- near rings,  f:N N
1 2
  

be an epimomorphism  and    N1 has M1 as near 

field  then    M2=f(M1) is a near field  of N2 . 

Proposition (2.6) 

    Let N1 and N2 be two S- near rings and 

: ( , , .) ( , , . )
1 2

f N N       be  an   epimomorphism  

and I  be    S-ideal    of N1  .Then f(I ) is S- ideal    of 

N2   . 
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Proof 

Let M2 be a near field of N2  , M1 be a near field of 

N1 and M2 =f(M1) 

(1)  , ( )
2

 i  ( )

, ,i   such that 

Let y z M f M

and f I

r s M I

 


 

  


 

  y=f(r) ,  z=f(s),  i  ( )

f(r). (f(s)+ ( )) f(r). f(s)

=f(r (s+ ) r.s) ( )

sin    r.(s+ ) r.s

f i

f i

i f I

ce i I

 

   

 

 

 

1

1

1

(2)  I.M

    (I.M ) ( )

   (I). f(M ) ( )

I

f f I

f f I





 

 

form (1),(2) we have f(I) is S-ideal of N2. ▪ 

 

Theorem (2.7) 

    Let N1 and N2 be two S- near rings , 

: ( , , .) ( , , . )
1 2

f N N       be  an   

epimomorphism .If  I  be    x- S. C.S.P.I   of N1   

related to the near field  M   , then f(I ) is  f(x)- S . 

C.S.P.I related to the near field  f(M )  of N2 . 

Proof  

    Let I   be x-S- C.S.P.I related to the near field  M   

of N1   f(I) is S- ideal related to the near field  f(M) 

of N2  .To prove  f(I) is f(x)-S.C.P.I related to the 

near field f( M) of N2  . 

Let ( ) ( )   ,  Mc f y f M y   such that  

2 2
( ).  ( ). ( ( )) ( )

2 2
( ). ( ) ( . ) ( )

  [ since f is an epimomorphism  ] 

f x c f x f y f I

f x f y f x y f I

  

    

2.x y I y I    [since I is  x-S.C.S.P.I 

related to the near field  M of N1 ] 

c f(y) f(I) f(I)     is a f(x)-S.C.S.P.I of 

N2 . ▪ 

Proposition (2.8)     

     Let N1 and N2 be two S- near rings , 

: ( , , .) ( , , . )
1 2

f N N       be   epimomorphism  and 

J  be    S-ideal related to the near field  M2 when 

f(M1)=M2  of N2   .Then   f
-1

(I ) is S-ideal related to 

the near field  M1   of N1  where y=f(x), 

1
ker ( )f f I


 . 

Proof  

   To proof  
1( )f J

 is S-ideal of N1  ,  since J is S-

ideal of N2    

1(1)   , ( )

 j ( )

 

Let r s M f M

and f J

To prove



 



 


 

2

r.(s+ ) r.s ( )

f(r.(s+ ) r.s)         sin   [J is S-ideal  N ].

=f(r). (f(s)+ f( )) (r). f(s)

r.(s+ ) r.s ( )

j f J

j J ce

j f J

j f J
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2

1 1

2

1 -1 1

2

(2)  J.M

   (J.M ) ( )

  (J).f (M ) ( )

J

f f J

f f J

 

 







 

form (1),(2) we have f
-1

(J) is S-ideal  related to the 

near field  M1   of  N1. ▪ 

  

Theorem (2.9) 

   Let N1 and N2 be two S- near rings ,   

1 2:f N N   be  an   epimomorphism  and J  be    

y-S. C.S.P.I  related to the near field  M2   of 

N2   .Then f
-1

(I ) is x-S. C.S.P.I  related to the near 

field  M1   of N1  where y=f(x) , 
1(ker )f f I  

and  M2= f(M1)  . 

Proof   

  By using proposition (2.8) we have  
1( )f J

 is    

S- ideal related to the near field  M1   , Now to proof  

f
-1

(J)    is a  x-S.C.S.P.I related to the near field  M2   

of N1 . 

Let 1z N such that  

2 1

2

2 2

2 2

. ( )

( . )

( ). ( ) ( ).( ( ))

( ).( ( )) .( ( ))

x z f J

f x z J

f x f z f x f z

f x f z y f z



 

 



 

 

( )   [sin     y-S.C.S.P.I

  related to the near field M  of N ]
2 2

1
( )

f z J ce J is

z f J

 


 

1
( )  x-S.C.S.P.I  related to 

the near field M  of N    , y = f(x).
1 1

f J is



 

Definition (2.10) 

     Let N be S- near ring we call  the S-ideal  related 

to the near field  M   as  a completely prime related 

to the near field  M of  N if      

.   y I or  z I for any z,y M .y z I implies   

denoted by S.C.P.I of N . 

Example (2.11) 

           Consider the near ring N=Z6 with addition 

and multiplication  as defined by the following 

tables . 

 

+6 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

 

.6 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 
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 N   has M={0,2,4} as a  near field then  N is a 

S-near ring  the   S- ideal  I={0,3} related to 

the near field M of N   is  S.C.P.I related to the 

near field M of N since 

.   y I or  z I for any z,y M .y z I implies   

Theorem (2.12) 

    Let N1 and N2 be two S- near rings ,    

:
1 2

f N N   be   epimomorphism  and I  be    S. 

C.P.I    related to the near field M of N   of 

N1 , .Then f(I ) is        S.  C.P.I   related to the near 

field f( M ) of N     of N2    . 

 

Proof  

   By  Proposition (2.6) we have   f(I) is S- ideal   

related to the near field M of   N2.. 

To proof f(I) is a  S.C.P.I of N2 . 

Let ( ), ( ) ( )   f y f z f M such that  

( ). ( ) ( )

( . ) ( )

.      

f y f z f I

f y z f I

y z I



 

 

 

y  or z   [ since I is S.C.P.I

  related to the near field M of N ]
1

( ) ( )  or ( ) ( )

I I

f y f I f z f I

  

  

 

f(I) is S.C.P.I related to the near field f(M) of N
2



.▪ 

Theorem (2.13) 

   Let N1 and N2 be two S- near rings ,    

1 2:f N N   be an   epimomorphism  and J  be    

S. C.P.I related to the near field  M2    of N2   .Then 

f
-1

(J ) is S.  C.P.I related to the near field M1    of 

N1  ,where f(M1)=M2 , 
1

ker ( )f f I


 . 

 

Proof   

,  such that 

. ( )

( . )

  

( . ) ( ). ( )

y z M

y z f J

L

f y z J

f y z f y f z J

et  




 

  

 

( )  or ( )  [sin    S.C.P.I 

related to the near field M =f(M ) of N ]
2 1 2

( ) or ( )

f y J f z J ce J is

y f J z f J

  

 
  

 

-1
f (J) is S.C.P.I related to the near field M  of N

1 1
 .▪ 

 

 Definition  (2.14)  

   A S- ideal I of the near ring N  is called  

smarandache completely semi prime ideal related to 

the near field  M    denoted  by S.C.S.P.I  of N if 

2   y I  for any y M .y I implies    

 

Example (2.15) 

         Consider  N =Z12   in example (2.2) 

See that .. 

N is S- near ring since N is near ring has proper 

subset a near field M= {0,4,8}. 

Let I={0,2,4,6,8,10}is S- ideal related to the near 

field  M ,Since  

1.  y,z M and for all i I ,y.(z+i)-y.z I ,

where M is the near field contained in N .

   
 

2. I.M I . 

I is S. C.S.P.I related to the near field  M  of N since 

2   y I y I implies    for any y M .   
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Remark (2.16) 

   Not all  S-C.S.P.I   related to a near field M of S-

near ring N is   x-S. C.S.P.I  related to a near field 

M of  N . 

Example (2.17) 

    Consider the S- near ring    N  in example 

(2.11) ,the ideal I={0,3}is      S-C.S.P.I related to a 

near field M={0,2,4} of N but is not is   3-S. C.S.P.I  

related to a near field M of  N  since 

23.2 0  but 2 I  ,    2 M.I    . 

 

 

proposition (2.18) 

   If N is non  zero S-near ring  and  I={0} then I is 

not 0-S.C.S.P.I of N . 

Proof  

   Suppose I is 0-S.C.S.P.I related to a near field M 

of N and yN . 

 

2
0.

   [since I is   0-S.C.S.P.I 

 related to the near field M ]

0

{0}

   since M {0}.

y I

y I

y

M

and this contradiction

 

 

 

 



 

Then I is not 0-S.C.S.P.I  related to the near field M of N .

 

Proposition (2.19) 

   Let I be   S- ideal related to a near field M  of S-

near ring N such that M I  , then I is not 0-

S.C.S.P.I related to a near field M  of  N . 

 

Proof  

Suppose that I is 0-S.C.S.P.I related to a near field 

M  of  N  yand M  

2
. 0

 [since I is 0-S.C.S.P.I

 related the near field M of  N]

M I   this contradiction since M I]

o y I

y I

  

 

  

 

 is not 0-S.C.S.P.I of N.I ▪ 

 

Definition (2.20) 

      The S- near ring N is  called Smarandache  

completely semi prime ideals related to a near field 

M   with respect to  an element x  of N it  denoted 

by (x-S. C.S.P.I near ring ),  if every  S-ideal  

related to a near field M  of  N  is   x-S. C.S.P.I  of  

N . 

Example (2.21)          

    Consider the S- near ring   N in example (2.11) 

let M={0,2,4} is a near field I1={0}, I2 ={0,3}and    

I3 ={0,2,4} are  the only 5-S.C.S.P.I of N that mean 

N is 5-S-C.S.P.I  related to a near field M  near ring . 

  Theorem (2.22) 

   Let  jN
j J

 be a family of S- near rings  

j jx N  and Ij  be xj –S. C.S.P.I related to a near 

field Mj of Nj  for all j J .Then j

j J

I


  is ( xj )–S. 

C.S.P.I related to each  near field jM   of j

i J

N


  

where jM   is the near field  of j

i J

N


  whos 

elements (mj)   is equal  to mj  and all other 

components  are zeros. 
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Proof 

   By  theorem (1.12), we have 
j

i J

N


  is S- near 

ring  

j

j J

I


    be     S-ideal of  j

i J

N


   since 

(1) let (y ),(z ) M  and i I
j j j k jj J

(y ).((z )+(i ))-(y ).(z ) =(y .z  +y .i - y .z ) I
j j k j j j j j k j j j

j J

(2)  I   . M   I   
j j jj J j J

I    is S-ideal related  to the near field M   
j j

j J

j J

  





    
 

 


 

 

To proof  I
jj J




 is   ( xj )-S. C.S.P.I related to each  

near field
jM   of N

jj J



    

 ( )  such that 

2
(x )( )

j

2
(x . )

j

2
 x .     [since    is  x . . . . ]

j j

( )

Let y M
j jj J

y I
j jj J

y I
j jj J

y I I S C S P I
j j j

y I
j j

y I
j jj J

 


 


  


  

 

  


 

I
jj J




 is   ( xj )- S.C.S.P.I related to each  near 

field jM    of N
jj J




▪ 

 

 

Remark (2.23) 

    Not all S- ideal related to a  near field M  is an 

ideal of the S-near ring N. 

 

Example (2.24) 

  Consider the S-near ring   N in   example (2.2) , 

Let I={0,3,9} is S- ideal  related to a  near field M 

but it is not  an ideal of the S-near ring N. 

 

Proposition (2.25) 

  Every trivial S- ideal related to a  near field M is 

an ideal of the S-near ring N. 

 

Proof  

  Let ,r s M  

  

 I={0}

r.(s+0 )-r.s=  0  

r,s M

{0}.X={0} {0}. 

{0} is S- ideal related  to near field M

if  I=N and r,s M

r.(s+i )-r.s     r,s X,i N,

N.X N

If

I

N

 

 





    

   

I is an ideal of  N.  ▪ 

Remark (2.26) 

   Not all S- C.S.P.I  related to a  near field M of the 

S-near ring N is  a prime ideal . 
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Example (2.27)  

  Consider  the S-near ring   N in   example (2.11) 

  I={0}  is S- C.S.P.I related to a  near field 

M={0,2,4} of N when I1 ={0,3} and   I2 ={0,2,4} 

I .I  ={0} I  but  {0,3} I and  {0,2,4} I 
1 2

I is not a prime  ideal .

  



 

Remark (2.28) 

   Not all S- C.S.P.I related to a  near field M of the 

S-near ring N is C.P.I of N . 

 

Example (2.29) 

  Consider the S-near ring  N  in example (2.11) 

 Let I={0}  is S- C.S.P.I of N    

4.3=0  ,but 4   and 3  

 I is not C.P.I  ideal of N .

I I 


 

Remark (2.30) 

   Not all x-S. C.S.P.I  of the S-near ring N is C.P.I 

of  N . 

Example (2.31) 

  Consider the S-near ring   N in   example (2.11) 

 Let I={0}  is 5-S. C.S.P.I  related to a  near field 

M={0,2,4} of  N    

2.3=0 , but 2   and 3  

 I is not C.P.I  ideal of N .

I I 
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 الخلاصة 

قدمنا في ىذا البحث مفاىيم ًىي مثالية  سمزندش  الشبو        

الأًلية التامة ًمثالية سمزندش الاًلية الشبو الاًلية التامة   بالنسبة 

    x-S-C.S.P.I)في الحلقة القزيبة ًالذي يزمز ليا )  xلعنصز 

الحلقة القزيبة للمثاليات سمزندش الاًلية الشبو تامة         نارسكما د

 .  . كما أعطينا بعض خٌاص ىذه المفاىيم xبالنسبة  لعنصز     

 


