Smarandache Completely Semi Prime Ideal With Respect To An Element Of A Near Ring

Hussien Hadi Abass

Showq Mhammed Ebraheem

msc-hussien@yahoo.com AL-Kufa university College Of Education For Girls Department of Mathematics

Abstract

In this paper ,we introduce the notions of smarandache completely semi prime ideal (S.C.S.P.I),and smarandache completely semi prime ideal with respect to an element x of a near ring N denoted by (x-S.C.S.P.I) , and smarandache completely semi prime ideal with respect to an element x near ring .Also we give some properties of these notions .

Key Words

Near ring ,ideal of near ring , near-ring homomorphism, the direct product of the near-rings, completely semi prime ideal, completely semi prime ideal with respect to an element of a near ring, near field, smarandache near ring, smarandache ideal, Smarandache direct product, Smarandache near-ring homomorphism.

Introduction

Throughout this paper N will be a left near ring . In 1989 the notion of completely semi prime ideal of a near ring (C.S.P.I) was introduced by P.DHeena [6] . In 2011 H.Hadi and Showq M. the notions of completely semi prime ideal with respect to an element x of a near ring and the completely semi

prime ideals with respect to an element near ring (x-C.S.P.I near ring) [4]. They established many results and obtained many correspondents between (C.S.P.I) and (x-C.S.P.I) of a near ring. The purpose of this paper is as mention in the abstract.

1. Preliminaries

In this section we give some basic concepts that we need in the second section.

Definition (1.1) [2]

A left near ring is a set N together with two binary operations "+" and "." such that

a. (N,+) is a group (not necessarily abelian)

b. (N, .) is a semigroup.

c. $(n_1 + n_2)$. $n_3 = n_1$. $n_3 + n_2$. n_3

For all $n_1, n_2, n_3 \in N$;

Definition (1.2) [3]:

Let N be a near-ring. A normal subgroup I of (N,+) is called a left ideal of N if

i. $IN \in I$.

ii. $\forall n, n_1 \in \mathbb{N} \text{ and for all } i \in I$,

 $n.(n_1 + i) - n.n_1 \in I$.

Remark (1.3) [7]

We will refer that all near rings and ideals in this paper are left .

Definition (1.4)([8]

Let $\{Nj\}_{j\in J}$ be a family of near rings , J is an index set and

$$\prod_{j \in J} N_j = \{(x_j) : x_j \in N_j, \text{ for all } j \in J \} \text{ be the}$$

directed product of N_{j} with the component wise defined operations '+' and '.', is called the direct product near ring of the near rings $N_{j}\,$.

Definition (1.5) [1]

If I_1 and I_2 are ideals of a near ring N then $I_1 \cdot I_2 = \{i_1 \cdot i_2 : i_1 \in I_1, i_2 \in I_2\}$.

Definition (1.6) [8]

A near ring N is called an integral domain if N has non-zero divisors

Definition (1.7) [8]

Let N_1 and N_2 be two near-rings. The mapping $f: N_1 \rightarrow N_2$ is called a near-ring homomorphism if for all $m, n \in N_1$

f(m + n) = f(m) + f(n) and f(m, n) = f(m) f(n).

Theorem (1.8) [8]

Let $f: N_1 \to N_2$ is homomorphism

- (1) If I is ideal of a near ring N_1 then f(I) is ideal of a near ring N_2 .
- (2) If J is ideal of a near ring N_2 then $f^{-1}(J)$ is ideal of a near ring N_1 .

Definition (1.9) [6]

An ideal I of N is called completely semi prime ideal(C.S.P.I) of a near ring .if $x^2 \in I$ implies $x \in I$ for any $x \in N$.

Definition (1.10)[7]

Let I be an ideal of a near ring N. Then I its called completely prime ideal of N if $\forall x, y \in N$, x. $y \in I$ implies $x \in I$ or $y \in I$, denoted by C.P.I of N.

Definition (1.11)[4]

let N be a near ring and $x \in N$, I is called completely semi prime ideal with respect to an element x denoted by (x-C.S.P.I) or (x-completely semi prime ideal) of N if for all $y \in N$, if $x \cdot y^2 \in I$ implies $y \in I$.

Definition (1.12) [8]

Anon- empty set N is said to be a near field if on N is defined by two binary operations "+","." such that

- (1)(N,+) is a group,
- (2) $(N\setminus\{0\}, .)$ is a group,
- (3) a.(b+c)=a.b+a.c for all a,b,c belong to N.

Definition (1.13) [8]

The near ring (N,+,.) is said to be a smarandache near ring denoted by (S-near ring) if it has a proper subset M such that (M,+,.) is a near field .

Definition(1.14) [8]

Let N be S-near ring ,a normal subgroup I of N is called a smarandache ideal (S-ideal) of N related to M if ,

(1) \forall y,z \in M and \forall i \in I, y.(z+i)-y.z \in I, where M is the near field contained in N. (2) I.M \subseteq I

Definition (1.15) [8]

Let $\{N_j\}_{j\in J}$ be a family of near-rings which has at least one S-near ring. Then this direct product $\prod_{j\in J} N_j$ with component wise defined operations

'+' and '.' is called Smarandache direct product (S-direct product) of near-rings.

Theorem (1.16) [8]

The S-direct product of family of near rings is a S-near-ring.

Definition (1.17) [8]

Let($N_1,+,...$) and ($N_2,+',..'$) be two S-nearrings, a function $f:N_1\to N_2$ is called a Smarandache near-ring homomorphism (S-near-ring homomorphism) if for all $m,n\in M_1$ (M_1 is a proper subset of N_1 which is a near-field) we have f(m+n)=f(m)+'f(n) and f(m,n)=f(m).'f(n), where f(m) and $f(n)\in M_2$ (M_2 is a proper subset of N_2 which is a near-field)

Definition (1.18)[8]

Let($N_1,+,...$) and ($N_2,+',...'$) be two S-nearrings, a function $f:N_1\to N_2$ is called a Smarandache near-ring homomorphism (S-near-ring homomorphism) if for all $m,n\in M_1$ (M_1 is a proper subset of N_1 which is a near-field) we have f(m+n)=f(m)+'f(n) and f(m,n)=f(m).'f(n), where f(m) and $f(n)\in M_2$ (M_2 is a proper subset of N_2 which is a near-field)

2. The main Results

This section is devoted to study Smarandache as completely semi prime ideal with respect to an element of a near ring .

Definition (2.1)

A S- ideal I of the S- near ring N related to the near field M is called a smarandache completely semi prime ideal with respect to an element x of N denoted by x- S. C.S.P.I of N if $x \cdot y^2 \in I$ implies $y \in I$ for all $y \in M$.

Example (2.2)

Consider the S- near ring $N = z_{12}$, the ideal $I = \{0,3,6,9\}$ is S-ideal related to the near field $M = \{0,8,4\}$, I is 2-S.C.S.P.I of N since $2 \cdot y^2 \in I$ implies $y \in I$ for all $y \in M$.

Remark (2.3)

In general not all x-S.C.S.P.I related to the near field M of a near ring N are x-C.S.P.I of N

Example (2.4)

Consider the S- near ring N in example (2.2) The S-ideal $\{0\}$ is 7-S.C.S.P.I related to the near field M of N but is not 7-C.S.P.I of N .

<u>Remark (2.5)</u>

Let N_1 and N_2 be two S- near rings, $f:N_1 \rightarrow N_2$ be an epimomorphism and N_1 has M_1 as near field then $M_2=f(M_1)$ is a near field of N_2 .

Proposition (2.6)

Let N_1 and N_2 be two S- near rings and $f:(N_1,+,.)\to (N_2,+',.')$ be an epimomorphism and I be S-ideal of N_1 . Then f(I) is S- ideal of N_2 .

Proof

Let M_2 be a near field of $N_2\,$, M_1 be a near field of N_1 and $M_2\!=\!\!f(M_1)$

(1) Let
$$y, z \in M_2 = f(M_1)$$

and $i' \in f(I)$

 $\exists r, s \in M_1, i \in I \text{ such that }$

$$y=f(r)$$
, $z=f(s)$, $i'=f(i)$

$$\Rightarrow$$
 f(r).'(f(s)+'f(i))-f(r).'f(s)

$$=f(r(s+i)-r.s) \in f(I)$$

 $\sin ce \quad r.(s+i)-r.s \in I$

(2)
$$I.M_1 \subseteq I$$

 $f(I.M_1) \subseteq f(I)$
 $f(I).'f(M_1) \subseteq f(I)$

form (1),(2) we have f(I) is S-ideal of N_2 .

Theorem (2.7)

Let N_1 and N_2 be two S- near rings , $f:(N_1,+,.)\to (N_2,+',.')$ be an epimomorphism .If I be x-S. C.S.P.I of N_1 related to the near field M , then f(I) is f(x)-S . C.S.P.I related to the near field f(M) of N_2 .

Proof

Let I be x-S- C.S.P.I related to the near field M of $N_1 \Rightarrow f(I)$ is S- ideal related to the near field f(M) of N_2 . To prove f(I) is f(x)-S.C.P.I related to the near field f(M) of N_2 .

Let
$$c = f(y) \in f(M)$$
 , $y \in M$ such that

$$f(x)$$
.' $c^2 = f(x)$.' $(f(y))^2 \in f(I)$
 $\Rightarrow f(x)$.' $f(y^2) = f(x.y^2) \in f(I)$
[since f is an epimomorphism]
 $\Rightarrow x.y^2 \in I \Rightarrow y \in I$ [since I is x-S.C.S.P.I related to the near field M of N₁]
 $\Rightarrow c = f(y) \in f(I) \Rightarrow f(I)$ is a f(x)-S.C.S.P.I of N₂.

Proposition (2.8)

Let N_1 and N_2 be two S- near rings , $f:(N_1,+,.)\to (N_2,+',.')$ be epimomorphism and J be S-ideal related to the near field M_2 when $f(M_1)=M_2$ of N_2 .Then $f^1(I)$ is S-ideal related to the near field M_1 of N_1 where y=f(x), $\ker f\subseteq f^{-1}(I)$.

Proof

To proof $\,f^{^{-1}}(J)\,$ is S-ideal of $N_1\,$, since J is S-ideal of $N_2 \Longrightarrow$

(1) Let
$$r, s \in M_1 = f^{-1}(M_2)$$

and
$$i \in f^{-1}(J)$$

To prove

$$r.(s+j)-r.s \in f^{-1}(J)$$

$$f(r.(s+j)-r.s) \in J$$
 since [J is S-ideal N₂].

$$=f(r).'(f(s)+'f(j))-f(r).'f(s) \in J$$

$$r.(s+i)-r.s \in f^{-1}(J)$$

(2) J.M,
$$\subseteq J$$

$$f^{-1}(J.M_2) \subseteq f^{-1}(J)$$

$$f^{-1}(\mathbf{J}).f^{-1}(\mathbf{M}_2) \subseteq f^{-1}(\mathbf{J})$$

form (1),(2) we have $f^{-1}(J)$ is S-ideal related to the near field M_1 of N_1 .

Theorem (2.9)

Let N_1 and N_2 be two S- near rings , $f:N_1 \rightarrow N_2$ be an epimomorphism and J be y-S. C.S.P.I related to the near field M_2 of N_2 .Then $f^{-1}(I)$ is x-S. C.S.P.I related to the near field M_1 of N_1 where y=f(x), $\ker f \subseteq f^{-1}(I)$ and $M_2=f(M_1)$.

Proof

By using proposition (2.8) we have $f^{-1}(J)$ is S-ideal related to the near field M_1 , Now to proof $f^1(J)$ is a x-S.C.S.P.I related to the near field M_2 of N_1 .

Let $z \in N_1$ such that

$$x.z^{2} \in f^{-1}(J)$$

$$\Rightarrow f(x.z^2) \in J$$

$$= f(x).f(z)^2 = f(x).(f(z))^2$$

$$f(x).(f(z))^2 = y.(f(z))^2$$

⇒ $f(z) \in J$ [sin ce J is y-S.C.S.P.I related to the near field M_2 of N_2]

⇒ $z \in f^{-1}(J)$ ⇒ $f^{-1}(J)$ is x-S.C.S.P.I related to the near field M_1 of N_1 , y = f(x).

Definition (2.10)

Let N be S- near ring we call the S-ideal related to the near field M as a completely prime related to the near field M of N if $y.z \in I \ implies \ y \in I \ or \ z \in I \ for \ any \ z,y \in M \ .$ denoted by S.C.P.I of N .

Example (2.11)

Consider the near ring $N=Z_6$ with addition and multiplication as defined by the following tables .

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

•6	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

N has $M=\{0,2,4\}$ as a near field then N is a S-near ring the S- ideal $I=\{0,3\}$ related to the near field M of N is S.C.P.I related to the near field M of N since $y.z \in I$ implies $y \in I$ or $z \in I$ for any $z,y \in M$.

Theorem (2.12)

Let N_1 and N_2 be two S- near rings , $f:N_1\to N_2$ be epimomorphism and I be S. C.P.I related to the near field M of N of N_1 , .Then f(I) is S. C.P.I related to the near field f(M) of N_2 .

Proof

By Proposition (2.6) we have f(I) is S- ideal related to the near field M of N_2 .

To proof f(I) is a S.C.P.I of N_2 .

Let $f(y), f(z) \in f(M)$ such that

 $f(y)f(z) \in f(I)$

 $\Rightarrow f(y.z) \in f(I)$

 $\Rightarrow y.z \in I$

⇒ $y \in I$ or $z \in I$ [since I is S.C.P.I related to the near field M of N_1]

 $\Rightarrow f(y) \in f(I) \text{ or } f(z) \in f(I)$

 \Rightarrow f(I) is S.C.P.I related to the near field f(M) of N $_2$.

Theorem (2.13)

Let N_1 and N_2 be two S- near rings , $f:N_1 \rightarrow N_2$ be an epimomorphism and J be S. C.P.I related to the near field M_2 of N_2 .Then

 $f^{1}(J)$ is S. C.P.I related to the near field M_{1} of N_{1} , where $f(M_{1})=M_{2}$, $\ker f\subseteq f^{-1}(I)$.

Proof

Let $y, z \in M_1$ such that

$$y.z \in f^{-1}(J)$$

$$\Rightarrow f (y.z) \in J$$

$$\Rightarrow f(y.z) = f(y).f(z) \in J$$

 $\Rightarrow f(y) \in J \text{ or } f(z) \in J \text{ [sin } ce J \text{ is S.C.P.I}$ related to the near field $M_2 = f(M_1)$ of N_2]

$$\Rightarrow y \in f^{-1}(J) \text{ or } z \in f^{-1}(J)$$

 \Rightarrow f⁻¹(J) is S.C.P.I related to the near field M₁ of N₁ . \blacksquare

Definition (2.14)

A S- ideal I of the near ring N is called smarandache completely semi prime ideal related to the near field M denoted by S.C.S.P.I of N if $y^2 \in I$ implies $y \in I$ for any $y \in M$.

Example (2.15)

Consider $N = \mathbb{Z}_{12}$ in example (2.2)

See that ..

N is S- near ring since N is near ring has proper subset a near field $M = \{0,4,8\}$.

Let $I=\{0,2,4,6,8,10\}$ is S- ideal related to the near field M ,Since

$$\begin{split} 1. \ \forall \ y, z \ \in M \ \text{and for all} \ i \in I \ , y.(z+i)\text{-}y.z \ \in I \ , \\ where \ M \ is \ the \ near \ field \ contained \ in \ N \ . \end{split}$$

2. $I.M \subseteq I$.

I is S. C.S.P.I related to the near field M of N since $y^2 \in I$ implies $y \in I$ for any $y \in M$.

Remark (2.16)

Not all S-C.S.P.I related to a near field M of S-near ring N is $\,$ x-S. C.S.P.I related to a near field M of N .

Example (2.17)

Consider the S- near ring N in example (2.11) ,the ideal I= $\{0,3\}$ is S-C.S.P.I related to a near field M= $\{0,2,4\}$ of N but is not is 3-S. C.S.P.I related to a near field M of N since $3.2^2 = 0 \in I$ but $2 \notin I$, $2 \in M$.

proposition (2.18)

If N is non zero S-near ring and $I=\{0\}$ then I is not 0-S.C.S.P.I of N .

Proof

Suppose I is 0-S.C.S.P.I related to a near field M of N and $y \in N$.

$$\Rightarrow 0.y^2 \in I$$

 $\Rightarrow y \in I$ [since I is 0-S.C.S.P.I

related to the near field M]

$$\Rightarrow y = 0$$

$$\Rightarrow M = \{0\}$$

and this contradiction since $M \neq \{0\}$.

Then I is not 0-S.C.S.P.I related to the near field M of N.

Proposition (2.19)

Let I be S- ideal related to a near field M of S-near ring N such that $M \not\subset I$, then I is not 0-S.C.S.P.I related to a near field M of N.

Proof

Suppose that I is 0-S.C.S.P.I related to a near field M of N and $y \in M$

$$\Rightarrow o.y^2 = 0 \in I$$

 $\Rightarrow y \in I$ [since I is 0-S.C.S.P.I

related the near field M of N]

 \Rightarrow M \subseteq I this contradiction since M $\not\subset$ I]

 $\Rightarrow I$ is not 0-S.C.S.P.I of N. •

Definition (2.20)

The S- near ring N is called Smarandache completely semi prime ideals related to a near field M with respect to an element x of N it denoted by (x-S. C.S.P.I near ring), if every S-ideal related to a near field M of N is x-S. C.S.P.I of N .

Example (2.21)

Consider the S- near ring $\,$ N in example (2.11) let $M=\{0,2,4\}$ is a near field $I_1=\{0\}$, $I_2=\{0,3\}$ and $I_3=\{0,2,4\}$ are the only 5-S.C.S.P.I of N that mean N is 5-S-C.S.P.I related to a near field M near ring .

Theorem (2.22)

Let $\left\{ \mathbf{N}_{\mathbf{j}} \right\}_{j \in J}$ be a family of S- near rings $x_j \in N_j$ and $\mathbf{I}_{\mathbf{j}}$ be $\mathbf{x}_{\mathbf{j}}$ –S. C.S.P.I related to a near field $\mathbf{M}_{\mathbf{j}}$ of $\mathbf{N}_{\mathbf{j}}$ for all $j \in J$. Then $\prod_{j \in J} I_j$ is $(\mathbf{x}_{\mathbf{j}})$ –S.

C.S.P.I related to each near field M_j' of $\prod_{i \in J} N_j$

where M'_{j} is the near field of $\prod_{i \in J} N_{j}$ whos

elements (m_j) is equal to m_j and all other components are zeros.

Proof

By theorem (1.12), we have $\prod_{i \in I} N_j$ is S- near

ring

$$\Rightarrow \prod_{j \in J} I_j \qquad \text{be} \qquad \quad \text{S-ideal of} \quad \prod_{i \in J} N_j \quad \text{ since}$$

(1) let
$$(y_j),(z_j) \in M_j'$$
 and $i_k \in \prod_{j \in J} I_j$

$$(y_{j}).((z_{j})+(i_{k}))-(y_{j}).(z_{j})=(y_{j}.z_{j}+y_{j}.i_{k}-y_{j}.z_{j})\in\prod_{i\in J}I_{j}$$

(2)
$$\prod_{\mathbf{j} \in J} \ \mathbf{I_j} \ . \ \mathbf{M'_j} \ \subseteq \prod_{\mathbf{j} \in J} \ \mathbf{I_j} \ \forall j \in J$$

$$\Rightarrow \prod_{j \in J} \ I_j \quad \text{is S-ideal related} \ \ \text{to the near field } M_j'$$

To proof $\prod_{j \in J} I_j$ is (x_j) -S. C.S.P.I related to each

near

field

 M'_{j} of $\prod_{i \in J} N_{j}$

Let $(y_j) \in \prod_{j \in J} M'_j$ such that

$$(x_j)(y_j)^2 \in \prod_{j \in J} I_j$$

$$\Rightarrow (x_j.y_j^2) \in \prod_{i \in I} I_j$$

$$\Rightarrow x_j.y_j^2 \in I_j$$
 [since I_j is $x_j - S.C.S.P.I$]

$$\Rightarrow y_j \in I_j$$

$$\Rightarrow (y_j) \in \prod_{j \in J} I_j$$

 $\prod_{j \in J} \ I_j$ is (x_j)- S.C.S.P.I related to each near

$$\operatorname{field} M'_{j} \ \text{of} \ \prod_{\mathbf{j} \in \mathbf{J}} \ \mathbf{N}_{\mathbf{j}} \blacksquare$$

Remark (2.23)

Not all S- ideal related to a near field M is an ideal of the S-near ring N.

Example (2.24)

Consider the S-near ring N in example (2.2), Let $I=\{0,3,9\}$ is S- ideal related to a near field M but it is not an ideal of the S-near ring N.

Proposition (2.25)

Every trivial S- ideal related to a near field M is an ideal of the S-near ring N.

Proof

Let $r, s \in M$

$$\Rightarrow$$
 r.(s+0)-r.s= $0 \in I$

 $\forall r,s \in M$

$$\{0\}.X=\{0\}\subseteq\{0\}.$$

{0} is S- ideal related to near field M

if I=N and $r,s\in M$

$$\Rightarrow$$
r.(s+i)-r.s \in N \forall r,s \in X,i \in N,

$$\Rightarrow$$
N.X \subseteq N

 \Rightarrow I is an ideal of N. •

Remark (2.26)

Not all S- C.S.P.I related to a near field M of the S-near ring N is a prime ideal.

Example (2.27)

Consider the S-near ring N in example (2.11) I={0} is S- C.S.P.I related to a near field M={0,2,4} of N when I_1 ={0,3} and I_2 ={0,2,4} $I_1.I_2$ ={0} \subset I but {0,3} $\not\subset$ I and {0,2,4} $\not\subset$ I \Rightarrow I is not a prime ideal .

Remark (2.28)

Not all S- C.S.P.I related to a near field M of the S-near ring N is C.P.I of N .

Example (2.29)

Consider the S-near ring N in example (2.11) Let $I=\{0\}$ is S- C.S.P.I of N 4.3=0 ,but $4 \notin I$ and $3 \notin I$ \Rightarrow I is not C.P.I ideal of N.

Remark (2.30)

Not all x-S. C.S.P.I of the S-near ring N is C.P.I of N.

Example (2.31)

Consider the S-near ring N in example (2.11) Let $I=\{0\}$ is 5-S. C.S.P.I related to a near field $M=\{0,2,4\}$ of N 2.3=0, but $2 \not\in I$ and $3 \not\in I$

REFERENCES

124);2000.

 \Rightarrow I is not C.P.I ideal of N.

Rings"; Proyecciones; Vol. 19, NO

Sheaf Representations ";Internat.J.math & Math.SCI,vol21.N0 p.p(145-152);1995.

[2] G.Pilz,"Near ring" ;North Hollanda Publ; Amsterdam-New York –Oxford ;1983.

[3] H.A.S.Abujabal,"; On Structure And Commutativity Of Near

[1] G.Mason; "Fully Idempotent Near ring And

[4] H.Hadi Abass & Showq.E. "On Fuzzy Completely Semi Prime Ideal With Respect To An Element Of A Near Ring"; Journal of Kufa of mathmatics and Computer vol,No.3,2011,pp(1-7).

[5] K. Kim,"Intuitionistic fuzzy semi prime ideal of ordered semi groups",Journal of the chungcheong mathematical society , vol.22,(2),2009.

[6]N.J.Groenewald, "The Completely Prime Radical In Near Rings"; Acta Math .Hung ; p.p(,301-305);1988.

[7] P.Dheena and G.Satheesh Kumar ,"Completely 2-Primal Ideal In Near Ring ";Soochw Journal of Mathematics,Vol 31,N01 p.p(121-129); 2007.
[8] W.B.Vasantha Kandasamy,"Samarandache Near Ring "; America Research Press and W.B.

Vasantha Kandasamy;p.p(20-30);2002.

الخلاصة

قدمنا في هذا البحث مفاهيم وهي مثالية سمرندش الشبه الأولية التامة ومثالية سمرندش الاولية الشبه الاولية التامة بالنسبة لعنصر x في الحلقة القريبة والذي يرمز لها (x-S-C.S.P.I) كما درسنا الحلقة القريبة للمثاليات سمرندش الاولية الشبه تامة بالنسبة لعنصر x. كما أعطينا بعض خواص هذه المفاهيم .

pp(113-