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Abstract

In this paper ,we introduce the notions of
smarandache ideal
(S.C.S.P.l),and

prime

completely semi prime
smarandache completely semi
with

of a near ring N denoted by (x-S.C.S.P.l) , and

ideal respect to an element x

smarandache completely semi prime ideal with

respect to an element x near ring .Also we give

some properties of these notions .
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Introduction

Throughout this paper N will be a left near ring . In

1989 the notion of completely semi prime ideal of a

near ring (C.S.P.I) was introduced by P.DHeena [6] .

In 2011 H.Hadi and Showq M. the notions of
completely semi prime ideal with respect to an

element x of a near ring and the completely semi
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prime ideals with respect to an element near ring
(x-C.S.P.I near ring ) [4] . They established many
results and obtained many correspondents between
(C.S.P.) and (x-C.S.P.I) of a near ring . The

purpose of this paper is as mention in the abstract .

1. Preliminaries

In this section we give some basic concepts that
we need in the second section.
Definition (1.1) [2]

A left near ring is a set N together with two

binary operations “+” and ”.” such that

a. (N,+) is a group (not necessarily abelian )
b. (N, .) is a semigroup.
C.(Np+ny).N3=ng.Ng+ny.N3

For all n4, ny, N3, € N;

Definition (1.2) [3]:

Let N be a near-ring. A normal subgroup | of
(N,+) is called a left ideal of N if
i. IN el.
ii. V. nnpeNandforalliel,
n.(ny +i)—n.ne I.
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Remark (1.3) [7]
We will refer that all

near rings and ideals in

this paper are left .

Definition (1.4)([ 8]

Let {Nj} jed
index set and
TIN; ={(x;):x;eN;, for alljeJ } be the
jed
directed product of N; with the component wise
defined operations ‘+” and ‘., is called the direct
product near ring of the near rings N; .

be a family of near rings , J is an

Definition (1.5) [1 ]

If I, and I, are ideals of a near ring N then

L1, ={i 4,00 el,i, el,}.

Definition (1.6) [8]
A near ring N is called an integral domain if N
has non -zero divisors

Definition (1.7)[ 8 ]

Let N; and N ;, be two near-rings. The mapping
f: Ny —N; is called a near-ring homomorphism if

forallm,n eN;
f(m +n) =f(m) + f(n) and f(m. n) = f(m) f(n).
Theorem (1.8) [8 ]

Let f :N; = N, is homomorphism

(1) If I is ideal of a near ring N; then f(I) is
ideal of a near ring N,.
(2) If J is ideal of a near ring Nothen f*(J) is
ideal of a near ring Nj.

Definition (1.9) [6]
An ideal | of N is called completely semi prime
ideal(C.S.P.I) of a near ring if

x> elimples x el forany xeN.
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Definition (1.10)[7]

Let | be an ideal of a near ring N. Then 1 its
called completely prime ideal of N if
vX,ye N,xy el implies xeloryel ,
denoted by C.P.I of N.

Definition (1.11)[4]

let N be a near ring and X€ N , | is called
completely semi prime ideal with respect to an
element x denoted by (x-C.S.P.1) or( x- completely
semi prime ideal )of N if for all
y eN ,if x-y2 el implies y el

Definition (1.12) [8]

Anon- empty set N is said to be a near field if on
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N is defined by two binary operations “+”,”.” such
that

(1) (N,+) is agroup,

(2) (N\{03}, .) isagroup,

(3) a.(b+c)=a.b+a.c for all a,b,c belongto N.
Definition (1.13) [8]

The near ring ( N,+,.) is said to be a smarandache

near ring denoted by (S-near ring ) if it  has
a proper subset M such that (M,+,.) is a near field .
Definition(1.14) [8]

Let N be S-near ring ,a normal subgroup I of N is

called a smarandache ideal (S-ideal ) of N related
toM if,

QD VyzeM and Viel, y(zti)yzel,

where M is the near field contained in N.
2 IMc

Definition (1.15) [8]

Let {Nj}jeJ be a family of near-rings which

has at least one S-near ring. Then this direct product

_HJ N i with component wise defined operations
ie
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‘+> and ‘. is called Smarandache direct product
(S-direct product) of near-rings.

Theorem (1.16) [8]

The S-direct product of family of near rings is a

S-near-ring.

Definition (1.17) [8]
Let( Ny,+,.) and (N, ,+.) be two S-near-

rings, a function f : N; —> N, is called a
Smarandache near-ring homomorphism (S-near-ring
homomaorphism) if for all mneM; (M isa
proper subset of N; which is a near-field) we have
f(m + n) = f(m) +'f(n) and f(m. n) = f(m) ."f(n) ,
where f (m) and f (n) € M, (M , is a proper subset
of N, which is a near-field)

Definition (1.18)[8]

Let( Ny,+,.) and (N, ,+,.) be two S-near-

rings, a function f : N; — N, is called a
Smarandache near-ring homomorphism (S-near-ring
homomorphism) if for all m, n € M; (M; is a
proper subset of N; which is a near-field) we have
f(m + n) = f(m) +'f(n) and f(m. n) = f(m) ."f(n) ,
where f (m) and f (n) € M, (M , is a proper subset

of N, which is a near-field)

2. The main Results

This section is devoted to study Smarandache as
completely semi prime ideal with respect to an
element of a near ring .
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Definition (2.1)

A S-ideal | of the S-nearring N related to the
near field M
semi prime ideal with respect to an element x of N
S. CSP.I of N if

is called a smarandache completely

denoted by X-
x.y?el impliesyel forallyeM.

Example (2.2)
Consider the S- near ring N =z;, ,the ideal |
={0,3,6,9} is S-ideal related to the near field

M={0,8,4}, | is 2-S.CS.P.1 of N since

2.y?el impliesyel forallyeM.

Remark (2.3)

In general not all x-S.C.S.P.l related to the near
field M of a nearring Nare x-C.S.P.I of N

Example (2.4)

Consider the S-nearring N in example (2.2)
The S-ideal {0 }is 7-S.C.S.P.Irelated to the near
field M of N butisnot 7-C.S.P.1ofN .

Remark (2.5)

Let N; and N, be two S- near rings, f;N1_> |\|2

be an epimomorphism and N; has M; as near
field then M,=f(M,) is a near field of N, .

Proposition (2.6)

Let N; and N, be two S- near rings and
f :(Ny,+.)—> (N, +,7) be an epimomorphism

and | be S-ideal
N, .

of Ny .Then f(l) is S- ideal of
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Proof

Let M, be a near field of N, , M; be a near field of
N, and M, :f(Ml)
() Let y,z eM2=f (Ml)

and i ef (1)

dr,seM,,iel such that

1!
y=f(r), z=f(s), i' =f (i)
= f(r). (f(s)+'f (i))—F(r)."f(s)

=f(r (s+i)-r.s)ef (1)

since r.(sti)-rsel

) LM, |
f (M)t (1)
f (1) f(M)<f (1)

form (1),(2) we have f(l) is S-ideal of N,. =

Theorem (2.7)

Let N; and N, be two S- near rings ,
fi(Ng+) >Ny, +)) be an
epimomorphism .If 1 be x-S. C.S.P.I of N;

related to the near field M then f(1) is f(x)- S.
C.S.P.1 related to the near field f(M) of N,.
Proof

Let | be x-S- C.S.P.I related to the near field M
of N; = f(l) is S- ideal related to the near field f(M)
of N, .To prove f(l) is f(x)-S.C.P.I related to the
near field f( M) of N, .

Letc=f (y)ef (M) , y €M such that
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f(x) c2=f(x)(F(y N2ef)

= fx)F(y2)=f(xy3)ef()
[ since f is an epimomorphism ]

=X.y’el =y el [since I is xS.CS.P.I

related to the near field M of Ny ]

= c=f(y) ef(l)=f(l) is a f(x)-S.C.S.P.I of

N,.=

Proposition (2.8)

Let N; and N, be two S- near rings |,

fi(Ny+) >Ny, +)) be epimomorphism and

J be  S-ideal related to the near field M, when
f(My)=M, of N, .Then f*(l) is S-ideal related to
the near field M, of N; where y=f(x),
kerf <f 1(1).

Proof

To proof f (J) is S-ideal of N; , since J is S-

ideal of N, =
(@ Letr,seM,=f *(M))

and j ef "(3)

To prove
r.(stj)—-rsef '(J)
f(r.(stj)-r.s)ed since [Jis S-ideal N,].
=f(r). (f(s)+'f( ) —f (r). f(s) € J

r.(s+j)-rsef '(J)
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@) IM, ]
f 1AM, cf Q)
f (3. (M,)=f 7Q)
form (1),(2) we have f*(J) is S-ideal related to the

near field M; of Nj.=

Theorem (2.9)
Let N]_ and N2

be two S- near rings |,
f :N, >N, be an epimomorphism and J be
y-S. C.S.P.1
N, .Then f'(1) is x-S. C.S.P.l related to the near

field M; of N, where y=f(x) , kerf < f *(l)

related to the near field M, of

and M,=f(M,) .
Proof

By using proposition (2.8) we have f *(J) is
S- ideal related to the near field M; , Now to proof
f1(J) isa x-S.C.S.P.I related to the near field M,
of N; .
Let z € N, such that

xz?ef ()
=f(xz2)el

=f (x)f (2)*=f (x).(f (2))*
fx).(F @) =y.(f @)y
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=f (z)eJ [since J is y-S.C.S.P.I
related to the near field M, of N, ]

7 ef L)

—f 1(J) is x-5.C.S.P.I related to
the near field M, of Ny . y= f(x).

Definition (2.10)

Let N be S- near ring we call the S-ideal related

to the near field M as a completely prime related

to the near field M of N if

y.z el implies yelor z elforanyzyeM.

denoted by S.C.P.1 of N .
Example (2.11)

Consider the near ring N=Zg with addition

and multiplication as defined by the following

tables .

gl B~ W N | O

gl Bl W N | O] O
ol O B~ W N | -
= O O B~ W NN
N | O O & W W
Wl N | O O] &~ b~
Bl W N | O O O

&

gl Bl W N | O

ol O] O o ol ol o
g1l Bl W N P O -
BN O A DN O
w| O W O w o w
N B O N b O &~
R N W B~ o1l O] o1
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N has M={0,2,4} as a near field then N is a
the  S- ideal 1={0,3} related to
the near field M of N is S.C.P.I related to the
field M of N

S-near ring

near since

y.z €l impliesyelor z elforanyzyeM.
Theorem (2.12)

Let N; and N,

be two S- near rings ,

f :Ny—>N, be epimomorphism and | be S.
C.P.1 related to the near field M of N  of

N; .Then f(l) is S. CP.
field f(M)of N of N,

related to the near

Proof

By Proposition (2.6) we have
related to the near field M of N,.
To proof f(I) isa S.C.P.1 of N,.
Letf (y),f(z)ef (M) suchthat

f(y)f@z)ef (1)

f() is S- ideal

=>f(yz)ef ()

=vy.zel
=yelorz el [sincelisS.C.P.l

related to the near field M of N, ]
=>f(y)ef((l) orf(z)ef(l)

= f(1) is S.C.P.I related to the near field f(M) of N,
Theorem (2.13)
Let N; and N,

be two S- near rings

f :N,—>N, bean epimomorphism andJ be

S. C.P.1 related to the near field M, of N, .Then
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f1(J) is S. C.P.I related to the near field M;  of

N: ,where f(M1)=M, , kerf <f ~(1).

Proof

Let y,z eM, such that

yzef _l(J)

=f (yz)eld

=>f(yz)=f(y)f(z)el
=f(y)edorf (z)ed [since J is S.C.P.I
related to the near field MZ:f(Ml) of N2]
')

= f'l(J) is S.C.P.I related to the near field M1 of Nl .

—yef 1Q)orz ef -

Definition (2.14)
A S- ideal | of the near ring N

is called
smarandache completely semi prime ideal related to
the near field M  denoted by S.C.S.P.I of N if

yzel implies yel foranyyeM .

Example (2.15)
Consider N =Z;, inexample (2.2)
See that ..

N is S- near ring since N is near ring has proper
subset a near field M= {0,4,8}.

Let 1={0,2,4,6,8,10}is S- ideal related to the near
field M ,Since

1.Vyz eMandforalliel,y.(z+i)-yz 1,
where M is the near field contained in N .

2. lMcl.
lis S. C.S.P.I related to the near field M of N since

yzel implies yel foranyyeM.
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Remark (2.16)

Not all S-C.S.P.I
near ring N is  x-S. C.S.P.l related to a near field
Mof N.

Example (2.17)

Consider the S- near ring N
(2.11) ,the ideal 1={0,3}is S-C.S.P.I related to a
near field M={0,2,4} of N but is notis 3-S. C.S.P.I
field M of N

related to a near field M of S-

in example

related to a near since

322-0cl but2¢l , 2eM.

proposition (2.18)

If N is non zero S-near ring and I1={0} then I is
not 0-S.C.S.P.Iof N .
Proof

Suppose | is 0-S.C.S.P.I related to a near field M
of Nand yeN.

= 0.y 2 el

=y el [sincelis 0-S.C.S.P.I
related to the near field M ]

=y =0

=M ={0}

and this contradiction since M = {0}.

Then I is not 0-S.C.S.P.I related to the near field M of N .

Proposition (2.19)
Let | be S- ideal related to a near field M of S-

near ring N such that M & | , then | is not 0-
S.C.S.P.I related to a near field M of N.
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Proof
Suppose that I is 0-S.C.S.P.1 related to a near field

M of N and ye M

=0.y 2 _ Oel
=y el [since lis 0-S.C.S.P.l
related the near field M of N]

= M c | this contradiction since M & 1]

=1 isnot0-S.C.S.P.Iof N. =

Definition (2.20)
The S- near ring N is

called Smarandache
completely semi prime ideals related to a near field
M  with respect to an element x of N it denoted
by (x-S. C.S.P.l near ring ),
related to a near field M of N is x-S. C.S.P.lI of
N .

Example (2.21)

Consider the S- near ring N in example (2.11)
let M={0,2,4} is a near field 1,={0}, I, ={0,3}and
I3 ={0,2,4} are the only 5-S.C.S.P.l of N that mean
N is 5-S-C.S.P.I related to a near field M near ring .

Theorem (2.22)

Let {Nj}_

jeld

if every S-ideal

be a family of S- near rings
X; €N, and I; be x; -S. C.S.P.I related to a near

field M; of N; forall j €J .Then Hlj is ( xj )-S.

jed
C.S.P.l related to each near field M J' of HNJ.
iel
where Mj’ is the near field of HNJ. whos
iel

elements (m;) is equal to m; and all other

components are zeros.
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Proof Remark (2.23)
By theorem (1.12), we have HNJ is S- near Not all S- ideal related to a near field M is an
red ideal of the S-near ring N.
ring
=], be S-ideal of [N, since Example (2.24)
jed iel
Consider the S-near ring N in example (2.2) ,
(@) let (yj)’(zj) < |Wj and Ik € jl;[J Ij Let 1={0,3,9} is S- ideal related to a near field M
(@) i)Y ) (2) =ez: 4y 2) | but it is not an ideal of the S-near ring N.
A G I U R R eI
(2) II Ij .M'j c I Ij Vj el Proposition (2.25)
Jel &) Every trivial S- ideal related to a near field M is
=17 | j is S-ideal related to the near field Mj an ideal of the S-near ring N.
Jed
Proof
To proof ] |j is (X;)-S. C.S.P.I related to each Letr,seM
Jel If 1={0}
near field M| of IT N.
jed ! =r.(s+0)-rs= 0el
Let (yj ) e _HJ M i such that vr.seM
je
2
(x(y ;) e I I {0}.X={03}{0}.
177 jel J
= (XY ; 2) e [1 1. {0} is S- ideal related to near field M
] jel |
= Xj'yj2 € Ij [since Ij is xj—S.C.S.P.I] It [ENand r,seM
=y.el. =r.(sti)-rseN VrseX,ieN,
J J
=(y.)e Il I =N.XcN
17 e )

= lis an ideal of N. -
IT I.is (% )- S.C.S.P.I related to each near
jed ! Remark (2.26)

fieldM ! of ] N,= Not all S- C.S.P.I related to a near field M of the
j J
Jed

S-near ring N is a prime ideal .
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Example (2.27)

Consider the S-nearring N in example (2.11)
I={0} is S- C.S.P.l related to a
M={0,2,4} of N when I, ={0,3} and 1, ={0,2,4}
I1'|2 ={0}cI but {0,3}zland {0,2,4} zI
= lisnotaprime ideal .

near field

Remark (2.28)
Not all S- C.S.P.I related to a near field M of the
S-near ring N is C.P.I of N .

Example (2.29)

Consider the S-near ring N in example (2.11)

Let I={0} is S-C.S.P.1of N
43=0 ,butd¢l and3¢l
= lisnot C.P.l ideal of N.
Remark (2.30)

Not all x-S. C.S.P.I of the S-near ring N is C.P.I
of N.
Example (2.31)

Consider the S-near ring N in example (2.11)
Let 1={0} is 5-S. C.S.P.I related to a near field
M={0,2,4} of N
2.3=0,but 2 ¢ I
= lisnot C.P.lI ideal of N .

and 3¢ |
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