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AbstractTime series analysis for hydrological phenomena has studying the accuracy and efficiency of time series modeling
an important role in water resources engineering. In this study, and forecastingP.P. Mujumdaretal. 1990 observed ten
seven models of ARIMA family are tested for forecasting the models of the (ARMA) family for representing and
monthly discharge at Hit station on Euphrates river in Irag. The  forecasting monthly and tettay stream fla in three rivers

statistical analyses were done for models with help of IBM SPSS, |hdian. the models selected. based omilre mean square
statistics 21 software, The number of observations used is equal ' :

to 480 reading, start from October 1932 and end at Septembererror .anéj ¢ ma>t( “ke“h?Od crlter'la [5].dJIa|n etall. 20?.3
1972, this periodrepresents the neamatural stream flow of the examined two types ol regression modeis namely, a finear

river before the construction of dams in Syria and Turkey Multi-regression and nonlinear mutégression models for
Statistical tests such as Fest and Ftest were used to detect any moceling rainfaltrunoff process[6]. Momani 2009 was
change in Mean andVariance at 95% significantprobability ~ developed ARIMA (1,0,0) (0,1,1) to forecasting the monthly
level. Results showed that the best model is (2,0,1)x(0,1,4) rainfall of Amman airport station for 10 years upcoming [7].
which gives minimum error and good agreement between Ranjbar etal 2014 used ARIMA (2,0,0) model to forecast
observed and forecast discharge. qualitative parameters (TSEOs and DO) in two stations of
Sefidrud River in Irafi8]. The aim of this study is to forecast
the monthly inflow of Hit station on Euphrates in Iraq by
using the Box and Jenkins technique with help of IBM SPSS

I. INTRODUCTION statistics 21 software

Key words ARIMA, Box and Jenkins, Forecasting, Hit station,
Time series analysis

Forecasting and timseries analysis are very useful II. STUDY AREA
in planning, development, design, operation and maintenance

of the available water resources. In hydrological Euphrates River is the longest river in Western Asia, about
forecasting, pastdata must be analyzed to find the best med®lo km, it has three riparian countries, Turkey, Syria and
which can be adopt to estitedhe future water events. Thergraq. Three important measurement stations veerestructed

are two types of forecasting modedgterministic or physical on the Euphrates Rivén Irag,HusaibahHit and Al Hindya
models and statistical or stochastic models. In the fitsdrrage.Hit station fig[1] located at latitude 33° 36' 23"
approach, theoreticalr empirical physical relationships isN and longitude 42° 50' 14E with drainage area about
used to described the hydrological systéhere is always a 264,100 squarekilometers[9]. After the construction and
unique coincidence between input and output [1], while §peration of Keban Dam in Turkey in 1974 and Tabga Dam
the stochastic approach, the forecasting technigisethe in Syria in 1975the inflow to Hitstation is decreased and
most popular method, it depend upon the tirseries data the naturahydrological regime of the river is chandye 1985

which formed from measurements of variables taken ghditha dam was operated in Iraq, thus, inflow to Hit station
regular intervals over time, the hydrologic data of strec—

flows fall under the categorgf time series [2].

The most famous techniques used to forecast the time si
phenomena are the Baenkins method 1976, whithbased

on examining a wide range ofodels for forecasting a time
series. Some of these models are moving average pra
(MA), Autoregressive process (AR), Autoregressive movi
average process (ARMA) and Autoregressive integra
moving average process (ARIMA). The most commonly us
stochastic time series modeis (ARIMA) model, generally,
there are three steps to selecting  an appropriate model
from a general class ARIMA models [3] first, preparing

initial model from historical data, estimating the tentati
model paramets, and test the accuracy of selected mod
For more investigation and parameter estimation, the mc
that appears to represent the behavior of the serie:
examined through Autocorrelation ACF and parti
autocorrelation functions PACF [4}lany imporant models

have been proposed in literature for

Fig.1 Hit station on Euphrates river in Iraq
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became represent the water releasfem downstream the The first of these conditions implies that the serigs Z

dam pulse the valley runoff between the dachtlie station. following eq(3) is stationary. In practice tay well be non
stationary, but with stationary first difference,

In this paperthe period 1932973 was selected because it

represents the neaatural stream flow of the river, and there oo p "

was no effect ohuman activities oniver morphology.

If (1-B) Z is non stationary, the second difference must be

Ill. METHODOLOGY taken,

p Y

ARIMA models are the mostell-knownof models for time - G - : p
series forecasting. It was introduced by Box and Jenkins . . d )
(1970). Ageneral ARIMA model is expressed asdgp, BY taking the & difference (1?) Z; (although rarely is d
where p is the autoregressive parameters, d is the nurober!arger than 2). substituting ®)° Zi for Z in eq. (4) yields
differencing operators and q is the moving average paraméia®. 9eneral simple ARIMA(p,d,q) model:

Thegeneral Stochastic modedscording to Box and Jenkins

are [3]-[10] : pnt 88 0" op P
d'8 d" A888uv
A. Autoregressive model AR of order p is :
Or: ntop ot d" A
n n o E »n: A 888p
A multiplicative ARIMA (p,d,q) (P,D,Q)model is used for
By usingthe backshift operatd, which defines time series which exhibit potential seasonal variation such as
(66 & ,equation (1) can be written as : monthly, where (p,d,q) represent simple part and (P,D,Q) for
seasonalpart, which can bexpressed as 1]
p n" n" 88 " A

Pop ot o d A

where : @, é ,, alle ARp) parameters, ;@ the random

shock which is independent afizandnormally distributed Where:
With zer o 2vanmeme.n and G D the order of seasonal differencing.

Jsp (B%) the seasonal autoregressive operatooader P.
B. Moving Average MA model of q is : dso (B9) the seasonal moving average operatoomfer Q.

. . . . A multiplied seasonal ARIMA model can be expres 1
dA  dA @ dA A888¢ - mup pressest]

MA model can be written in equivalent form as : n " np " p " p " d " d"A

p d" d" &88d" A In non seasonal model, only the notation (p,d,q) is needed.

whereqis the orderof MAG) , and d coedfi ci en tVSREQULES ANARISCUSION

model parameters. ) o _ )
The practical application of stochastic techniques to

. hydrologic time series may be divided into three stépst
C. ARMA (p.q) model : involves data preparatipthe second is building the form of
) ) i the mathematical model antle third is the application or
In this model, both autoregressive and moving averagény the adequatemodel for forecasting. Time series
operators are combined. analysis is performed for the historigabnthly dscharge of
5 i i the Euphrates rivein Iraq at Hit station(IRAQ-E2). The
n: n E 0 A dA number of observations useal this studyis equal t0480
dA &8 dA 8880 readingstart from October 1932 and endSsptember 1972.
The study of the historical manade activities upstream of
the Hit station shows significant events aftear1973 due to
construction of new dams in Syria and Turkey, the time
series before T8 may be considered no changes
hydrologic characteristics of the time series and the tata
homogeneous and the process is time invariant. Plottieg
D. Autoregressive integrated moving averageodels whole time serie$or this periodas showninFi g. 2 doe s
ARIMA(p,d,q) indicate any sudden change which means no trend component

or:

p N 88" : p d" Ea&l" Aéé(4)
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in the time seriessaa first assumption. Statistical tests such
as T-test wereused to detect any changeniean of the two
subsample of the series andtést to detect any differences
in variance of the two subample of the serie3hese two
tests show no change imean andvariance of the two sub
sampleof the serieswhich is observed at 95% significant
probability level.

7000 -

6000 Figures from 3 to 6 indicate the estimated ACF and PACF for
different order of differencingample and seasonal for lag
5000 1 time equal 48 months.

4000 1 From fig.3 itis clear thatd = 0, D= 0) does not remove the
F seasonality in theseries. Since the seasonal differences

Discharge (m3/sec)

reduces the seasonality from the series as shown irFig.4

3000 - ) '

2000 ‘ which implies to use seasonal differencing instead of
) 1 j \ (1t ‘ indifferences series.
1000 w J J ‘ )VJ 'L M W\ U J As mentioned above, he series mean, variance
0 : . j e L'l ‘ ,Autocorrelation Enction and Partial Autocorrelation
4 s o~ . . 545 Function are the powerful tools in identification techniques.
Time (month) So the intelligent inspection of the ACF and PACF will take

the main role in decide proper models and suggested the best
Fig. 2 Monthly dischargeo Hit station for the period model to the seriesromtable (1), it is clear that b seven
(Oct.1932- Sep. 1972). models give good results for forecastthg dischargef year
1972with lag time equal 12 months as shown in Figures 7 to
The Log transformation is adopteathe original raw skewed 13 .
series to achieve normaljtthis process may be consideredo choose the proper model it must take the forecasting
as a step in data preparation values for different years to sure thesuls aregood in both
The multiplicative ARIMA model was selected to model thibood and draught years. Also the residual must indicate no
data because this model is adatg for both stationary and narelations and considered as white noise (random shock)
stationary time g&es and it is quite suitable for forecastingo the models are estimated also for subsample from October
future values of seasonal seriébe seriesnean,variance, 1932 to September 1958 and forecasted for year H359
Autocorrelation Function (ACF) andartial Autocorrelation shown infigs.14 to 20
Function (PACF) are the principal tools in modelThe results show there are good agreement between observed
identification procedure. and forecasted values, also the parameters have the same
values which mean the stability is very good.
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Fig.4 ACF and PACF for monthly discharge with differencing (D=1, d=
Fig.3ACF and PACF for monthly dischargéthout differencing[D=0, d=0)
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Fig.6 ACF and PACF for monthly discharge wittifferencing (D, d=1).
Fig.5 ACF and PACF for monthly discharge witlifferencing (D=0, d=1).
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TABLE 1
THE ESTIMATED PARAMETERS FOR SUGGESTED MODELS
Simple AR Simple MA Seasonal AR Seasonal MA
No. ARIMA Model
ol U2 U1l U2 isl] Gs4 Us1 Us?2
1 (1,0,1) x (0,1,1) | 0.812 | - 0133 | - | e | e 0.905 | -
2 (2,0,1) x (0,1,1) 1556 | -0.576 | 0.864 | - | cem | e 0912 | -
3 (1,1,1) x (0,1,1), | 0.655 | - 0939 | - | e | e 0.915 | -
4 (1,1,1) x (1,1,1) 0.655 | - 0.939 | - -0.020 | ----- 0913 | -
5 (1,1,1) x (1,2,1) 0.678 | ---- 0.978 | - -0.427 | - 0.990 | ----
6 (2,0,2) x (1,2,1p 0.710 | - 0.057 | -0.028 -0.420 | --—--- 0.998 | -
7 (2,0,0) x (1,2,2) 0.653 0.082 | - | - -0.255 | --—--- 1.360 | -0.380
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Fig.7 Observed anéorecasted discharge of year 1972 for ARIMA (1,0,1) x (0,1,1) model
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Fig. 9 Observed and forecasted discharge of year 1972ARIMA (1,1,1) x (0,1,1) model .
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Fig. 10 Observed and forecasted discharge of year 1972RtvA (1,1,1) x (1,1,1) model .
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Fig. 11 Observed and forecasted discharge of year fi872ARIMA (1,1,1) x (1,2,1) model.
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Fig. 12 Observed and forecasted discharge of year 1972RiA (1,0,2) x (1,2,1) model.
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Fig. 13 Observed and forecasteidcharge of year 1972 fokRIMA (2,0,0) x (1,2,2) model.
2500 1
—— Observed
2000 ] —®&— Forecast
=)
Q
v
1500 A
£
5}
2o
21000 1
2
[
500 A
0
Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. Jun. July. Aug  Sep.
Month

Fig. 14 Observed and forecasted discharge of $8&6 for ARIMA (1,0,1) x (0,1, model.
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Fig. 15 Observed and forecasted discharge of $6&6 for ARIMA (2,0,1) x (0,1, model.
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Fig.16 Observed and forecasted discharge of year 195RRIMA (1,1,1) x ©,1,1) model

Fig.17 Observed and forecastdischarge of year 1959 foARIMA (1,1,1) x (1,1,1) model



