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Abstract.

In this paper, we introduce the generating function, Mehler’s formula,
Roger’s formula, the linearization formula and the inverse relation of the
linearization formula of the polynomials G,(x;q), which is defined by
L.Carlitz [3]. Also we introduce an extension of the generating function
and extension of the Roger’s formula, the extended generating function of
Gn(x; q) involves a ¢, sum and the extended Rogers formula involves a
3d, sum.

All identities will be derived depending on the roles of the
exponential operator E (@) after representing the polynomials G,(x; q) by
this operator.
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1. Introduction and Notation

Using of operators approach to some basic hypergeometric series
given in the work of Goldman and Rota [13, 14], Andrews [1] and
Roman [15]. Chen and Liu [7] developed a method of deriving
hypergeometric identities by parameter augmentation, this method has

more realizationsasin [6, 8, 9, 10, 17, 18]. In this paper, we derive some



new identities of the polynomials G, (x; ¢) and give an operator proof for
these identities.

Let us review some common notation and terminology for basic
hypergeometric series in [11]. Throughout this paper, we assume that
lgl <1 and g #0, the g —shifted factorial is defined for any rea or
complex variable a by:
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The following notation refers to the multiple ¢ —shifted factorials:

(ay,az, ..., 0, Q)n = (a1, Pnaz; @p - (@ @
(a,az, ..., 0m; Qo = (a1, 0) (025 Qoo .. (A Do -

The g —binomial coefficients, or the Gaussian polynomials, are given by:
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The basic hypergeometric series ., are defined by:
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where a;, b; , qand xmay be real or complex [16].

The Cauchy identity is defined as:
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Putting a = 0, (1.1) becomes Euler’s identity:
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and itsinverse relation:
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The q —difference operator D,and theq —shift operator nare given by:

ROZTCD (@ = feaad

De{f(a)} =

In 1998, Chen and Liu [6] constructed operator ¢ =n~'D, . They

introduced the exponential operator as.

E(b6)
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with the Leibniz formulafor o:

6" {f@g(@} = ) [¢]o* (@} *{glag ™},
k=0

and gave the following operator identities [6]:

Proposition 1.1.




E(b){(at; q).}
= (at, bt; q)., - (15)
E(b6){(as, at; q).}
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(abst“q; @)

wherelabst~q| < 1.
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Also in 2006, Zhang and Liu [18] derived two operator identities as.
Proposition 1.2.
E(bB){a™(as; )}

= a"(as,bs: Q) b, (1 (T* 1q.bs), (17

where|bs| < 1.
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where|abst~q| < 1.

In 1958, Carlitz defined a sequence of polynomials( see [3,4,5,12] )

.. (1.8)

as.
Gn(x; q)
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and gave its bilinear generating function [4] in the form:
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also he showed that the polynomials (1.9) satisfy the following three-term
recurrence relation:
Grir (6 q) = (x + 1)Gp(x; q) + (@7 — DxGp-1(x; q) .
In 2009, Cao [5] represented the polynomias G,,(x; q) by the
exponential operator E(8) as:
E(@){x"} = Gu(x;9) , ... (1.10)



and used this representation to solve some identities of G,,(x; q).

In this paper, we use Cao representation (1.10) to introduce the basic
and extended identities for G,(x;q), where in Section 2 we derive the
generating function and Mehler’s formula, in Section 3 the Rogers
formula for the polynomias G,(x;q) will be derived with two of its
applications. the linearization formula and the inverse linearization
formula, then in Section 4 we introduce two extended identities for
G,(x;q) which are the extended generating function and the extended
Rogers formula.

2. The Generating Function and Mehler's Formula forG,, (x; q)

In this section, we derive the generating function and Mehler’s
formula for G,(x; q) polynomials depending on the exponential operator
representation (1.10) and the identities (1.5,1.6) of the exponential
operator.

Theorem 2.1(The generating function for G, (x; q)). We have:
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Proof.
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Now we derive Mehler’s formula by using identity (1.6) of

exponential operator, where we can represent the polynomials G,,(x; q) by



this operator as E(8){x"}or the polynomials G,(y;q) as E(8){y"}or using
the two representations together to get the same result.
Theorem 2.2(Mehler'sformulafor G,,(x; q)). We have:
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3. TheRoger's Formula and It's Applications

In this section, we introduce two forms of the Roger’s formula
depending on identity (1.6) of the exponential operator E(8), then as an
application of the Roger’s formula, we give the linearization formula and
the inverse linearization formulafor G, (x; g) polynomials.

Theorem 3.1(The Roger's formulafor G,,(x; q)). We have
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where|xts~q| < 1.

Proof.
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In the R.H.S. of (3.1), the terms (¢, xt; q)..and (s, xs; q).Can be written as
generating functions for the polynomias G,(x;q)) and G,(x;q),
respectively to get the following identity:
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Therefore, we get another Roger’s formula as:
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Now we derlve the linearization formula (3.3) and the inverse
linearization formula (3.4) as an application of the Roger’s formula as
follows:
Corollary 3.1.1. For n,m N, we have

Gn(x; ) G (x5 9)

min {n,m}
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k=0

Proof. From (3.2) we have:
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Verify the L.H.S. by using Euler’s identity (1.3):
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By comparing the coefficients of ¢t*s™with the R.H.S. get:
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Then
Gn(x; @) G (x; @) =
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By simplifying the term up to g, the desired identity follows.

Here we give the second application of the Roger’s formula, it is the
Inverse relation of the linearization formulafor G,(x; ¢) polynomials.

Corollary 3.1.2. Forn,m N, we have

min {n,m}

GrmE ) = > ] [%] @ @wxa 6, (5 )Gk @) - (34)

k=0

where|xts~q| < 1.
Proof. In (3.2), expand +xts~q;q).by the Euler’s identity (1.2), the
R.H.S. can be rewritten as:
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By comparing the coefficients of t*s™ with the L.H.S. of (3.2), get:
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The proof is completed.

4. The Extended Identitiesfor G,, (x; qg)Polynomials

In this section, we introduce two extended identities. The first is an
extension of the generating function which is deriving by using the
identity (1.7) of the exponential operator

involving a »$; sum. The second is an extension of the Roger’s formula
which is deriving by using the identity (1.8) of the exponential operator
involving a ¢, sum.

Theorem 4.1(Extended generating function). We have:
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Theorem 4.2(Extended Roger's formula). We have:
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Cao [5] gave the extension of Mehler’s formula for the polynomials

Gn(x;q) as.
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