

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
THE DESIGN OF A TEMPLATING LANGUAGE TO EMBED

DATABASE QUERIES INTO DOCUMENTS

Sarah Hussein Toman

Roads and Transport Department

College of Engineering/ Unversity of Al-Qadisiyah

Sarah.toman@qu.edu.iq

Abstract

 Presenting information from a database to a human readership is one

of the usual tasks in software development. Commonly, an imperative

language (such as: PHP, C#, Java, etc.) is used to query a database system

and populate with the desired information the application's GUI, a web page

or a printed report (referred from now on as Presentation Media).

Virtually all database systems are now capable to format, sort and group the

data stored in a database, and last but not least to perform calculations

against it. These are most of the time enough to prepare the information that

is going to be shown on screen or paper. Thus it leaves just one role for the

imperative code: to glue the query results to the Presentation Media. This

code tends to become repetitive and grows proportionally with the

complexity of the Presentation Media. The need for software developers to

write this imperative code can be eliminated thought. Instead, the markup

code (HTML, LaTEX, etc) can have the ability to bind its elements directly

to the database system. To achieve this ability, I propose mixing the

Presentation Media’s markup code with a Templating Language.

 This paper elaborates the design of a Templating Language, a

declarative language that adds annotations to any markup code regarding

what data will be queried and how should it be integrated in document. For

this markup code to be consumed, there won't be necessary to implement any

database query abilities in the process that renderers it. Instead, a

preprocessor will be invoked to interpret the Templating Language, connect

to the database system and query the desired data, respectively to generate

the final markup code.

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
After analyzing several scenarios of GUIs and printed reports with a

different range of presentation complexity, the design was aimed to handle

from simple value insertions and markup code loops for multiple row results,

to nested loops with interdependent queries, variables to share data between

queries and automatic list numbering. The data queries are specified in a

subset of SQL, taking advantage of the data selection, formatting, grouping

and sorting capabilities of database systems. As most programming

languages supports RegEx, to facilitate a faster implementation of the

preprocessor, the Templating Language is parsed and validated using a

RegEx set provided in this paper.

The method described in this paper simplifies the development and

maintenance of a software by reducing the boilerplate code and adhering to

the Separation of Concerns design principle, as the code will be organized in

operational distinct layers (logic and presentation). Also, it enhances

teamwork by allowing a separation of work based on skill set, a designer

being able for example to modify the structure of a data report without

needing the intervention of a programmer too.

Keywords:

Templating Language, Preprocessor, SQL, Database, Data

Report, User Interface, Separation of Concerns

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
1. Introduction

 A Templating Language or Template Language, is the language that

describes how a software system should combine a document template with

a data model to produce a result document
 [1]

. The result document may be

any kind of formatted output such as a text document or a web page

fragment. This software system is called a template processor
 [2]

.

 In the context of presenting information from a database system

through a templated report or user interface, there are a series of advantages

that push the use of templates towards an efficient practice
 [3,4,5]:

 There is less effort involved in filling a document with the desired

information, as this task would imply using repetitive imperative

code, with few or even no logic branching;

 Separates the program logic and presentation in two loosely coupled

distinct layers, achieving the separation of concerns principle;

 Since the presentation layer is separated from the program logic, as a

template, its layout may be maintained by the user with no

programming skills (such as a designer) without the risk of altering

the program's logic. In such a dynamic society, the requirements of

information presented in the user interface or report may vary over

time: as an example the clauses of a contract model may get modified

often, being required in this case only the modification of the contract

document template without the software's developer intervention.

 This paper presents the design semantics and syntax of a templating

language specialized in pulling information from a relational database

system, and integrating it into the source template, which may be in any

arbitrary formatted text or markup code combined with the templating

language elements.

This templating language should be able to be combined with a document

markup language such as TeX, LaTeX for report generation purposes,

resulting: receipts, invoices, contracts, letters or any other kind of paperwork

that references information from a database system. Also combined with

HTML, it might serve for web page fragment acting as a web templating

engine.

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
As Structured Query Language (SQL) is nowadays the most widely used

relational database system query language, and also capable enough to

sustain complex data retrieval operations such as: conditional branching,

value aggregation and formatting
[5]

; SQL represents the ideal model for a database-centric templating

language.

 A query performed with SQL returns a result set, which effectively is

the object model of a database table, reassembling the retrieved data in a set

of rows with column names and values. The challenge in allowing

templating using SQL is to introduce a set of semantic elements that provide

information regarding the conversion of a result set in order to fit the

common requirements of a template.

 The proposed language is an adaptation of a subset of SQL, tailored

for templating. This subset is limited to data retrieval, since data insertion,

updating and deletion is out of the scope of a templating language. The

adaptation provides the semantic and syntactic constructs for the template

processor to identify and evaluate the SQL queries residing in a source

template, then to fill the template accordingly to the result set.

2. Related Works

 I have identified in the academic literature few previous approaches

of preprocessing documents for the purpose of populating them with data

retrieved from a database:

 A Document-driven Approach to Database Report Generation
(Chan)

[6]
 ‒ presents a document transformation language that uses as

report model a SGML Document Type Definition;

 SuperSQL: an extended SQL for database publishing and

presentation (Toyama)
[7]

– extends SQL to be able to render its

query results as various media for publishing and presentations.

 Enforcing Strict Model-View Separation in Template Engines
(Parr)

[8]
: Presents Text-based template engines for object-language-

agnostic in the sense that they solely process strings.

 Language Oriented Programming: The Next Programming

Paradigm (Dmitriev)
[9]

: describes an automatic templating language

generator that copies the object language and adds template concepts

to it.

151

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
 An Architecture for an XML-Template Engine Enabling Safe

Authoring (Hartmann
) [10]

 – presents a safe template engine for

XML language described by XML schemes.

3. Design

 All components involved in the

transformation process of a template to the

final result is depicted in Figure 1. The

Template Source is the portion or an

entire document of plain text or any

markup code that follows to be

transformed. It may be HTML, RTF, TeX,

LaTeX, Office Open XML Document, etc.

The template source combined with one or

more template tags defines a Template.

 This template is meant to become

the input of the Template Processor, that

is the computer program that parses the

tags of a template, and merges the

template source with the data obtained from

a database system according to the instructions found in those tags. The

result of the template processor represents the Template Output.

3.1. Identifying the Requirements

 The purpose of this section is to outline a minimum set of capabilities

that this templating language should feature in order to achieve its desired

practicality.

 As the mission of this language is to embed SQL queries into a

Template and facilitate a Template Processor to substitute them with the

corresponding data, those substitution ways should fit the whole range of a

SQL query result types.

Figure 1: The components of the proposed
Templating Language transformation process.

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
A SQL query may return two types of result:

 scalar ‒ a single value, that can be the result of a SQL function (such

as COUNT, SUM, AVERAGE, MIN, MAX, etc.) or a single data

row containing a single data column;

 table ‒ a set of multiple data rows and columns.

 A SQL expression that returns a scalar value will be simply

substituted in a template with the respective value. But in the case of a table

result, this would be unpractical as the programmer will need a finer control

over how those data rows and columns will be integrated in the template.

The values may need to be inserted in different locations of a template

fragment that reassembles the markup for a list, table or menu, for example.

As a set of table rows can be seen as a set of tuples where all items of the set

shares the same data structure (columns), it denotes that the template

fragment where the query result should be integrated defines the prototype of

a data row. Thus, a copy of this template fragment will be evaluated and

inserted in the template output for each row instance of the query result.

This template fragment will be called a sequence block.

For a greater flexibility, the template processor should allow input arguments

to be passed to the SQL expressions embedded in a template. This

mechanism lets the programmer to adjust the queries to operate according to

a particular context, without the need to effectively modify the template tags.

As an example, in the case of a receipt template, the transaction ID could be

passed as an input argument, so the SQL queries can use this argument in its

clauses to retrieve the corresponding information from database.

An input parameter would be accessible through a Template Variable. A

Template Variable is essentially a macro

that follows to be expanded to a corresponding value during the template

evaluation. The value of a Template Variable is unknown at the moment of

defining the template.

Also a Template Variable would be a convenient way to store query results

that are used more than once in a template, or to pass the result of a previous

query in a SQL expression.

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
4. Syntax

 The only syntactic elements of a template that are significant for a

template processor, are the Template Tags. Before parsing those tags, they

should first be located in the template, as they are scattered within fragments

of Template Source.

 To provide a clear distinction between Template Source and

Template Tags, a pair of delimiter character sequence will be used, called

Tag Delimiters.

 Template Tags once located, will be parsed by the template processor

and eventually substituted with data retrieved from a database system

according to the semantics of the respective Template Tags. One of the aims

is to create a lightweight Template Processor, featuring as less as possible

logical flow for an easy implementation in a different range of programming

languages. For this purpose, the Template Tags will be located using Regular

Expressions (RegEx).

Furthermore, the semantics of a Template Tag will be extracted also via

Regular Expressions capture groups, making RegEx patterns solely

responsible for syntax interpretation and validation. Thus, the syntax of

Template Tags should be designed in a manner that overcomes the potential

limitations of RegEx.

RegEx with an evolution of nearly 60 years, became a powerful standard in

string searching and processing; simple parsing, data validation, scraping and

wrangling; being nearly omnipresent in software development platforms.

Programming languages such as C#, Java, C++, VB.NET, JavaScript, Perl,

PHP, Python provides built-in support for RegEx, or via a standard library
[11]

.

 Note: Those Regular Expressions will use named capture groups for

the sake of readability, although not supported by all RegEx engines. Those

RegEx patterns may require to be converted to indexed capture groups prior

a production useThe grammar of the Template Tags will be described in the

next sections in the form of syntax (railroad) diagrams.

4.1 Tag Delimiters For the Template Tags to be identified in the template

source, they must be separated with a distinctive character sequence, that

will be called a Tag Delimiter. This sequence should have an incidence rate

as small as possible in natural languages and most common markup

languages.

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
As the Template Tag is a sequence of characters of an arbitrary length, its

boundary should be easily inferred with RegEx by using two delimiters: Tag

Opening Delimiter, respectively Tag Closing Delimiter.

 For the Template Tag Opening Delimiter, an open bracket followed

by a question mark "(?" was chosen. This decision was driven by the goal for

the delimiter to be easy to remember: the open bracket marks a start of a

boundary while the question mark is a common analogy of querying. Even if

those two characters are commonly used in both natural and markup

languages, an open bracket to be proceeded by a question mark is an

uncommon case.As the Template Tag Closing Delimiter, "?)" was chosen.

This sequence has a frequent incidence in natural and computer languages,

but its meaning is to mark the end of the body of a Template Tag which

mainly consists of SQL code, where this incidence is negligible, but

remaining on the attention of the user to be escaped.

In the case when a template contains a sequence identic to a Tag Delimiter

which is not intended to denote a Template Tag delimitation, it should be

replaced with an escape sequence. This sequence will be "(??" for the Tag

Opening Delimiter, respectively "??)" for the Tag Closing Delimiter. The

Template Processor should guarantee de-escaping of those sequences. The

Template Tags are matched via the RegEx pattern presented in Expression 1.

The body of the Template Tag will be returned in the capture group named

"body". All RegEx patterns from the further sections of the paper will

operate on the value returned by this capture group. The de-escaping

procedure of the Tag Delimiters consists in replacing the match of

Expression 2 with the value of "replacement" capture group.

\(\?(?!\?)\s*(?<body>.*?)\s*(?<!\?

)\?\)

(?<replacement>\(\?)\?|\?(?<replacement

>\?\))

Expression 1: RegEx Matching

Template Tags

Expression 2: RegEx Matching the Tag

Delimiters Escaping Sequences

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
4.2 Variables

 A Template Variable may be present in any place of the body of a

Template Tag. To be easily identifiable via RegEx, a variable identifier will

be decorated with a prefix and suffix symbol. As SQL code is the

predominant content of a Template Tag, it is ideally for this prefix/suffix to

avoid being one of the SQL reserved characters or one commonly used in

queries. The dollar sign ("$") has the previously mentioned attributes,

making it the choice for both: prefix and suffix symbol characters.If a dollar

symbol is present in the body of a Template Tag for other purposes than

marking a variable, it should be escaped by prefixing it with another dollar

symbol ("$$"). The same rule applies for the sequences of multiple such

signs also. As an example "$$$" needs to be escaped as "$$$$", as the de-

escaping process resumes in removing one symbol when the sequence

contains more than one symbols. To lower the chance of a false positive Tag

Variable identification in a body with potential dollar signs left without

escaping, a set of rules will be enforced for a stricter validation of the

variable identifier strings:

 It may contain lower and uppercase letters. Like SQL, there will be

no letter casing distinction;

 It may also contain digits. A digit cannot be the first character of the

identifier, to avoid occurrences such as "$25" that is one of the most

common form of use for this symbol;

 It can contain the following symbols "-", ".", "_". The minus symbol

cannot start the identifier for the same reason as in the case of a digit;

 Expression 3 will match Template Variables from the body of a

Template Tag.

\$(?<identifier>[a-zA-Z_.][a-zA-Z0-

9\-_.]+)\$

(?<replacement>\|+)\||(?<val>\$+)\$

Expression 3: RegEx Matching

Template Variables

Expression 4: RegEx Matching

Template Variables Escaping

Sequences

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة

The Template Variable’s identifier is returned via the "identifier" capture

group. The de-escaping is performed by replacing the match of Expression 4

with the value of its capture group named "replacement":

5. Queries

 As the sole purpose of the SQL query from a Tag Template is to

interrogate a database system, the use of SQL statements is redundant,

"SELECT" being the only allowed statement. To simplify those queries, the

"SELECT" statement should be omitted from all SQL queries. In this way

"SELECT FirstName, LastName FROM Users WHERE ID=1" will become

"FirstName, LastName FROM Users WHERE ID=1". Using a SQL

statement in queries should result in an error during template processing, to

prevent the evaluation of potentially unwanted statements such as

"UPDATE", "DELETE", "DROP", etc. A query may not have multiple SQL

interrogations separated by ";" as the Template Tags will operate on a single

result set. Thus, the ";" statement terminator should result in an invalid query

to prevent multiple interrogations.

5.1 Scalar Queries

 A scalar query describes a query that returns a single value, opposite

to a set of rows and columns that can be individually

accessed. In a template, a scalar query can be introduced by using the

following Template Tag described in Figure 2.

Figure 2: The syntax diagram of the Scalar Query Tag

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة

This tag, called Scalar Query Tag will be substituted in a template with the

value returned by the SQL interrogation specified in the "query" argument. If

the respective query returns no value (null), the value of the optional

"fallback-value" argument will be used instead if it is specified, otherwise

the tag will be replaced with an empty string.

TEMPLATE SOURCE TEMPLATE OUTPUT

<table>

 <tr>

 <td>Current Sales Agent:</td>

 <td>

 (? Name FROM ShiftRegistry

WHERE ShiftStart >= NOW()

AND ShiftEnd <= NOW()

| N/A (store is closed) ?)

 </td>

 </tr>

 <tr>

 <td>Completed Orders:</td>

 <td>

 (? COUNT(ID) FROM Orders

WHERE Date=CURDATE()

AND Completed=False ?)

 out of (? COUNT(ID) FROM Orders

?)

 </td>

 </tr>

 <tr>

 <td>Total Sales:</td>

 <td>

 $(? SUM(Price FROM Sales

WHERE Date=CURDATE())?)

 </td>

 </tr>

</table>

<table>

 <tr>

 <td>Current Sales Agent:</td>

 <td>

 Abra Amina

 </td>

 </tr>

 <tr>

 <td>Completed Orders:</td>

 <td>

 8

 out of

 14

 </td>

 </tr>

 <tr>

 <td>Total Sales:</td>

 <td>

 $348

 </td>

 </tr>

</table>

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
 If the query results in a set of rows or columns, it will be transformed

to a scalar value. That value will be a string that contains all values of the

first column delimited by a comma character (","), while the values from the

other columns will be discarded. This feature can be useful for creating

simple enumerations like in the following example.

TEMPLATE SOURCE TEMPLATE OUTPUT

You are currently subscribed to the

following television services: (? Name

FROM Services WHERE

CustomerID=$Customer$?).

You are currently subscribed to

the following television services:

Digital Base Channel Pack,

Digital Documentary Channel

Pack, Online Access.

\A(?<query>.+?)\s*(?(?<!\|)\|(?!\|)\s*(?<fallback-

value>.+?))?\Z

Expression 5: RegEx Matching Scalar Query Tags

 The Scalar Query Tag is matched and parsed with Expression 5. The

SQL query code is returned in the "query" capture group, while the fallback

value argument in the "fallback-value" group. The entire match should be

replaced with the value resulted from the query.

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
5.2 Sequence Queries

 Queries that return multiple rows and columns most likely requires a

finer control over the formatting of the result than the simple comma

separated enumeration provided by the Scalar Query Tag.

The sequence query provides an iteration of the result set by using a

Template Source fragment to describe the formatting prototype of the data

rows. That Template Source fragment will be called Sequenced Template

Source.

 The Sequenced Template Source will be enclosed between

"sequence" and "end sequence" Template Tags in a Query Sequence Block,

with the syntax detailed in Figure 3.

As in the case of scalar query, the SQL interrogation code is specified

in the ”query” argument. For each row of the result set, a new instance of the

Sequenced Template Source fragment will be inserted in the Template

Output, after its inner tags are evaluated.

 A " (?sequence fallback ?) " Template Tag may be used after the

Sequenced Template Source to indicate that the Template Source fragment

located between this tag and respectively "(? end sequence ?)" tag (presented

as "fallback-sequence-source" in Figure 3) should substitute the current

Query Sequence Block if the interrogation doesn’t return any row. The

presence of this Template Tag is optional, an empty string being its default

value.

In a Sequenced Template Source, the value of a column can be accessed

through a Field Accessor.

The Field Accessor inserts the value of a column from the current row of a

Sequence Block. Its syntax is presented in Figure 4. The name of that

column is specified via the "column-name" argument. The lookup will be

performed on the result set. Thus in the case of queries that uses column

Figure 3: The syntax diagram of a Query Sequence Block

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
aliases via the "AS" keyword, the column name mentioned in a Field

Accessor should match its alias.

 If the column specified in the Field Accessor has no value (null) or it

doesn't exist, the value of "fallback" argument will be used instead if it is set,

otherwise the tag will be substituted with an empty string.

 For convenience, a fictive column named "#" is added to a result set

to introduce a simple row numbering method. This column will contain the

1-based index of the current row of a Query Sequence Block. The following

is an example of using Query Sequence Blocks and Field Accessors to fill a

HTML table:

<body>

 <h1>Book Inventory</h1>

 <table>

 <thead>

 <tr>

 <th>№</th>

 <th>Title</th>

 <th>Author(s)</th>

 <th>Publisher</th>

 <th>Year</th>

 </tr>

 <thead>

<tbody>

 (? sequence: * FROM Books ?)

 <tr>

 <td>(? # ?)</td>

 <td>(? Title ?)</td>

 <td>(? Authors ?)</td>

 <td>(? Publisher ?)</td>

 <td>(? Year ?)</td>

 </tr>

 (? fallback ?)

 <tr>

 <td colspan="5">

 Sorry, there are no available

 books right now.

 </td>

 </tr>

 (? end sequence ?)

 </tbody>

 </table>

</body>

Figure 4: The syntax diagram of a Field Accessor Tag

151

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة

For a greater flexibility, the Query Sequence Blocks can be nested. A

Sequenced Template Source can contain one or more

Query Sequence Blocks that can access values from its ascendant Query

Sequence Blocks.

 To be able to share values between nested blocks, each Query

Sequence Block can have a named result set specified in the "name"

argument of the Opening Tag of a Sequence Query Block.

\A(?(?=.*\/.*)(?<result-set-name>[a-zA-Z0-9\-_.]+\/))(?<column-name>(?:[a-zA-Z0-9\-

_.]+|\#))(\s*\|\s*(?<fallback-value>.+)\s*)\Z

Expression 6: RegEx Matching a Field Accessor Template Tag

The Field Accessor Template Tag parsed using Expression 6, that returns the

following capture groups:

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
 -set-name – the identifier of the target result set. The result set

corresponding to the current Query Sequence Block will be assumed if

there is no value specified;

 column-name – the name of the

target table column;

 fallback-value – the default value.

 There is no direct way to access

ancestor's column values in SQL code as

Field Tags cannot operate inside of tag

bodies. However, it can be overcome by

using a

Variable Assignment Template Tag to copy

the column value into a variable.

 In the right side can be seen an

example of nested Query Sequence Blocks.

 The opening tag of a Query

Sequence Block is matched by Exp. 7,

capturing the following groups:

 result-set-name – the name of the

result set, if it is specified;

 query – the SQL interrogation;

 The Sequence Query Fallback Tags

and Sequence Query Closing Tags are

matched via RegEx using the Exp. 8

respectively Exp. 9 pattern.

5.3 Stored Queries

 When different values from the same

data row needs to be inserted in different

locations of a template source, each value

should be obtained by querying each time

the RDBMS via a Scalar Query Tag.

Consequent calls to the RDBMS to retrieve another data column value from

<body>

 <h1>Client Information</h1>

 (? store info: *

 FROM Clients WHERE Id="ID" ?)

 (? store phones: Number

 FROM PhoneNumbers

 WHERE ClientId="ID" ?)

 (? store emails: Address

 FROM Emails

 WHERE ClientId="ID" ?)

 <table>

 <tr>

 <td>First Name:</td>

 <td>(? info/FirstName ?)</td>

 </tr>

 <tr>

 <td>Last Name:</td>

 <td>(? info/LastName ?)</td>

 </tr>

 <tr>

 <td>Address:</td>

 <td>(? info/Address | N/A ?)</td>

 </tr>

 <tr>

 <td>Phone:</td>

 <td>(? phones/Number | N/A ?)</td>

 </tr>

 <tr>

 <td>E-mail:</td>

 <td>(? emails/Address | N/A ?)</td>

 </tr>

 </table>

</body>

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
a certain data row which is frequently used in that template, would degrade

the performance of the template processing stage.

 One possible work-around would be to use a Query Sequence Block

to wrap all those values and iterate the only one data row returned by the

query while inserting the values with Field Accessors. But this approach

would introduce unnecessary complexity in writing templates.

 For this purpose, the Stored Query Tag will perform a query and

store its result set for the entire life time of the template processing stage,

allowing the column values to be accessed from any part of the document via

Field Accessors.

 Figure 5: The syntax diagram of a Stored Query Tag

 The syntax of the Stored Query Tag is described in Figure 5

 The name of the result set is specified through the "name" parameter.

If another result set with the same name is defined either by a Query

Sequence Block or Stored Query Tag, it will get replaced with the

succeeding one.

\Asequence\s*?(?<result-set-name>[a-zA-Z_.][a-zA-Z0-9\-_.]+)\s*:\s*(?<query>.*?)\Z

Expression 7: RegEx Matching the Sequence Query Opening Tags

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة

 The SQL interrogation is

specified in the "query"

argument, similar to the

argument with the same name

of the Scalar Query Tag. If the

query results in multiple rows,

they will be merged in a single

row: each column will contain a

comma separated enumeration

of all its values across all rows

from the result set. An example

of using Stored Query Tags can

be found in the right side.

 The Stored Query Tag is

parsed via RegEx with

Expression 10 that returns the

following capture groups:

 result-set-name – the identifier of the result set that will hold the

query result;

 query – the SQL interrogation.

\Astore\s*(?<result-set-name>[a-zA-Z0-9\-_.]+)\s*:\s*(?<query>.+?)\Z

Expression 10: RegEx Matching the Stored Query Tags

<body>

 <h1>Event Details</h1>

 (? store event: * FROM Events

 WHERE ID="ID" ?)

 <table>

 <tr>

 <td>Name:</td>

 <td>(? event/name ?)</td>

 </tr>

 <tr>

 <td>Date and Time:</td>

 <td>(? event/datetime ?)</td>

 </tr>

 <tr>

 <td>Location:</td>

 <td>(? event/location ?)</td>

 </tr>

 </table>

</body>

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة

 This template tag will be substituted with an empty string in a

Template Source.

6. Variables

 There may be scenarios where two or more queries may depend on

the result of a previous query, using those results in their SQL clauses. As an

example, in two nested Query Sequence Blocks, the inner block may need to

filter the items according to the current row of its ancestor block.

6.1 Assigning Variables

 A variable may be assigned by using the Variable

Assignment Tag with the syntax detailed in Figure 6.

Figure 6: The syntax diagram of a Variable Assignment Tag

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة

 The identifier of a variable is specified via the "name" argument and

should follow the naming constraints described in section

4.2 Variables If there is a previous value assigned to a variable with the same

identifier, that variable will get updated with the new value.

There may be two types of assignment:

1. Query-based – the result of the SQL interrogation specified in

"query" argument is assigned as the variable's value;

2. Field-based – the value of the variable is retrieved from a result set.

The name of the table column should be specified in the "column-

name" argument. If no result set identifier is specified via the "result-

set-name" argument,

3. the result set corresponding to the current Sequence Query Block will

be assumed.

 The default value of "fallback-value" argument is an empty string,

unless it's explicitly set. A variable will not be considered as assigned with

an empty (null) value.

 Next is an example for using a variable to pass the current category to

a descendant Sequence Query Block's SQL interrogation, in order to group

items in a list:

\Asequence\sfallback\Z \Aend\ssequence\Z

Expression 8: RegEx Matching the

Sequence Query Fallback Tag

Expression 9: RegEx Matching the

Sequence Query Closing Tag

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة

<body>

 <h1>Flowers By Families</h1>

 (? sequence group: DISTINCT Family FROM Flowers ORDER BY Family ?)

 <h2>(? group/family ?)</h2>

 (? set family: group/family ?)

 (? sequence: Name FROM Flowers WHERE Family="$family$" ORDER BY

Name ?)

 (? Name ?)

 (? end sequence ?)

 (? end sequence ?)

</body>

The Variable Assignment Tag is parsed with Expression 11, that returns the

following capture groups:

 identifier – the variable identifier;

 query – the SQL interrogation whose result should be assigned to the

variable. A non-empty value indicates a query-based assignment;

 column-name – the identifier of the table column. A non-empty

value indicates a field-based assignment;

 result-set-name – the identifier of the target result set. Empty if not

specified or the assignment type is not field-based;

 fallback-value – the fallback value.

\Aset\s*?(?<identifier>[a-zA-Z_.][a-zA-Z0-9\-

_.]+)\s*:\s*(?:(?(?=.*\/.*)(?<result-set-namet>[a-zA-

Z0-9\-_.]+\/))(?<column-name>(?:[a-zA-Z0-9\-

_.]+|\#))|(?<query>.*?))\s*(?(?<!\|)\|(?!\|)\s*(?<fallback-

value>.+?))?\Z

Expression 11: RegEx Matching the Variable

Assignment Tag

 Note: Expression 11 will also infer the intended assignment type by

validating the arguments supplied in the "Value" section of Figure 6. Firstly,

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
a field-based assignment is implied. Eventually the "column-name" and

"result-set-name" validation will fail, indicating a query-based assignment. A

SQL expression would never validate as a column name or result set name

since it will contain at least one blank space in its body. This Template

Tag will be replaced with an empty string in the Template Output.

6.2 Introducing Variables in Template Source

 In the body of a Template Tag, a variable is introduced by

surrounding its identifier with the "$" symbol as mentioned earlier. But in a

Template Source, a variable can be introduced via the Variable Tag.

 A Variable Tag will get substituted in a Template Source with the

value of the variable with the specified identifier, using the syntax described

in Figure 7.

Figure 7: The syntax diagram of a Variable Tag

 The value of the optional "default" argument will be used if the

variable is not assigned, otherwise if not set, the Template Tag will get

substituted with an empty string.

\Avar\s*?(?<identifier>[a-zA-Z_.][a-zA-Z0-9\-

_.]+)\s*(\|\s*(?<fallback-value>.*?))?\Z

Expression 11: RegEx Matching Variable Tags

 Expression 11 will serve for parsing the Variable Tag, and returns as

capture groups:

 identifier – the identifier of the target variable;

 fallback-value – the default value.

 The entire match will be substituted to the variable's value if is

available, otherwise the contents of "fallback" capture group.

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
7. Conclusion

 One of the common use of template engines, noticeably in web

development, is to preprocess documents in order to populate them with

information stored in a database. This involves a software developer to write

code to query the database system to obtain the desired information, then to

pass it to a template engine. In this paper I have elaborated the design of a

templating language that directly binds the template with the data source,

eliminating the need of writing any imperative code and providing a proper

separation of concerns.This templating language represents a foundation to

interpolate markup code with database queries. It provides means to

introduce scalar values; or to manipulate blocks of markup code in order to

iterate sequences of data rows in the final document.Relying on SQL

expressions to query the desired information from database, this templating

language takes advantage of powerful abilities of filtering, sorting,

aggregating and formatting data. This also facilitates a short learning curve

for those familiarized with database systems.Template Variables may be

used to pass parameters from the template processor caller or values from

preceding queries to SQL expressions. Also Stored Result Sets may improve

template processing times by reducing the database roundtrips, caching the

query results whose values are referenced in multiple locations.With a

simple syntax, this language can be easily implemented, being parsed with

regular expressions that I detailed in this paper.

8. Future Work

 The current design assumes the template processor to be aware of the

connection string that points to the target data source, no mechanism being

provided to embed the connection string into a template. Moreover, there is

no support for interrogating multiple databases from a single template. An

eventual support of alternative tag delimiters would be ideal for allowing

template tags to be obscured from the syntax checking of code editors,

providing a better editing experience by disguising Template Tags as

comments or any other ignorable annotations for common markup

languages.

155

 والعشرون التاسع العـــــــــــــــدد كميــــــــة التربيــــــة مجمــــــــة
References

[1] Terence P., “Enforcing Strict ModelView Separation in Template Engines”, ACM, New

York, USA, May 17–20, 2004.

[2] Molham K., “Design and Implementation of an Efficient Approach for Custom fields

and Formulas with SAP HANA”, MSc. Thesis, Department of Data and Knowledge

Engineering, University of Magdeburg, July 20, 2015.

[3] Florian H. and et al, “Generating Safe Template Languages”, ACM, October 4–5,

Denver, Colorado, USA,2009.

[4] Alan B., “Learning SQL, Second Edition”, O'Reilly & Associates Inc., 2009.

[5] Andy O. and Robert S., “SQL A Beginner’s Guide”, Third Edition, McGraw-Hill, 2009.

[6] Daniel K.C.,” A Document-driven Approach to Database Report Generation”

IEEE, Pages 925 – 930, AUG-1998.

[7] T. Motomichi,” SuperSQL: An Extended SQL for Database Publishing and

Presentation”, ACM SIGMOD International Conference on Management of Data, Seattle,

Washington, USA, June 2-4, 2000.

[8] T. J. Parr, " Enforcing Strict Model-View Separation in Template Engines", the 13th

International Conference on World Wide Web, pages 224–233. ACM, May 2004.

[9] S. Dmitriev, " Language Oriented Programming: The Next Programming Paradigm",

White Paper, JetBrains, 2004. URL http://www.onboard.jetbrains.com/is1/articles/04/10/lop.

[10] F. Hartmann, " An Architecture for an XML-Template Engine Enabling Safe

Authoring", In Proceedings of the 17th International Workshop on Database and Expert

Systems Applications (DEXA 2006), pages 502– 507. IEEE Computer Society, 2006.

[11] S. Yu, “Regular Languages”, in Handbook of Formal Languages, G. Rozenberg and A.

Salomaa eds. pps. 41-110, Springer, 1998.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5718

