

IJCCCE, VOL.7, NO.2, 2007

Al-Nahrain University, College of Engineering, Computer Engineering Department
E-mail: abudinoor@yahoo.com

1

DEVELOPMENT OF PC BASED MULTI-CHANNEL
PROGRAMMABLE LOGIC ANALYZER

Dr. Ali A. Ati, M.Sc. Eng. Sarmad Hassan Ahmed

Receipted: 2005 /11/23
Accepted: 2008 /2 /10

Abstract
This paper presents the design and practical implementation of a multi-channel PC based
logic analyzer. The analyzer has16 input channels with memory depth of 4K
snapshots/channel and capture rate of up to 5 MHz. The analyzer parameters such as
internal or external trigger source, falling or rising edge capture clock, state or timing
measuring mode, number of pre-trigger and post-trigger snapshots, are made to be
programmable and could be changed manually. The analyzer prototype consists of
hardware part represented by the development of the interface ISA card and the software
part that involves the kernel mode driver and the GUI program development. The
developed prototype analyzer has been tested under different configuration schemes
using 8085 SDK.

 الخلاصة

الجھاز المصمم . یقدم ھذا البحث التصمیم و التنفیذ العملي لمحلل منطقي متعدد القنوات باستخدام الحاسوب الشخصي
قناة إضافة إلى سعة خزن 16یحتوي على 4K snapshots/channel ومعدل اخذ إشارات یصل الى 5MHz .

صھ من قبل المستخدم ، ھذه خلال التصمیم تم مراعاة ان یكون الجھاز قابل لتغیر خوا
الخواص تتضمن طبیعة مصدر التحفز داخلي أم خارجي ، نوع طور التشغیل ، وكذلك عدد الإشارات المأخوذة قبل

.وبعد حصول التحفز
الأول ھو الجزء البنیوي الذي یقوم بعملیة اخذ الإشارات من القنوات وخزنھا : تنفیذ الجھاز تضمن جزئیین رئیسیین

ویتكون من سواقة وواجھ ي، أما الجزء الثاني فھو الجزء البر مج.اكرة الموجودة في الجزء البنیوي نفسھ في الذ
تطبیق للمستخدم تمكنھ من استخدام الجزء البنیوي والسیطرة علیھ، وكذلك عرض الإشارات المستلمة بطریقة ملائمة

دام منظومة المعالج الدقیق تم اختبار النظام في مختلف طرق عملھ وخواصھ من خلال استخ. .8085-SDK kit

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

2

List of Abbreviations

TTL Transistor-Transistor Logic
CMOS Complementary Meta Oxide Semiconductor
ISA Industry Standard Architecture
IOR Input Output Read
IOW Input Output Write
I/O Input/Output
SRAM Static Random Access Memory
CS Chip Select
WR Write Signal
OE Output Enable Signal
CPU Central Processing Unit
ISR Interrupt Service Routine
API Application Programming Interface
GUI Graphical User Interface
SDK Software Development Kit
ALE Address Latch Enable
FPGA Field Programmable Gate Array
PCI Peripheral Component Interconnect

1. Introduction

The PC based type of logic analyzers
has more flexibility than stand alone
logic analyzers. Very limited papers
have been published in this filed.
Anderw March [1], presents a 32
channel, 40 MHz, fully PC controlled
TTL/CMOS logic analyzer with
internal/external triggering and trigger
delay. The presented prototype is little
bit complicated and has short flexibility.
The parameters of the analyzer are not
programmable and need much effort to
be changed. Kyle C. Quinnell [2],
presents a way of using a PC computer
as an 8-bit logic analyzer. The technique
uses the capabilities of the PC
computer’s parallel port to provide an 8-
bit input. The software that provides the

interface was written using Turbo
C++. No interface card was used

because it depends completely on the

parallel port of the PC. The biggest
drawback with this prototype is the low
capturing rate. This paper presents the
development of a PC based multi-
channel programmable logic analyzer.
Section two of this paper outlines the
general block diagram of the proposed
logic analyzer and the circuit diagram
with operation of the hardware part.
Section three presents the software part
details while section four shows the test
results for the analyzer prototype. The
last section, section five, presents the
conclusions and suggestions for future
work.
2. Hardware part

The general structure block
diagram of the proposed logic analyzer
is shown in Figure (1). This block

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

3

 diagram contains the major
functional blocks of the designed card,
and shows the interconnections between
them, which gives an idea about the data
flow inside the system. The Orcad
simulation program has been used as a
schematic design entry tool as well as to
verify through simulation the operation
of the circuit before practical
implementation. Below is a description
of each element:

2.1 ISA Bus Interface
 Buffers are used to isolate the ISA
interface bus from the internal circuit of
the add-on card [3]. Buffering is
accomplished by the 74LS244 for
unidirectional transfer and by 74LS245
for bidirectional transfer. In the latter, an
additional signal is needed to specify the
direction of transfer, which is derived
from the -IOR and -IOW signals.

2.2 Decoder Circuit
The decoder circuit decodes the
addresses of the I/O registers needed by
the add-on card by selecting a specific
address from a given range of addresses
and outputting a signal indicating that
the address was found on the address
bus. The design used the address range from
300h to 306h on even addresses only. Even
addresses are used because 16-bit I/O
registers are being interfaced only. Figure
(2) shows the full circuit diagram of data
buffers and decoder circuit. 3-to-8 decoders
(74LS138) are used widely for address
decoding. In this figure U6 and U8 are used
to decode the base address which is 300h.
While U4 and U5 decode the even addresses
in the I/O range, and separate the Input
registers from output registers with the use
of –IOW and –IOR signals. Figure (3)
shows the timing diagram of the decoder
circuit for the address 300h. That was a

result of requesting a word input from an
input device through the command “inpw
(300h)”.

2.3 Command & Status Registers
(Control Registers)
Output data from the computer are the
configurations’ commands. These
commands must be stored in the
command registers. Those registers are
latches (74LS374) to store the data from
the data bus before they vanish. After the
data configurations are correctly latched
from the data bus, the add-on card can
use them whenever it is needed.
Therefore the purpose behind using
those registers is to store the
configurations set by the software
directly on the electronic board from
which it can be read. Input registers are
used to put the data on the data bus when
the computer requests it through the
inpw command. Input registers are
called status registers. Figure (4) shows
the command and status registers circuit
diagram with the connection between
each register and the decoder. The
decoder directs the appropriate signal to
the register when it is accessed. Each bit
of a command or a status register has a
specific function, which is denoted by
Figure (3).

2.4 Main Analyzer's Circuit
All the circuits above are used to prepare
signals and configurations that are used
by the main analyzer’s circuit. This
circuit can be subdivided into parts as
follows:

2.4.1 Capture and Storage Circuit
This part is responsible of capturing
snapshots and storing them in a
temporary buffer on the add-on card.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

4

The capture process is synchronized with
a clock introduced by the clock circuit
part mentioned latter. The circuit
diagram is shown in Figure (5). The
Latches 74LS374 take snapshots with
the clock transition from low to high
then they are copied to the memory
buffer. The memory buffer is a 4K
volatile SRAM (part number is
HM6264-10) with an access time of
100ns. This buffer has to record the
snapshots and then forward it to the PC
when all the snapshots required were
taken and stored. Thus it must be
connected to the latches mentioned
above in addition to the ISA data bus. In
order to isolate those data paths an extra
3-state buffer must be used to separate
data coming from the latches and the
data directed to the data bus of the PC.
Timing diagram for both cases are
shown in Figure (6.a) and Figure (6.b)
respectively. To write the snapshots to
the memory buffer, it is important to
prepare two signals. The first one is
called Chip Select signal (-CS) and the
other is called Write signal (-WR). The
write operation begins with at the point
where both of these signals go low, and
finished whenever anyone of them goes
high. A time of 100ns must be
guaranteed in order to ensure the proper
storage of data A read operation is made
when the –WR signal is high and –CS is
low with the Output Enable signal (-OE)
goes low.

2.4.2 Memory Address Counter
The memory must be supplied by an
address in which the snapshot is going to
be stored (or going to be read from).
This address is to be generated by
Memory Address Counter. The counter
must be incremented with every

sampling clock. Figure (7) shows the
circuit diagram of the address counter
that consists of 3 cascaded 4-bit counter
of type 74LS191.
The outputs of the Memory Address
Counter are connected directly to the
address pins of the Static RAM in the
previous circuit. The time needed for a
single snapshot to be taken is estimated
by the access time required for the
SRAM to store data (SRAM access
time) plus the time required for the
counter to increment itself. Figure (8)
shows the timing diagram for the
cascaded counters.
2.4.3 Control Circuit
Control circuit is where the decisions
about starting and stopping counting
snapshots take place. It also prepares
signals for memory buffers, counters,
interrupt circuit, clock and internal
trigger circuit. Figure (7) above, shows
the circuit diagram for the control
circuit.
When the system starts its operation, it
begins by taking snapshots and filling
the circular buffer. At the time the
trigger comes to the flip-flop, it changes
its state (Q output) from high logic to
low. This transition activates the
snapshot counter, which will go
decreasing its count with every clock
pulse. The counter must be loaded with
the number of post-trigger samples
before the system starts its operation or it
will never start. When all the required
snapshots are stored in the memory
buffer, the flip-flop will automatically
disable the counter and it will then stop
further storage of snapshots.

2.4.4 Snapshots Counter
This counter sets the number of
snapshots to be taken directly after the

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

5

trigger comes to the control circuit. The
analyzer will start to capture snapshots
as soon as the counter contains a number
other than Zero. Setting the counter with
the number zero will cause the NAND
gate shown in Figure (7) to by pass a
signal to the control circuit indicating
that the terminal count has been reached.
The latter in turn, stops capturing
snapshots since the samples required
have all been taken.

2.4.5 Interrupt Circuit
Figure (7) also shows the interrupt
circuit. The Computer CPU is
interrupted whenever the analyzer
finishes taking captures. The low to high
transition in the control circuit flip-flop
strobes the high logic into the output of
the interrupt flip-flop which is connected
to the interrupt request line of the ISA
bus. The interrupt flip-flop is cleared at
the beginning of the Interrupt Service
Routine (ISR). This is accomplished by
connecting the enable of the (302h) input
register from the decoder to the clear pin
of the flip-flop.

2.4.6 Clock Circuit
Snapshots are taken whenever a
transition from low to high takes place
on the clock signal. Clock can be
programmed as internal or external.
External clock comes directly from
outside the analyzer i.e. from an external
source usually the system clock of the
device under test. External clock is used
in state measurement only. Internal clock
is used in timing measurements and it is
initiated onboard. Figure (9) shows the
circuit diagram of clock circuit. The rate
divider 74LS294 is used to provide
programmable clock frequency from the
4MHz system clock provided by the ISA

bus. These dividers provide a division
capability from 21 to 231 [4]. The clock
circuit is also responsible for the
programmable clock sampling edge
feature. The XOR gate is used as an
inverter depending on the value of the
command bit associated with
configuring this feature.

2.4.7 Trigger Circuit
Figure (9), shows the circuit diagram of
the trigger circuit. The two 8-bit
comparators (74LS688) are used in
pattern comparison for pattern based
triggering. The output of the 8-bit
comparator is low when both input
patterns are exactly the same. Pattern
triggering (internal trigger) takes place in
five modes. These modes represent the
state at which the two different
comparators have to be in order to make
a trigger. The first mode is when the
outputs of both comparators are low at
the same time. And the second mode is
when the output of one of the
comparators is low. Third mode is
activated either when one of the
comparators' output is active. The forth
and fifth modes make a trigger
depending on a single comparator only.
Mode selection is made through
programming the command register with
the appropriate multiplexer selection
bits. Only one mode can be selected at a
time. For the external trigger, this circuit
provides capability to choose the
transition type of the trigger signal on
which the triggering of the analyzer
happens. The XOR gate connected to the
specific bit in the command register of
the analyzer accomplishes this feature.
3. Software part
There are many available platforms on
which the software can be based. The

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

6

software developed for the logic
analyzer is based on Microsoft
Windows, which is the most widely used
platform by personal computers. The
software design is consists of two main
parts: 1) Kernel-mode driver 2) User-
mode application program [5]. The
software parts developed in this work
will be fully compatible with all versions
of Microsoft Windows except
Windows95, due to limitation in this old
version of Windows operating system.
Software development in MS Windows
is largely dependent on the factory ready
routines, called API, supplied by
Microsoft Corporation. These routines
have a standard call parameters and
outputs [6]. Two steps are involved
when writing software for a hardware
board. The first step is preparing
interface routines for introducing
functions available by the hardware
board and those routines are called
'Driver'. The Drivers works in
conjunction with Windows to process
interrupts, and carry out I/O operations
for a given application without
disrupting the execution of other
applications. The other step is designing
and providing function for the graphic
user interface program (GUI) which the
ordinary user is supposed to interact
with. The GUI program uses the routines
prepared by the Driver to communicate
with the hardware board indirectly.
Program developed in this step
represents the visual part of the whole
software to support the hardware board.

3.1 Driver Routines
Generally, in order to do its job the
driver consists of many routines, some of
them are standard routines, while the

others are optional and exist according to
the functions carried by the hardware
card that the driver has to manage [7].
The developed driver has the following
routines:
1- DriverEntry Routine
2- AddDevice Routine
3- Dispatch I/O Routine
4- StartIo Routine
5- IoCompletion Routine
6- IoConnectInterrupt Routine
7- KeSynchronizeExecution

Routine
8- Interrupt Service Routine (ISR)
9- DpcForIsr Routine
10- Unload Routine
The driver developer has to prepare
routines to interact with the hardware
board I/O ports and the capability of
Interrupt handling. Ports used by the
logic analyzer add-on card are shown
below:
I-Input ports:
300h: Snapshot register.
For reading captured snapshots from the

memory on the card.
Program uses this port to retrieve the
snapshots stored in the temporary
memory of the card.
302h: Trigger Address register.
Stores the address of the snapshot at
which the trigger has taken place.
304h: Status register.
 It is used to acquire the current working
status of the analyzer.
II-Output ports:
300h: Pre-trigger snapshots.
This port is used for setting the number
of snapshots needed to be stored after the
trigger arrival. Storing a value other than
zero in this port will cause the start of a
new test.
302h Clock Divider register.
This register is used to hold the rate by

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

7

which the ISA clock is to be divided by
to obtain the capturing clock required for
timing analysis measurement.
304h: Command register.
Used to configure the analyzer's
clock source, trigger source,
pattern trigger type and active
clock and trigger edges.
306h: Trigger pattern bits.
Pattern trigger bits are set using this port.
To use pattern triggering the appropriate
bits in the Command Register must be
set also.

Each one of these I/O Port has to be
implemented in special routine called
Dispatch I/O Routine. Figures (10) to
(11) show the development of some
mentioned routines. For
IoConnectInterrupt and
KeSynchronizeExecution routines the
predefined standard routines were used.

3.2 Graphical User Interface (GUI)

Development

The graphical program interface has
been designed in Visual Basic Language
to look as in Figure (12). Configuration
for the analyzer must be completed
before clicking on the Start Button.
Configuration involves setting pre-
trigger number of samples, clock source,
trigger source …etc. Clicking on the
start button makes the program goes into
the standby state waiting for the analyzer
interrupt to acknowledge availability of
data. When the snapshots are complete,
an interrupt occurs telling the program to
fetch the data from the hardware. The
snapshots are then displayed as

waveforms on the display window. The
program menu shown in Figure (12) has
the following keys:
Load: To load a previously saved

snapshots file and display it as a
waveform.

Save: Saves the captured snapshots into
a file.

Parameters: shown in Figure (13).
From this window the following
parameters are determined. (Post-trigger
snapshots, analysis type, trigger source,
clock edge type, trigger edge type, and
trigger mode).
Start: To begin taking snapshots

according to the previously set
parameters.

Abort: To stop the snapshots capturing
process.

4. Experimental Test.

The overall developed system was tested
using the 8085 SDK. A small program
was written as shown in table (1) to
initiate predefined transactions on the
address, data, and control bus.
Accordingly, the system functionality
can be tested by comparing captured
snapshots by the system with the
theoretical bus timings. The functionality
of the logic analyzer was tested in 6
different tests as illustrated in table (2)
and the logic analyzer channels during
all tests were connected as outlined in
table (3). Note that, only the low byte of
address lines was connected to the
analyzer. The six tests mentioned before,
were examined by connecting an 8085
SDK to a PC on which the developed
hardware is connected, and with its
driver and GUI programs are being
executed. Because of space limitations,

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

8

the results for two of these tests are
shown and discussed below.
 Test 1

Figure (10) shows the output screen of
the 12 channel connected in test 1. The
changes of signals are not clearly visible,
therefore the zooming capability in the
program was used to get a closer view
for the signals. The numbers on the axis
represent the snapshot number. Pre-
trigger snapshots (numbers with –ve
sign) lies before the snapshot instance
(origin point). Post-trigger snapshots
lies after the snapshot instance (numbers
with +ve sign). The y-axis represents the
channels, and the panel on the right
shows what each channel is connected
to, (the panel text is predefined). As
mentioned in [8], the fetch cycle is
composed of four T states. The first T
state can be considered as the address
phase, where the rest are considered as
data phase. In Figure (10) the two phases
of the (DCR C) instruction are being
pointed to. For the address phase, the
low byte of 2002h is shown (which is
02h) and for the data phase, the opcode
(0Dh) is shown afterwards. Since this
test was done for the rising edge, the
ALE signal activation could not be
captured because the ALE is activated
during the low part of the CPU clock
only.

 Test 2

In test 1 the fetch cycle was discussed
only. In this test the fetch and memory
read cycles are going to be discussed. In
figure (11), the two cycles of the (MVI C
0Fh) instruction are being pointed to.
Since this test was done with the falling
edge capture clock, the ALE signal
activation could be captured. In the

address phase of the fetch cycle the low
byte of 2000h is (00h). The Address
Phase can be distinguished by the ALE
signal being high, while in the Data
Phase the ALE goes low. The data phase
of the fetch cycle is the opcode (0Eh) as
it is shown by the figure. In the address
phase of the memory read cycle the low
byte of 2001h is (01h) and in the data
phase of the memory read cycle the data
byte is (0Fh) as shown by the figure too.

5. Conclusion and future work.

1- The maximum capture rate
achieved was 5MHz, because of
the limits concerning
components' speed and the wire
wrapping connection method
used. This rate can be increased
by many ways, for example,
building the circuit as Printed
Circuit Board PCB, using faster
components, using
programmable logic devices (to
minimize the number of
components and thus minimizing
signal delay), and also using fast
RAM to store the captured
snapshots.

2- The use of 16 bit interfacing with
ISA bus produced speed up
factor for the system
performance, instead of taking 8-
bit in two stages, which increases
CPU clocks required for a single
Input/Output instruction and thus
it increases the associated delay.

3- Drivers under windows represent
a successful method to interact
with the developed hardware in
MS Windows Operating System,
which gives the capability of
developing a friendly GUI. It
also enlarges the way toward

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

9

more modular and configurable
software implementation for the
system.

4- Experimental results reflect that
the designed and implemented
logic analyzer system operates
properly as they were compared
to the corresponding theoretical
waveform diagrams.

And a suggested recommendations for
future work is summarized as:

1- Implementation of an FPGA
based logic analyzer. In order to
improve the analyzer
specification, an FPGA chip can
be used for increasing memory
depth, (so that the system would
be able to capture more snapshots
and analyze more transactions),
speeding up capture rate (to make
the system capable of debugging
faster systems, or to increase the
resolution of time
measurements), and increasing
the number of channels (to make
the system capable of debugging
more IO-signals systems).

2- Upgrade the design to be

interfaced to the PCI Bus. In
order to be compatible with the
new computer systems. Also this
would increase the bits being
transferred at each transfer
operation, decreasing by this the
CPU engagement time especially
if the burst transfer mode is used.
Interfacing the developed system

to the PCI would further provide
system portability, and dynamic
resources allocation through the
Plug'n'Play feature.

References

[1] Andrew March, "PC Based 32

Channel Logic Analyzer", Electronics
Australia in Oct/Nov, 1996.

[2] Kyle C. Quinnell, "Building an 8-bit
PC-Based Logic Analyzer",
Department of Engineering
Technology, New Mexico State
University, 2001.

[3] William Buchanan and Austin
Wilson Advanced Pc Architecture,
Addison-Wesley, 2001.

[4] Walter A. Triebel and Prentice hall,
The 80386, 80486, and Pentium
processor hardware, software and
interfacing, Prentice-Hall Inc., 1998.

[5] Matt Pietrek, Windows Programming
Secrets, IDG books worldwide Inc,
1995.

[6] Herbert Schildt, Windows 98
programming from the ground up,
McGraw-Hill publishing company,
U.S.A., 1998.

[7] Microsoft Corporation, "Windows
Driver Model (WDM) Technology",
available at

http://www.microsoft.com/hwdev//driver
/wdm/default.asp#top

[8] Chares E. Stewart, The Intel
Microprocessors Architecture,
Programming, and Interfacing, Fifth
edition, Prentice-Hall Inc., 2000.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

10

Figure (1): Structure block diagram of the logic analyzer.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

11

Figure (2): Data Buffers and Decoders circuit.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

12

Figure (3) Decoder circuit simulation result for the address 300h.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

13

Figure (4): Control registers circuit.

Figure (5): Capture and Storage circuit..

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

14

Figure (6-a): Recording phase timing diagram.

Figure (6-b): Storing into PC timing diagram.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

15

 Figure (7): Main circuit.
 Figure (8): Address counter timing.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

16

Figure (9): Clock and trigger circuit.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

17

Figure (10): Driver Entry routine flow chart

Figure (11): Dispatch I/O routine
flow chart

 A llo c a te m e m o ry
fo r c o n fig u ra tio n

info rm a tio n

 S e t driv e r o bje c t
e ntry p o in ts

 C re a te s pe c ia l
ha rd wa re o b je c t s

C h e c k
fo r

e rro r?

D e le te a ll c re a te d
o bje c ts

Ye s

N o

 R e tu rn s ta tu s

 R e trie ve IR P
from IR P s tack

G e t de v ice E xte ns ion,
IO buffe r, and IO

c ontro l co de

 D o the o pe ra tio n
re quire d

 T a s k
comple te

?

 C all Io Co mple te
routine

Ye s

N o

 R e turn s ta tus

 M arl Irp
pe nding

 C all S tartIo
routine

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

18

Figure (12): Graphical User Interface program

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

19

Figure (13): Parameter setting window

Table (1) Tests type of the logic analyzer.

Test No. Measurement
Type

Pre-trigger
Snapshots

Post-trigger
Snapshots

Trigger
Source*

Capture
Clock Type

1 State 2048 2048 External Rising Edge

2 State 2048 2048 External Falling
Edge

3 State 0 4096
Internal

(channel 0-
7)

Rising Edge

4 State 0 4096 Internal
(ANDed) Rising Edge

5 Timing 1000 3096 External 4 MHz
clock

6 Timing 0 4096 Internal
(ANDed)

4 MHz
clock

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

20

Table (2) Logic analyzer channels
connection.

Channel No Signal Name

Channel 0: AD0

Channel 1: AD1

Channel 2: AD2

Channel 3: AD3

Channel 4: AD4

Channel 5: AD5

Channel 6: AD6

Channel 7: AD7

Channel 8: ALE

Channel 9: IO/-M

Channel 10 -RD

Channel 11: -WR

Channel 12: Not Connected

Channel 13: Not Connected

Channel 14: Not Connected

Channel 15: Not Connected

Table (3) Test sample program.

Address Label

Opcode

&

Operand

Machine

Code

2000
b:

MVI

C,0Fh
0E0Fh

2002 a: DCR C 0Dh
2003 JNZ a C20220h
2006 JMP b: C30020h

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

 Logic Analyzer

21

Figure (14): Zoomed results of test 1.

Figure (15): Results of test 2.

Address Phase
Data Phase

Trigger Instance

Fetch Cycle Memory Read Cycle

