IJICCCE, VOL.7,NO.2,2007

DEVELOPMENT OF PC BASED MULTI-CHANNEL
PROGRAMMABLE LOGIC ANALYZER

Dr. Ali A. Ati, M.Sc. Eng. Sarmad Hassan Ahmed

Receipted: 23/11 /2005
Accepted:10/ 2/ 2008

Abstract
This paper presents the design and practical implementation of a multi-channel PC based
logic analyzer. The analyzer hasl6 input channels with memory depth of 4K
snapshots/channel and capture rate of up to 5 MHz. The analyzer parameters such as
internal or external trigger source, falling or rising edge capture clock, state or timing
measuring mode, number of pre-trigger and post-trigger snapshots, are made to be
programmable and could be changed manually. The analyzer prototype consists of
hardware part represented by the development of the interface ISA card and the software
part that involves the kernel mode driver and the GUI program development. The
developed prototype analyzer has been tested under different configuration schemes
using 8085 SDK.

dadal)

sl Sl ot 8 gl sl ol gl snie ikaie Jlaal aall 30 pranadll Cindl 138 23
O0A A) Al 38 16 e s 5354 K snapshots/channel () daay & L) 331 Jae s SMHZ
238 ¢ kil Ui (e dal s adl QB Sleadl (5 ol Ble e o5 el JNA
dﬁ’éjpw\&\)uy‘ﬁm&ﬁjcM\)}L&}J‘@)L&A&;\JN\)LAAL_).\EMUA\JAJ\
o8 Jsan e

L a5 <l il (pe LAY 0 Abeny o 5y (531 (5 sl o 3all s J5Y1 Gty (it da e lead) dud
Anl 55 38 gun (3n ()5S 5 omn Ll o5l sad) 6 sl Wl ¢ At g gl o Sal) 883 pm sall 5_SIN 3
Faidle &gyl Aliceall LS ia e IS g e 8)y (5 gl o ol alaiiod (pa 4iSaT prdtiaall ks
Gl ellaall A glaia pladinl A (e dial i g alae (5 yla calina ol jladl &5 8085-SDK kit

Al-Nahrain University, College of Engineering, Computer Engineering Department
E-mail: abudinoor@yahoo.com

1

IJCCCE, VOL.7,NO.2, 2007

List of Abbreviations

Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

TTL Transistor-Transistor Logic

CMOS Complementary Meta Oxide Semiconductor
ISA Industry Standard Architecture
IOR Input Output Read

IOW Input Output Write

/0 Input/Output

SRAM Static Random Access Memory

CS Chip Select

WR Write Signal

OE Output Enable Signal

CPU Central Processing Unit

ISR Interrupt Service Routine

API Application Programming Interface
GUI Graphical User Interface

SDK Software Development Kit

ALE Address Latch Enable

FPGA Field Programmable Gate Array

PCI Peripheral Component Interconnect

1. Introduction

The PC based type of logic analyzers
has more flexibility than stand alone
logic analyzers. Very limited papers
have been published in this filed.
Anderw March [1], presents a 32
channel, 40 MHz, fully PC controlled
TTL/CMOS logic analyzer with
internal/external triggering and trigger
delay. The presented prototype is little
bit complicated and has short flexibility.
The parameters of the analyzer are not
programmable and need much effort to
be changed. Kyle C. Quinnell [2],
presents a way of using a PC computer
as an 8-bit logic analyzer. The technique
uses the capabilities of the PC
computer’s parallel port to provide an 8-
bit input. The software that provides the

interface was written using Turbo
C++. No interface card was used

because it depends completely on the
parallel port of the PC. The biggest
drawback with this prototype is the low
capturing rate. This paper presents the
development of a PC based multi-
channel programmable logic analyzer.
Section two of this paper outlines the
general block diagram of the proposed
logic analyzer and the circuit diagram
with operation of the hardware part.
Section three presents the software part
details while section four shows the test
results for the analyzer prototype. The
last section, section five, presents the
conclusions and suggestions for future
work.
2. Hardware part

The general structure block

diagram of the proposed logic analyzer
is shown in Figure (1). This block

IJCCCE, VOL.7,NO.2, 2007

diagram contains the major
functional blocks of the designed card,
and shows the interconnections between
them, which gives an idea about the data
flow inside the system. The Orcad
simulation program has been used as a
schematic design entry tool as well as to
verify through simulation the operation
of the circuit before practical
implementation. Below is a description
of each element:

2.1 ISA Bus Interface

Buffers are used to isolate the ISA
interface bus from the internal circuit of
the add-on card [3]. Buffering is
accomplished by the 74LS244 for
unidirectional transfer and by 74LS245
for bidirectional transfer. In the latter, an
additional signal is needed to specify the
direction of transfer, which is derived
from the -IOR and -IOW signals.

2.2 Decoder Circuit

The decoder circuit decodes the
addresses of the I/O registers needed by
the add-on card by selecting a specific
address from a given range of addresses
and outputting a signal indicating that
the address was found on the address
bus. The design used the address range from
300h to 306h on even addresses only. Even
addresses are used because 16-bit I/O
registers are being interfaced only. Figure
(2) shows the full circuit diagram of data
bufters and decoder circuit. 3-to-8 decoders
(74LS138) are used widely for address
decoding. In this figure U6 and U8 are used
to decode the base address which is 300h.
While U4 and U5 decode the even addresses
in the I/O range, and separate the Input
registers from output registers with the use
of -IOW and -IOR signals. Figure (3)
shows the timing diagram of the decoder
circuit for the address 300h. That was a

Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

result of requesting a word input from an
input device through the command “inpw
(300h)”.

2.3 Command & Status Registers

(Control Registers)
Output data from the computer are the
configurations’ commands. These

commands must be stored in the
command registers. Those registers are
latches (74LS374) to store the data from
the data bus before they vanish. After the
data configurations are correctly latched
from the data bus, the add-on card can
use them whenever it is needed.
Therefore the purpose behind using
those registers is to store the
configurations set by the software
directly on the electronic board from
which it can be read. Input registers are
used to put the data on the data bus when
the computer requests it through the
inpw command. Input registers are
called status registers. Figure (4) shows
the command and status registers circuit
diagram with the connection between

each register and the decoder. The
decoder directs the appropriate signal to
the register when it is accessed. Each bit
of a command or a status register has a
specific function, which is denoted by
Figure (3).

2.4 Main Analyzer's Circuit

All the circuits above are used to prepare
signals and configurations that are used
by the main analyzer’s circuit. This
circuit can be subdivided into parts as
follows:

24.1 Capture and Storage Circuit

This part is responsible of capturing
snapshots and storing them in a
temporary buffer on the add-on card.

IJCCCE, VOL.7,NO.2, 2007

The capture process is synchronized with
a clock introduced by the clock circuit
part mentioned latter. The circuit
diagram is shown in Figure (5). The
Latches 74LS374 take snapshots with
the clock transition from low to high
then they are copied to the memory
buffer. The memory buffer is a 4K
volatile SRAM (part number is
HM6264-10) with an access time of
100ns. This buffer has to record the
snapshots and then forward it to the PC
when all the snapshots required were
taken and stored. Thus it must be
connected to the latches mentioned
above in addition to the ISA data bus. In
order to isolate those data paths an extra
3-state buffer must be used to separate
data coming from the latches and the
data directed to the data bus of the PC.
Timing diagram for both cases are
shown in Figure (6.a) and Figure (6.b)
respectively. To write the snapshots to
the memory buffer, it is important to
prepare two signals. The first one is
called Chip Select signal (-CS) and the
other is called Write signal (-WR). The
write operation begins with at the point
where both of these signals go low, and
finished whenever anyone of them goes
high. A time of 100ns must be
guaranteed in order to ensure the proper
storage of data A read operation is made
when the —WR signal is high and —CS is
low with the Output Enable signal (-OE)
goes low.

24.2 Memory Address Counter

The memory must be supplied by an
address in which the snapshot is going to
be stored (or going to be read from).
This address is to be generated by
Memory Address Counter. The counter
must be incremented with every

Development Of Pc Based Multi-Channel Programmable

Logic Analyzer

sampling clock. Figure (7) shows the
circuit diagram of the address counter
that consists of 3 cascaded 4-bit counter
of type 74LS191.

The outputs of the Memory Address
Counter are connected directly to the
address pins of the Static RAM in the
previous circuit. The time needed for a
single snapshot to be taken is estimated
by the access time required for the
SRAM to store data (SRAM access
time) plus the time required for the
counter to increment itself. Figure (8)
shows the timing diagram for the
cascaded counters.

24.3 Control Circuit

Control circuit is where the decisions
about starting and stopping counting
snapshots take place. It also prepares
signals for memory buffers, counters,
interrupt circuit, clock and internal
trigger circuit. Figure (7) above, shows
the circuit diagram for the control
circuit.

When the system starts its operation, it
begins by taking snapshots and filling
the circular buffer. At the time the
trigger comes to the flip-flop, it changes
its state (Q output) from high logic to
low. This transition activates the
snapshot counter, which will go
decreasing its count with every clock
pulse. The counter must be loaded with
the number of post-trigger samples
before the system starts its operation or it
will never start. When all the required
snapshots are stored in the memory
buffer, the flip-flop will automatically
disable the counter and it will then stop
further storage of snapshots.

2.4.4 Snapshots Counter
This counter sets the number of
snapshots to be taken directly after the

IJCCCE, VOL.7,NO.2, 2007

trigger comes to the control circuit. The
analyzer will start to capture snapshots
as soon as the counter contains a number
other than Zero. Setting the counter with
the number zero will cause the NAND
gate shown in Figure (7) to by pass a
signal to the control circuit indicating
that the terminal count has been reached.
The latter in tum, stops capturing
snapshots since the samples required
have all been taken.

24.5 Interrupt Circuit

Figure (7) also shows the interrupt
circuitt. The Computer CPU is
interrupted whenever the analyzer
finishes taking captures. The low to high
transition in the control circuit flip-flop
strobes the high logic into the output of
the interrupt flip-flop which is connected
to the interrupt request line of the ISA
bus. The interrupt flip-flop is cleared at
the beginning of the Interrupt Service
Routine (ISR). This is accomplished by
connecting the enable of the (302h) input
register from the decoder to the clear pin
of the flip-flop.

2.4.6 Clock Circuit

Snapshots are taken whenever a
transition from low to high takes place
on the clock signal. Clock can be
programmed as internal or external.
External clock comes directly from
outside the analyzer i.e. from an external
source usually the system clock of the
device under test. External clock is used
in state measurement only. Internal clock
is used in timing measurements and it is
initiated onboard. Figure (9) shows the
circuit diagram of clock circuit. The rate
divider 74LS294 is used to provide
programmable clock frequency from the
4MHz system clock provided by the ISA

Development Of Pc Based Multi-Channel Programmable

Logic Analyzer

bus. These dividers provide a division
capability from 2' to 2*' [4]. The clock
circuit is also responsible for the
programmable clock sampling edge
feature. The XOR gate is used as an
inverter depending on the value of the
command bit associated with
configuring this feature.

2.4.7 Trigger Circuit

Figure (9), shows the circuit diagram of
the trigger circuit. The two 8-bit
comparators (74LS688) are wused in
pattern comparison for pattern based
triggering. The output of the 8-bit
comparator is low when both input
patterns are exactly the same. Pattern
triggering (internal trigger) takes place in
five modes. These modes represent the
state at which the two different
comparators have to be in order to make
a trigger. The first mode is when the
outputs of both comparators are low at
the same time. And the second mode is
when the output of one of the
comparators is low. Third mode is
activated either when one of the
comparators' output is active. The forth
and fifth modes make a trigger
depending on a single comparator only.
Mode selection is made through
programming the command register with
the appropriate multiplexer selection
bits. Only one mode can be selected at a
time. For the external trigger, this circuit
provides capability to choose the
transition type of the trigger signal on
which the triggering of the analyzer
happens. The XOR gate connected to the
specific bit in the command register of
the analyzer accomplishes this feature.

3. Software part

There are many available platforms on
which the software can be based. The

IJCCCE, VOL.7,NO.2, 2007

software developed for the logic
analyzer is based on Microsoft
Windows, which is the most widely used
platform by personal computers. The
software design is consists of two main
parts: 1) Kernel-mode driver 2) User-
mode application program [5]. The
software parts developed in this work
will be fully compatible with all versions
of Microsoft Windows except
Windows95, due to limitation in this old
version of Windows operating system.
Software development in MS Windows
is largely dependent on the factory ready
routines, called API, supplied by
Microsoft Corporation. These routines
have a standard call parameters and
outputs [6]. Two steps are involved
when writing software for a hardware
board. The first step 1is preparing
interface routines for introducing
functions available by the hardware
board and those routines are called
Driver. The Drivers works in
conjunction with Windows to process
interrupts, and carry out I/O operations
for a given application without
disrupting the execution of other
applications. The other step is designing
and providing function for the graphic
user interface program (GUI) which the
ordinary user is supposed to interact
with. The GUI program uses the routines
prepared by the Driver to communicate
with the hardware board indirectly.
Program developed in this step
represents the visual part of the whole
software to support the hardware board.

3.1 Driver Routines

Generally, in order to do its job the
driver consists of many routines, some of
them are standard routines, while the

Development Of Pc Based Multi-Channel Programmable

Logic Analyzer

others are optional and exist according to
the functions carried by the hardware
card that the driver has to manage [7].
The developed driver has the following
routines:
1- DriverEntry Routine
2- AddDevice Routine
3- Dispatch I/O Routine
4- Startlo Routine
5- ToCompletion Routine
6- loConnectlnterrupt Routine
7- KeSynchronizeExecution
Routine

8- Interrupt Service Routine (ISR)
9- DpcForlsr Routine
10- Unload Routine
The driver developer has to prepare
routines to interact with the hardware
board I/O ports and the capability of
Interrupt handling. Ports used by the
logic analyzer add-on card are shown
below:
I-Input ports.
300h:Snapshot register.
For reading captured snapshots from the

memory on the card.
Program uses this port to retrieve the
snapshots stored in the temporary
memory of the card.
302h:Trigger Address register.
Stores the address of the snapshot at
which the trigger has taken place.
304h: Status register.
It is used to acquire the current working
status of the analyzer.
1I-Output ports:
300h:Pre-trigger snapshots.
This port is used for setting the number
of snapshots needed to be stored after the
trigger arrival. Storing a value other than
zero in this port will cause the start of a
new test.
302h Clock Divider register.
This register is used to hold the rate by

IJCCCE, VOL.7,NO.2, 2007

which the ISA clock is to be divided by
to obtain the capturing clock required for
timing analysis measurement.

304h: Command register.

Used to configure the analyzer's
clock source, trigger source,
pattern trigger type and active
clock and trigger edges.

306h: Trigger pattern bits.

Pattern trigger bits are set using this port.
To use pattern triggering the appropriate
bits in the Command Register must be
set also.

Each one of these /O Port has to be
implemented in special routine called
Dispatch I/O Routine. Figures (10) to
(11) show the development of some
mentioned routines. For
IoConnectlnterrupt and
KeSynchronizeExecution routines the
predefined standard routines were used.

3.2 Graphical User Interface (GUI)

Development

The graphical program interface has
been designed in Visual Basic Language
to look as in Figure (12). Configuration
for the analyzer must be completed
before clicking on the Start Button.
Configuration involves setting pre-
trigger number of samples, clock source,
trigger source ...etc. Clicking on the
start button makes the program goes into
the standby state waiting for the analyzer
interrupt to acknowledge availability of
data. When the snapshots are complete,
an interrupt occurs telling the program to
fetch the data from the hardware. The
snapshots are then displayed as

Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

waveforms on the display window. The

program menu shown in Figure (12) has

the following keys:

Load: To load a previously saved
snapshots file and display it as a
waveform.

Save: Saves the captured snapshots into
a file.

Parameters: shown in Figure (13).

From this window the following

parameters are determined. (Post-trigger

snapshots, analysis type, trigger source,
clock edge type, trigger edge type, and
trigger mode).

Start: To begin taking snapshots
according to the previously set
parameters.

Abort: To stop the snapshots capturing
process.

4. Experimental Test.

The overall developed system was tested
using the 8085 SDK. A small program
was written as shown in table (1) to
initiate predefined transactions on the
address, data, and control bus.
Accordingly, the system functionality
can be tested by comparing captured
snapshots by the system with the
theoretical bus timings. The functionality
of the logic analyzer was tested in 6
different tests as illustrated in table (2)
and the logic analyzer channels during
all tests were connected as outlined in
table (3). Note that, only the low byte of
address lines was connected to the
analyzer. The six tests mentioned before,
were examined by connecting an 8085
SDK to a PC on which the developed
hardware is connected, and with its
driver and GUI programs are being
executed. Because of space limitations,

IJCCCE, VOL.7,NO.2, 2007

the results for two of these tests are
shown and discussed below.
o Testl

Figure (10) shows the output screen of
the 12 channel connected in test 1. The
changes of signals are not clearly visible,
therefore the zooming capability in the
program was used to get a closer view
for the signals. The numbers on the axis
represent the snapshot number. Pre-
trigger snapshots (numbers with —ve
sign) lies before the snapshot instance
(origin point). Post-trigger snapshots
lies after the snapshot instance (numbers
with +ve sign). The y-axis represents the
channels, and the panel on the right
shows what each channel is connected
to, (the panel text is predefined). As
mentioned in [8], the fetch cycle is
composed of four T states. The first T
state can be considered as the address
phase, where the rest are considered as
data phase. In Figure (10) the two phases
of the (DCR C) instruction are being
pointed to. For the address phase, the
low byte of 2002h is shown (which is
02h) and for the data phase, the opcode
(ODh) is shown afterwards. Since this
test was done for the rising edge, the
ALE signal activation could not be
captured because the ALE is activated
during the low part of the CPU clock
only.

o Test2

In test 1 the fetch cycle was discussed
only. In this test the fetch and memory
read cycles are going to be discussed. In
figure (11), the two cycles ofthe (MVIC
OFh) instruction are being pointed to.
Since this test was done with the falling
edge capture clock, the ALE signal
activation could be captured. In the

Development Of Pc Based Multi-Channel Programmable

Logic Analyzer

address phase of the fetch cycle the low
byte of 2000h is (00h). The Address
Phase can be distinguished by the ALE
signal being high, while in the Data
Phase the ALE goes low. The data phase
of the fetch cycle is the opcode (OEh) as
it is shown by the figure. In the address
phase of the memory read cycle the low
byte of 2001h is (01h) and in the data
phase of the memory read cycle the data
byte is (OFh) as shown by the figure too.

5. Conclusion and future work.

I- The maximum capture rate
achieved was 5SMHz, because of
the limits concerning
components' speed and the wire
wrapping connection method
used. This rate can be increased
by many ways, for example,
building the circuit as Printed
Circuit Board PCB, using faster
components, using
programmable logic devices (to
minimize the number of
components and thus minimizing
signal delay), and also using fast
RAM to store the captured
snapshots.

2- The use of 16 bit interfacing with
ISA bus produced speed up
factor for the system
performance, instead of taking 8-
bit in two stages, which increases
CPU clocks required for a single
Input/Output instruction and thus
it increases the associated delay.

3- Drivers under windows represent
a successful method to interact
with the developed hardware in
MS Windows Operating System,
which gives the capability of
developing a friendly GUL It
also enlarges the way toward

IJCCCE, VOL.7,NO.2, 2007

more modular and configurable
software implementation for the
system.

4- Experimental results reflect that
the designed and implemented
logic analyzer system operates
properly as they were compared
to the corresponding theoretical
waveform diagrams.

And a suggested recommendations for
future work is summarized as:

1- Implementation of an FPGA
based logic analyzer. In order to
improve the analyzer
specification, an FPGA chip can
be used for increasing memory
depth, (so that the system would
be able to capture more snapshots
and analyze more transactions),
speeding up capture rate (to make
the system capable of debugging
faster systems, or to increase the
resolution of time
measurements), and increasing
the number of channels (to make
the system capable of debugging
more [O-signals systems).

2- Upgrade the design to be
interfaced to the PCI Bus. In
order to be compatible with the
new computer systems. Also this
would increase the bits being
transferred at each transfer
operation, decreasing by this the
CPU engagement time especially
if the burst transfer mode is used.
Interfacing the developed system

Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

to the PCI would further provide
system portability, and dynamic
resources allocation through the
Plug'n'Play feature.

References

[1] Andrew March, "PC Based 32
Channel Logic Analyzer", Electronics
Australia in Oct/Nov, 1996.

[2] Kyle C. Quinnell, "Building an 8-bit
PC-Based Logic Analyzer",
Department of Engineering
Technology, New Mexico State
University, 2001.

[3] William Buchanan and Austin
Wilson Advanced Pc Architecture,
Addison-Wesley, 2001.

[4] Walter A. Triebel and Prentice hall,
The 80386, 80486, and Pentium
processor hardware, software and
interfacing, Prentice-Hall Inc., 1998.

[5] Matt Pietrek, Windows Programming
Secrets, IDG books worldwide Inc,
1995.

[6] Herbert Schildt, Windows 98
programming from the ground up,
McGraw-Hill publishing company,
U.S.A., 1998.

[7] Microsoft Corporation, "Windows
Driver Model (WDM) Technology",
available at

http://www.microsoft.com/hwdev//driver
/wdm/default.asp#top

[8] Chares E. Stewart, The Intel
Microprocessors Architecture,
Programming, and Interfacing, Fifth
edition, Prentice-Hall Inc., 2000.

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

Address
Counter

Input
Channels

Capture &
Storage

Interrupt
Circuit

Decode
Circuit

Snapshot
Counter

::[ISA Bus Interface
Control I
Clock Circuit [Main Computer]
|
T &
Trigger CRT
_)
Control
Registers

Figure (1): Structure block diagram of the logic analyzer.

10

IJCCCE, VOL.7,NO.2, 2007

Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

18]

et

Fi
B

i

Ui
['7) =]
i x 5 o =
[= ¢ 300h_Sivnite = a RESET
Clook_DOiwider_302h_Wile '
Command_REG_304h_ e —]—| 74LS3T a1 i1l
Trioger_Paltem_2065_Wite e 3
— 9
BHE 31 U3c [~
5 & —
FaLs32 QuoR —
DATA_REG_300h_Fiocd -
Address_Latch_302h_Read a1 -
Stalus_AEG_304h_Fear TN — H
TN C
™
uan [
o~ FART] =
11 l -
u? r4L53T A - I
e 0-15] " [
B e [T -
a1 1 |HA—E - o
3 48 T ™
F bl I3 A8 C
a3 B3 T -
a4 B = N L]
e g [
i el R - 3 -
=] a7 87 5 A1 facd] B~
- _
L 4—}%\
us E—
Lag = Y = 5
T .n—}';,:\ -
g — . o -
en [! -y
AZ B2 —
]
) —
= 4 B4 5 -
] 5 s [y -
A BE —
Har e
AR BE
JaLEZan

Figure (2): Data Buffers and Decoders circuit.

11

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

12 Logic_Analyzer-Profilel - DiCAD PSpice A/D - [aquisition card-Logic_Analyzer-Profilel (active)]

M|
nE\Ie Edit View Simulation Trace Plot Tools Window Help 181 x|
- wsas TR el
QA WA |WieE 7w o AN F S

2

{A[15:0]}
10R

DATA_REG_306H_READ

21.901us 22.080us

22.280us _ | 22 .480us 22.6806us
Time

B aquisition car

= circult file for profile: Profilel A
Reading and checking circuit

Circuit read in and checked. no errors
Calculating bias point for Transient Analysis
Bias point caloulated Time = 1.000€-03
Transient Analysis

Transient Analysis finished

Simulation complete

Labx

End = 1.000E-03

| A2\ Analysis £ Watch A Devices /

[For Help, press F1

Time=1.000E-03 1007 WANEENENEN ERE

Figure (3) Decoder circuit simulation result for the address 300h.

12

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

I T I T I T I T
D0 15]
o o
Command_REG 3040 Wite
Lr 1010 Trigger_Edge
0 10 d
; o 30 Trigger_Sowoe
[e L] Ciock Source
] X
; e] X1
] ; rn B X2]
TALETTE
L
1) p—t{ statz REG 308h_Road
: REG 3040 |
=
i
5
i =7 =
Cicck_Divlder_302h_ Wit
g CiockOivider1 5
- I
; C
i
- 2
. 5
- 5
; 3
g
] I : I] I

Figure (4): Control registers circuit.

uze Chancin i

S -

=31

TaLs0a

FMGZEAA

[
FE PRHEL

4 csbar_SRAta
| I -~
BATA_RES 309 Aes p—]

A3 L !
1= =
, N = [!
N

Satalo 1

Figure (5): Capture and Storage circuit..

13

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable

Logic Analyzer

5 le1 - OrCAD PSpice A/D -
B Fle Edt View Simulaton Irace Plot Tgols Window Help

Q- ﬁ%“él $BRR|2 2| 4% % % ||[Toimarerone ST
|aeaa M |mze. || /

CLOCK
CSBAR_SRAM
WBAR_SRAM
U29:CLK

DSTHM1:0UT

52.48us 64.80us 66 .86us

=15
B Fle Edt View Simulaton Trace Plot Tooks Window Help =15

| Hry a5 HS 2| 4 % T % | ||| Logic_AnalyzerProfilel n
Qa &aQ | S| k285 o | %D

CSBAR_SRAM
WBAR_SRAM
U29:CLK

{a[15:8]}
_3080H_READ

Figure (6-b): Storing into PC timing diagram.

14

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

[TEE T oocome ranter m
A | Fe3e —— 4 fdcruss Latch_302h_Fload
[t Sahuriay Decomber 10,0004 Jenea i ©
o] s RS S s = S R NE
== .
y - cLk i]
2= 10 10 = . .
el 200 20} T ' '
a0 2a | RESET !
= L b 4o B . 1
P rabilie] wrame ! U
Bp.11) ; Tl el T . .
BN AR AR . s - ZE .',3 —y Y cihesslatch 30h Read !
: 1 e Bl pa Bd po) 120 TACEITA . '
! Bl B Bl P ==] . L | = ' '
' ' i an | ck De : 7 .
. ; - 10 10 ; '
1 ! - det 20 20 - ! ;A
Al iR a0 2a . e
. o 1 T 7 - i} ru i I ! g
. : = i o | : :
. : - EJ-L 50 o [: !
7D 7O . !
: ’ 3 G o @ e] eo g [: ;
uzz 9 | 3 0 K s . 0 e r. Sl AT ' .
. ! ¢ F : T4L53: E——— !
M| | 88558 3 8833% 2 EEEEF HE " M
! = e = 4 = | ' 5 1
: Rt Rt PRt '
v | eva<Etpsle cue< =D palo ouvea3hgalo] o ' '
frasisl o Tid 3«4 Il Tud -?fe‘_l Id 1d 34 _11’ : VT . :
SR st 2 o~ o £ =" o . | o L — .
: R (=3 o L] |# o
A ' o
] ! Trigger »—I-I-u.|§ - =l
A [
T - o
W_SRAM «—I Maxin «—l ”j;‘—— . AT W g
|~__)
e
. n G ; = :
wis her O L sk S It i iy s i B
DATA_REG 300h_Read >—»CSbar_5R-‘I.M: e | B8 8 EE ; R LE] -%. =] = 8335%
TaLE04 . = = -
; 3|§§|,w 2Pl 22
u14c ; ouaa2dpao cuoa 25 polo cumaZE ool
UI1EC 7y c0m FALS1ET T 74 10T 4 5157
% | ! EREERE J3d THIT JEECIEE]
: | - | —
: = bd po
q Clask Jp : 1 o b bl
Fbcopue UL AN
DiowmCoanter 3000 Wit X
.
5 I I I 2 I]

Figure (7): Main circuit.

Figure (8): Address counter timing.

15

IJCCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

= =18l
EE Edit View Simulation Trace Plot Tgols Window Help ;‘i‘ﬂ

SR~ = =] b B3 || 4% % % ||| Losic_AnayzerProfiel » 1

i

R Q|8 |15 2% W85 |of 7 N
=
[
823.32us 823.33us 823.35us 823 .36us 823.37us
I
aquisition car. . |
%[Reading and checking circuit =10
| Circuit read in and checked, no erors i]
Calculating bias point for Transient Analysis
Bias point calculated
Transient Analysis Time = 1.000E-03 End =
Transient Analysis finished
1 Digital Simulation \Warnings a2 ggg'g;gu ’ :‘
S = . u
| Simulation complote x A>T\ Analysis A Watch A Devices /- dif= 24.686n ’
(For Help, press F1 Time= 1.000E-03 100/ EENENEEEEE 2
' .
N —& Trigger_Paltern_3068 s . u !
. Uz Matiin

ot

14

\

o
&

TaLsaz

[0

(1

8
Gadsbuy

M T Trigger !

TALSBEA

o
5

TALS181

8
BaBEsEs

External_Trigger

Trigger_Edge

Trigger_Scurme :

. Extermal_Glock

* ClookDw ider! = i i
' ClookDi ider? 5

' ClogkDw kherd ©

y ClookDiidard o y

Clock_Edge

System_Clock iy) 1
e

poLi: Chock_Sousce

. ‘Dooument Mumbar

Fin3.12

Figure (9): Clock and triggér circuit.

16

IJCCCE, VOL.7,NO.2, 2007

Development Of Pc Based Multi-Channel Programmable

Logic Analyzer

Allocate memory
for configuration
information

!

Set driver object
entry points

'

Create special
hardware objects

Check
for
error?

Delete all created
objects

A

»

Return status

Figure (10): Driver Entry routine flow chart

A 4
M arl Irp
pending

v

Call Startlo
routine

Retrieve IRP
from IRP stack

|

Get device Extension,
10 buffer, and 10
control code

!

Do the operation
required

No

Task
complete

Call IoComplete
routine

A

L

Return status

Figure (11): Dispatch I/O routine
flow chart

17

1ICCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

w. Logic Analyzer
Load Save Parameters Stat Abort Exit

(CHO)
(CH1)
(CH2)
(CH3)
(CH4)
(CHS)
(CHE)
(CH7)
(CH8)
(CHI)
(CH10)
(CH11)

(CH12)
(CH13)
(CH14)
(CH15)

EURURUCUR U R U R R U

Sample

Figure (12): Graphical User Interface program

18

IJCCCE, VOL.7,NO.2, 2007

Development Of Pc Based Multi-Channel Programmable

Logic Analyzer

Loaic Analyzer Parameters

Figure (13): Parameter setting window

Table (1) Tests type of the logic analyzer.

Test No Measurement | Pre-trigger | Post-trigger Trigger Capture
) Type Snapshots Snapshots Source* Clock Type
1 State 2048 2048 External Rising Edge
2 State 2048 2048 External Falling
Edge
Internal
3 State 0 4096 (channel 0- | Rising Edge
7)
Internal ..
4 State 0 4096 (ANDed) Rising Edge
5 Timing 1000 3096 Extemal | M2
clock
. Internal 4 MHz
6 Timing 0 4096 (ANDed) clock

19

IJCCCE, VOL.7,NO.2, 2007

Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

Table (2) Logic analyzer channels

Table (3) Test sample program.

Opcode
Machine
Address | Label &
Code
Operand
2000 MVI
b: 0EOFh
C,0Fh
2002 a: DCR C 0Dh
2003 JNZ a C20220h
2006 JMP b: C30020h

connection.

Channel No Signal Name
Channel 0: ADO
Channel 1: ADI1
Channel 2: AD2
Channel 3: AD3
Channel 4: AD4
Channel 5: ADS
Channel 6: AD6
Channel 7: AD7
Channel 8: ALE
Channel 9: 10/-M
Channel 10 -RD
Channel 11: -WR
Channel 12: Not Connected
Channel 13: Not Connected
Channel 14: Not Connected
Channel 15: Not Connected

20

1ICCCE, VOL.7, NO.2, 2007 Development Of Pc Based Multi-Channel Programmable
Logic Analyzer

w. Logic Analyzer
File Analyzer

%

(CHO) AD0
(CH1) AD1
(CH2) AD2
(CH3) AD3
(CH4) AD4
(CHS) ADS
(CHE) DB
(CHT) AD7
(CHB) ALE
(CH3) 10/-M
(CH10) -RD
(CHI1) AR
(CH12)
(CH13)
(CH14)
(CH15)

4
¥
¥
¥
¥
~
¥
~
~
~
~
~
[
[
[
]

w. Logic Analyzer
Load Save Parameters Stat Abort Exit

(CHO) ADD
(CH1) AD1
(CH2) AD2
(CH3) AD3
(CH4) AD4
(CHS) ADS
(CHB) ADE
(CH7) AD7
(CH8) ALE
(CHI) 10-M
(CH10) -RD
(CH11) WR
(CH12)
(CH13)
(CH14)
(CH15)

EURURUE R R B K R R R

J_ Ni= _Lﬁ’—T_l_L*l—_r_l_—U_

Sample

Figure (15): Results of test 2.

21

