
2012Mansour Journal / No.17/ Special Issue-ALخاص/ 17/دعد/مجلة المنصور

|11th Scientific Conference 19-20 Nov.2011 119

Quick-Skip Search Hybrid Algorithm For The
Exact String Matching Problem

Asst. Lecturer Mustafa Abdul Sahib Naser

Software Eng. Department
Al-Mansour University College

Abstract:
The string matching problem occupies a corner stone in many computer

science fields because of the fundamental role it plays in various computer
applications. Thus, several string matching algorithms have been produced
and applied in most operating systems, information retrieval, editors, internet
searching engines, firewall interception and searching nucleotide or amino
acid sequence patterns in genome and protein sequence databases. Several
important factors are considered during the matching process such as number
of character comparisons, number of attempts and the consumed time. This
research proposes a hybrid exact string matching algorithm by combining the
good properties of the Quick Search and the Skip Search algorithms to
demonstrate and devise a better method to solve the string matching problem
with higher speed and lower cost. The hybrid algorithm was tested using
different types of standard data. The hybrid algorithm provides efficient results
and reliability compared with the original algorithms in terms of number of
character comparisons and number of attempts when the hybrid algorithm
applied with different pattern lengths. Additionally, the hybrid algorithm
produced better quality in performance through providing less time complexity
for the worst and best cases comparing with other hybrid algorithms.

Keywords: character comparisons, amino acids search, exact pattern
matching.

2012Mustafa Abdul Sahib Naserمصطفى عبد الصاحب ناص

120 |11th Scientific Conference 19-20 Nov.2011|

1. Introduction
String matching is used to check the similarities of strings. To solve the

string matching problem it is necessary to find an algorithm which can locate
the similarities of strings. The string matching procedure is an algorithm which
compares a short string called pattern with a long string called text, its
function is to check whether this pattern is a substring of the text. The
procedure outputs location when a pattern occurs in the text and produces a
mismatched signal when no pattern occurs in the text. In many fields, such as
computer science, computer engineering, bio-science, lexical analysis,
database query and so on, string matching processing is essential and
therefore applied frequently [1].

A string matching problem can be defined as finding one or more
occurrence of a given pattern string P of length m in a text string T of length n,
which are built over a finite alphabet set Σ of size σ.
Definition 1: An alphabet Σ is a set of characters. The size of the alphabet is
denoted by σ and represented by an integer number.

Definition 2: A string is a sequence of characters drawn from an alphabet. The
input of the string matching algorithm are two strings, which are the pattern
string and the text string where n ≥ m.

Generally, string matching algorithms scan the text with the aid of the
sliding window mechanism. This mechanism involves opening a window on
the text of which its size is equal to the pattern length m. Then it is followed by
a comparison between the characters of the window and the characters of the
pattern. This specific work of character comparison is called an attempt. After
matching or mismatching all of the pattern characters with the window
characters, the window is shifted along the text according to the heuristics of
each algorithm [2].

Definition 3: A shift is defined as a safe skip to the number of characters
without missing any occurrence of the pattern in the text [3].

Most of the exact string matching algorithms pre-process the pattern
before searching the text. The purpose of the pre-processing phase is to
maximize the length of the shift during the searching phase and that happens
by collecting information about the pattern before starting the search of the
pattern in the text. The searching phase involves different approaches for
scanning the text to find the pattern occurrences in the text [4].

Development of the algorithms is considered a critical component in
solving the problems when using the computer. The consumed time,
performance, deficiency and cost are considered important factors in
developing the algorithms. Many studies focus on the string matching
problem. The hybrid algorithms are considered an example of such studies
that deal with getting benefits from the original algorithms and overcome their
weaknesses. Quick Search and Skip Search string matching algorithms are
considered in this study, and these algorithms differ in their technique,
performance, efficiency and usage.

2012Mansour Journal / No.17/ Special Issue-ALخاص/ 17/دعد/مجلة المنصور

|11th Scientific Conference 19-20 Nov.2011 121

The Quick Search is an efficient algorithm when using large alphabets
with a short pattern during the text search [4, 5], but show less efficient
behavior for small alphabets with a long pattern. On the other hand, the Skip
Search algorithm [6]shows an efficient behavior when using small alphabets
with a long pattern. Based on the reverse behavior of the two existing
algorithms which deals with different alphabet types and different pattern
lengths, along with the long consumed time wasted in searching big sized
data, the important question that needs to be answered is “How to overcome
the performance weaknesses of the two existing algorithms by proposing a
hybrid algorithm which takes advantage of the positive characteristics of both
algorithms to solve the string matching problem efficiently in any alphabet type
and any pattern length?".

The rest of the paper is organized as follows. Section 2 gives the review of
several efficient algorithms. Section 3 describes the proposed hybrid algorithm
in detail. Section 4 analyses of the proposed hybrid algorithm are discussed. In
Section 5, the experiment results of comparisons between the proposed
algorithm and the original algorithms are given. And Section 6 is the
conclusion.

I. PREVIOUS WORKS
The character comparison between the pattern and the text can be

performed in different orders[2].This section classified the previous original
string matching algorithm according to the direction of scanning the window
and then discussed some of the previous hybrid algorithms.
A. From Left to Right

Brute Force (BF)[2] is the first string matching algorithm scans the
character of the window from left to right and shifts the window exactly one
position to the right after a mismatch or a complete match. The Knuth-Morris-
Pratt (KMP)[7] algorithm is an improvement of the Brute Force (BF) algorithm,
which uses a shift function based on the notion of the prefixes of the pattern
and it is considered the first linear string matching algorithm. Skip Search and
KMP Skip Search algorithms[6] behave like Knuth-Morris-Pratt algorithm by
performing the characters of the window from left to right while the algorithms
use buckets to determine the starting positions of the window in the text.The
work of many algorithms depends on automaton theory with the Knuth-Morris-
Prattconcepts.Search with an Automaton algorithm and Forward DAWG
Matching (FDM) algorithm[8] work with the concept of the Knuth-Morris-Pratt
(KMP) algorithm by performing the character comparisons from left to right.
Search with an Automaton algorithm use the minimal Deterministic Finite
Automaton (DFA), while Forward DAWG Matching algorithm uses the suffix
automaton.Some of the algorithms use the nondeterministic form of the
automata.Shift-Or (SO)[9] algorithm uses bit-wise operations for its work, while
the algorithm performs character comparisons from left to right in the pattern
and involves keeping a set of all the prefixes of the pattern that match a suffix
of the text.

2012Mustafa Abdul Sahib Naserمصطفى عبد الصاحب ناص

122 |11th Scientific Conference 19-20 Nov.2011|

B. From Right to Left
The Boyer-Moore (BM)[10] algorithm is considered as one of the most

efficient string matching algorithms which scan the characters of the window
from right to left. There are many variants of Boyer-Moore algorithm which are
widely recognized and used in various string matching applications.Like the
Boyer-Moore type algorithms there are many algorithm works withthe
automaton theory. The Reverse Factor algorithm[11] scans the characters of
the window from right to left by calculating the smallest suffix automaton in the
deterministic form of the reverse pattern. In the nondeterministic form of the
automata, Backward Nondeterministic DAWG Matching (BNDM)[12] algorithm
uses the suffix automaton of the reverse pattern in nondeterministic form
which is simulated by using bit-parallelism.
C. In Any Order

Karp Rabin (KR)[13] algorithm uses the hashing methodology for string
searching. The algorithm provides a simple and efficient method of avoiding
quadratic number of character comparisons in most practical situations.

The aim of a good algorithm is to minimize the work done during each
attempt and to maximize the length of the shifts to reduce the number of
character comparisons through each attempt. Some of the algorithms deal with
combining more than one algorithm to get an efficient advantage of the
positive properties of these algorithms. This type of algorithms is called hybrid
algorithms.

The SSABS algorithm [14] blends the advantages of Quick Search and
Raita string matching algorithms. The authors proposed a fixed order of
character comparisons between the window and the pattern during each
attempt while the shifting of the window, after a complete match or a mismatch,
depends on the Quick Search bad character function. Like Raita algorithm,
SSABS algorithm compares the rightmost character of the window and the
pattern at first and in the case of finding a match, the algorithm compares the
leftmost character of the window and the pattern and also when finding a
match, the remaining characters are compared from right to left. In case of a
mismatch in any of the existing comparisons, the algorithm does not compare
the remaining characters and shifts the window by the Quick Search bad
character function.

TVSBS algorithm [15] is a combination of Berry–Ravindran and SSABS
algorithms. The resulting hybrid algorithm is efficient for applications related
to biological sequence search. In the pre-processing phase, the TVSBS
algorithm calculates the Berry-Ravindran bad character function with suitable
modifications. It stores the bad character shift values in the one-dimensional
array instead of a two-dimensional array to reduce the accessing time during
the searching phase. The searching phase for this hybrid algorithm is the same
as the SSABS algorithm. The procedure of the TVSBS algorithm presents
goodness in application related to exact string matching in biological
sequence database.

2012Mansour Journal / No.17/ Special Issue-ALخاص/ 17/دعد/مجلة المنصور

|11th Scientific Conference 19-20 Nov.2011 123

BRFS algorithm [16] is the result of combining the Fast Search (FS) and
Berry-Ravindran (BR) string matching algorithms. The pre-processing phase of
this hybrid algorithm consists of computing the Boyer-Moore’s good suffix
function and Berry-Ravindran’s bad character function. The searching phase
procedure is the same as the Fast Search algorithm which performs character
comparisons from right to left until a complete match or a mismatch occurs.
The BRFS algorithm has better performance for small alphabets with a long
pattern. It is therefore suitable for the application related to biological
sequence search.

All the mentioned hybrid algorithms are the result of hybridizing two or
more algorithms. They have advantage characteristics in the performance over
the original algorithms. This performance makes the hybrid algorithm to show
robustness and better behavior in different applications by increasing the shift
value and decreasing the number of character comparison and the time
required in the search procedure.

II. THE PROPOSED ALGORITHM
This section discusses the proposed hybrid solution to combine the

Quick Search and the Skip Search algorithms. Like the two existing algorithms,
the efficiency of the proposed hybrid algorithm lies in two phases which are
the pre-processing phase and the searching phase. The characters in the
pattern are pre-processed in the pre-processing phase and this information is
used in the searching phase in order to reduce the total number of character
comparisons as well as number of attempts.
A. Pre-processing Phase

The pre-processing phase for the proposed hybrid algorithm includes the
process of building the pre-processing phase from both original algorithms.
The pre-processing phase for the hybrid algorithm is constructed by building
the Quick Search bad character table and the Skip Search buckets.

The reason for using unincorporated method to construct the pre-
processing phase for the proposed hybrid algorithm from the two original
algorithms is due to the different techniques of constructing the Quick Search
bad character table(qsBc) and the Skip Search buckets. The Quick Search bad
character table contains the rightmost location for each alphabet in the pattern,
while the Skip Search buckets contain the leftmost location for all characters in
the pattern.

The information getting from the pre-processing phase is used in the
searching phase in order to reduce the total number of character comparisons
as well as the number of attempts.The pre-processing phase goes hand-in-
hand with the searching phase to improve the overall efficiency of the
algorithm by calculating larger shift values.
B. Searching phase

The techniques in this phase depend on the searching phase of the
original algorithms using different orders with modification during the
matching operation. In general, the searching phase of the hybrid algorithm
will be arranged in several stages. These stages clarify the work of the hybrid
algorithm during the matching operation.

2012Mustafa Abdul Sahib Naserمصطفى عبد الصاحب ناص

124 |11th Scientific Conference 19-20 Nov.2011|

Stage 1:atthis stage, the algorithm examines the starting search point Swhich
has a position in the text, whereas j is equal to the pattern length m. The
algorithm aligns the character of this position and the pattern with the
corresponding position of this character in the bucket. The benefit of this
operation is that when the character in position does not occur in the
pattern, the algorithm continues shifting the pattern to the next position in
the text. In order to avoid many character comparisons, this operation avoids
aligning the leftmost character of the pattern and the window at the beginning
of the searching phase. Furthermore, the algorithm ensures that there is no
possibility of a matching occurring during the process of shifting the pattern to
align the next position.
Stage 2:this stage follows the chosen starting search point in stage 1. At this
stage, comparisons occur between the characters of the pattern and the
window. The first comparisons of the characters start from the leftmost
character of the pattern with the corresponding position of this character in the
window. If a complete match or a mismatch between the characters happens,
the algorithm moves to the next stage.

Stage 3:atthis stage, the algorithm calculates the shift value of the Skip Search
and the Quick Search respectively. The Skip Search shift value of the hybrid
algorithm is calculated differently depending on two situations. The first
situation is when the character in the pattern (which matches the
corresponding position of in the text) occurs in the last position of the
bucket. The shift value of this situation is calculated by the following equation
after discriminating the first bucket position of the character which occurs in
the next position of the text which is considered the next start search point.

Skip shift = m + the current position of (from the bucket) – the next position of
….. (1)

The second situation is when the character in the pattern (which matches
the corresponding position of in the text) does not occur in the last position
of the bucket. The shift value of this situation is calculated by subtracting the
next position value from the current position value of this character in the
bucket.

The Quick Search shift value of the hybrid algorithm is assigned for a
character immediately next to the window. This depends on the value of the
rightmost occurrence of that character in the pattern which is recorded in the
Quick Search bad character table.

2012Mansour Journal / No.17/ Special Issue-ALخاص/ 17/دعد/مجلة المنصور

|11th Scientific Conference 19-20 Nov.2011 125

After calculating the Skip Search and the Quick Search shift values, the
algorithm examines the bigger shift. If the Skip Search shift is bigger, then the
algorithm depends on which Skip Search situation should be applied as shown
in Figure 1. If the shift amount of the Skip Search is equal to the Quick Search
shift, then the algorithm depends on the Skip Search shift and moves to Stage
2. Otherwise, the algorithm moves into the next stage.

Fig.1. Skip Search Shift in the Hybrid Algorithm
Stage 4: this stage is applied if the hybrid algorithm depends on the Quick
Search shift. The operation of the Quick Search shift in the hybrid algorithm
depends on two situations. The first situation is when the value of the
character immediately next to the window is less than or equal to the pattern
length m. In this situation, the current position of in the text moves in order
to become equivalent to the character’s position immediately next to the
window which is considered to be the new start search point and the algorithm
directly moves to Stage 2 as shown in the following equation.
If (Quick Search Shift > Skip Search Shift) and (Quick Search Shift ≤ m)

Then
Current Position of = Position Immediately Next to the Window….. (2)

The second situation is when the value of the character immediately next
to the window is bigger than the pattern length m. In this situation, the current
position of in the text moves in order to become equivalent to the character
position immediately next to the window plus the pattern length m. This
position is considered to be the new start search point if the character in this
position occurs in the pattern. Otherwise, the algorithm continues shifting the

Skip Shift = The
Current Z [x] – the

Next Z [x]

Select the Start Search
Point of Position

Character Comparisons

Match or Mismatch
Occurrence

No Is Z [x] in
the Last

Position of
the Bucket New Position = m +

the Current Position

Skip Shift = m + The
Current Z [x] – Z [new]

Yes

2012Mustafa Abdul Sahib Naserمصطفى عبد الصاحب ناص

126 |11th Scientific Conference 19-20 Nov.2011|

pattern to the next possible start search point and also the algorithm
directly moves to Stage 2 as shown in the following equation.
If (Quick Search Shift > Skip Search Shift) and (Quick Search Shift > m)

Then
Current Position of = Position Immediately Next to the Window + m….. (3)

Figure 2 shows the function of the Quick Search shift during the
searching phase of the hybrid algorithm. All the stages of the searching phase
are repeated until the window is positioned beyond n – m + 1.

Fig.2. Quick Search Shift in the Hybrid Algorithm

III. ANALYSIS OF THE PROPOSED ALGORITHM
The pre-processing phase of the proposed hybrid algorithm is

constructed by building the pre-processing phase of both original algorithms
used in the hybridization method. Since the two original algorithms have the
same pre-processing time complexity which is O(m+σ), the pre-processing
time complexity of the hybrid algorithm is assigned for combining the time
complexity of both original algorithms and hence equals to O(2(m+σ)).

During the searching phase, the key factors defining the average time
complexity are the possibility of each individual character occurring in the text
and the alphabet size.

qsBc [x] ≤ m

Select the Start Search
Point of Position

Character Comparisons

Match or Mismatch
Occurrence

No Is qsBc [x]>
m

New Position =

Position of qsBc [x] + m

Quick Shift = qsBc [x]

Yes

New Position =

Position of qsBc [x]

Quick Shift = qsBc [x]

2012Mansour Journal / No.17/ Special Issue-ALخاص/ 17/دعد/مجلة المنصور

|11th Scientific Conference 19-20 Nov.2011 127

Because both these factors are highly indiscriminate and the lack of any
reliable prediction mechanism, this study admits that the average time
complexity cannot be exactly defined[15]. According to that, the searching
phase time complexity for the proposed algorithm assigns for the worst and
best cases.

Lemma 3.1: The time complexity is O(nm) in the worst case.
Proof: The worst case algorithm occurs when all the characters of the pattern

match with the characters of the text at each attempt. This case can be
realized when all the characters in the pattern are the same as those in
the text. During this situation, the hybrid algorithm depends on the shift
provided by the skip shift only. According to that, every character in the
text is matched no more than m times and the total character
comparisons for n characters of the text cannot be more than (nm),
whereas the shift in this case is equal to one and hence the time
complexity is O(nm).

Example 1:
Text =”A AAAAAAAAAAAAAAAAAAA”
Pattern =”A AAAA”
The text length (n) = 20.
The pattern length (m) = 5.
The alphabet set (Σ) = (A) of size (σ) = 1.
Lemma 3.2: The time complexity is O() in the best case.
Proof:The best case complexity of the proposed hybrid algorithm occurs when

the characters of the pattern are totally not matched with any character
in the text at any attempt. This case can be realized when all the
characters in the pattern are completely different from those in the text.
In this case and according to the hybrid algorithm behavior, the
algorithm will check the m-th text positions to delimit the possible
starting search point S in the text. Since there is no match at all, the
algorithm will provide main iterations during the searching phase
without any charactercomparisons and attempts until the pointer
reaches to the end of the text and hence the time complexity is O().

Example 1:
Text =”A AAAAAAAAAAAAAAAAAAA”
Pattern =”B BBBB”
The text length (n) = 20.
The pattern length (m) = 5.
The alphabet set (Σ) = (A, B) of size (σ) = 2.
As a comparison to examine the performance of the proposed hybrid
algorithm, the worst and best time complexity is compared with two other
hybrid algorithms stated in the literature. Also, the comparison includes the
pre-processing time complexity of each algorithm as shown in Table 1.

2012Mustafa Abdul Sahib Naserمصطفى عبد الصاحب ناص

128 |11th Scientific Conference 19-20 Nov.2011|

Table 1: Comparisons of Hybrid Algorithms Complexity

Algorithms Pre-processing
Time Complexity

Searching Time Complexity
Worst Case Best Case

TVSBS Algorithm O(σ+ mσ) O(m(n – m + 1)) O(n/(m + 2))

BRFS Algorithm O(m+) O(nm) O(n/(m + 2))
Quick-Skip Search
Algorithm O(2(m+σ)) O(nm) O(n/m)

IV. EXPERIMENTAL EVALUATION
A standard benchmark data is used which illustrates the common uses of

the string matching application. These types contain the DNA sequence,
protein sequence and English text. The reasons of selecting these specific type
of data is because they differ in the size of alphabets in order to examine
various algorithm behaviors with various alphabet sizes, while the size of the
data types used was 100 MB.

In order to analyze and discuss the actual behavior and to decrease the
random variation for each algorithm, the running occurs in 5 times with
different patterns for each length. The patterns lengths are: 4, 6, 8, 10, 20, 40,
60, 80 and 100 characters which are chosen randomly from words inside the
text while five patterns were searched for each length and then take the
average. The results of the proposed hybrid algorithm compared with the
original algorithms in terms of number of character comparisons and number
of attempts.

The working environment used in implementing the algorithms is a
personal computer with 2.0 GHz Intel Core 2 Duo Processor, and 2 GB of RAM.
The operating system used in this experiment is Microsoft Windows Vista
service pack2, with Microsoft Visual C++ compiler.

1. Evaluating the Number of Character Comparisons
A. Average Running Times of DNA Sequence Data Type

Table 2: Average Number of Character Comparisons for All the Pattern
Lengths of DNA Sequence. Alphabet size (σ) = 7.

Pattern
Length

Algorithm

Skip Search (SS) Quick Search (QS) Hybrid (QSS)

4 41374497 49366673 35223805
6 39748644 45175832 32964853
8 37363660 44876000 28787361
10 36441125 43300707 25834517
20 35614031 29206874 24974752
40 34708725 29633987 22010773
60 34378964 27758511 20889449
80 34215572 29451867 19771123
100 33181347 31352130 16372368

2012Mansour Journal / No.17/ Special Issue-ALخاص/ 17/دعد/مجلة المنصور

|11th Scientific Conference 19-20 Nov.2011 129

B. Average Running Times of Protein Sequence Data Type

Table 3: Average Number of Character Comparisons for All the Pattern
Lengths of Protein Sequence. Alphabet size (σ) = 20.

Pattern
Length

Algorithm

Skip Search (SS) Quick Search (QS) Hybrid (QSS)
4 8607556 25545595 7406043
6 7887639 18889706 6365317
8 6959901 16089619 5760243
10 7418229 14185255 4829583
20 7458850 8947894 4356758
40 6635051 6899484 3953897
60 6795244 6151638 3724476
80 6694680 5644213 3533147
100 6689656 4985535 3518769

C. Average Running Times of English Text Data Type

Table 4: Average Number of Character Comparisons for All the Pattern
Lengths of English Text. Alphabet size (σ) = 100.

Pattern
Length

Algorithm

Skip Search (SS) Quick Search (QS) Hybrid (QSS)
4 9590612 30457873 7519612
6 8888589 21272393 6242738
8 8729178 18065563 5495307
10 6832820 14841982 5380871
20 6728571 9519256 4690644
40 6877695 6448313 4014436
60 6831379 5401421 3443087
80 7164099 4451513 2779310
100 6909799 4117679 2626494

2. Analyzing Number of Character Comparisons
Based on the empirical results shown in table 2, 3, 4, it is clear that the

DNA data type produces larger results for number of character comparisons
compared with other data types especially when using short pattern lengths.
This result is caused by the size of the alphabets used which are considered as
a small alphabet size. This leads to producing less number of shifts during the
searching operation which leads to a larger number of character comparisons.
Furthermore, when a small sized alphabet is used it leads too many exact
matching between the pattern and the window especially when using short
pattern lengths and as a result the number of character comparisons tends to
be greater than using large alphabet sizes. Also, it must be observed that for
all algorithms, the number of character comparisons tends to decrease
significantly as the pattern length increases.

2012Mustafa Abdul Sahib Naserمصطفى عبد الصاحب ناص

130 |11th Scientific Conference 19-20 Nov.2011|

This is because, the shift provided by the algorithms increases if the
mismatch occurs, by that increasing the forward distance taken by the pattern.
In all cases, it can be seen that the hybrid algorithm produces better results.
The hybrid algorithm is highly efficient in terms of number of character
comparisons than the original algorithms for short and long patterns
respectively as well as when using different data types.
3. Evaluating the Number of Attempts
A. Average Running Times of DNA Sequence Data Type

Table 5: Average Number of Attempts for All the Pattern
Lengths of DNA Sequence. Alphabet size (σ) = 7.

Pattern
Length

Algorithm

Skip Search (SS) Quick Search (QS) Hybrid (QSS)

4 25282517 35192710 22389453
6 25895761 32909817 20708859
8 25276133 30812265 18902520
10 25651039 30823717 17524454
20 24899958 22026198 18046927
40 25837273 21718409 15779217
60 25665193 20339958 15729218
80 26261647 23027420 14585324
100 25474945 24188623 12323918

B. Average Running Times of Protein Sequence Data Type

Table 6: Average Number of Attempts for All the Pattern
Lengths of Protein Sequence. Alphabet size (σ) = 20.

Pattern
Length

Algorithm

Skip Search (SS) Quick Search (QS) Hybrid (QSS)
4 6492151 23281128 5683046
6 6338840 17250592 5095329
8 5802705 14438298 4947206
10 6257809 12864914 4368470
20 6535248 8386797 3900834
40 6234336 6422117 3712920
60 6288577 5751047 3443499
80 6194243 5320302 3308175
100 6287236 4646832 3291172

2012Mansour Journal / No.17/ Special Issue-ALخاص/ 17/دعد/مجلة المنصور

|11th Scientific Conference 19-20 Nov.2011 131

C. Average Running Times of English Text Data Type

Table 7: Average Number of Attempts for All the Pattern
Lengths of English Text. Alphabet size (σ) = 100.
Pattern
Length

Algorithm

Skip Search (SS) Quick Search (QS) Hybrid (QSS)

4 6969696 24335559 5647706
6 6734139 18474471 5177682
8 6597203 14951568 4818332
10 6139410 12654099 4725219
20 5851183 8403953 4300581
40 6134122 5852870 3694405
60 6367043 5041604 3130391
80 6482366 4082904 2623275
100 6189312 3866570 2443532

4. Analyzing Number of Attempts
Based on the empirical results shown in table 5, 6, 7, we can observe that

for all data types the results for number of attempts provided by the Skip
Search algorithm did not change significantly when the pattern length
changed. Also, we can observe that the Skip Search algorithm produced less
number of attempts than the Quick Search algorithm when short pattern
lengths were used.

It should be noted that the number of attempts produced by the Quick
Search algorithm decreases when the pattern lengths increases for all data
types except when using DNA data type with long pattern lengths. In this
situation, the algorithm shows unstable behavior and this is caused by the
small size of alphabets used as well as the bad behavior for the Quick Search
bad character table when small alphabets with long pattern lengths were used.
However, the Quick Search algorithm provided less number of attempts than
the Skip Search algorithm when long pattern lengths were used in all data
types.

The obtain result experimentally demonstrated that the two original
algorithms differ in behavior when using different alphabet sizes with different
pattern lengths during the searching operation. Additionally, our experiments
confirm that the hybrid algorithm outperform the two original algorithms in
number of attempts when different alphabet sizes with different pattern lengths
were used.

2012Mustafa Abdul Sahib Naserمصطفى عبد الصاحب ناص

132 |11th Scientific Conference 19-20 Nov.2011|

V. CONCLUSION
This paper aims to hybridize the Quick Search and Skip Search exact

string matching algorithms. Based on the design presented in section three,
the hybridization method produced an algorithm depending on the good
properties of the original algorithms.

The performance of the proposed hybrid algorithm has shown
improvement when compared with the original algorithms. The hybrid
algorithm provided better results in number of character comparisons and
number of attempts when searching different data types with different pattern
lengths than the original algorithms. Therefore, it is feasible that this method
can be used in applications related to exact pattern matching with any alphabet
type.

2012Mansour Journal / No.17/ Special Issue-ALخاص/ 17/دعد/مجلة المنصور

|11th Scientific Conference 19-20 Nov.2011 133

REFRENCES
1. G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings: Practical On-line

Search Algorithms for Texts and Biological Sequences, Cambridge University Press
2002

2. C. Charras and T. Lecroq, Handbook of Exact String Matching Algorithms, King's
Collge Publications, 2004.

3. Y. Weinsberg, Tzur-David, S., Dolev, D. & Anker, T. (2007) One Algorithm to Match
Them All: On a Generic NIPS Pattern Matching Algorithm. Workshop on High
Performance Switching and Routing (HPSR2007). pp. 1-6., “One Algorithm to Match
Them All,” 2007, pp. 1-6.

4. T. Lecroq, “Experimental Results On String Matching Algorithms,” Software
Practice And Experience, vol. 25, 1995, pp. 727-765.

5. A.F. Klaib, Zainol. Z., Ahamed, N. H., Ahmad, R. &Hussin, W., “Application of Exact
String Matching Algorithms towards SMILES Representation of Chemical
Structure,” International Journal of Computer and Information Science and Engineering,
2007, pp. 235-239.

6. C. Charras, Lecroq, T. &Pehoushek, J. D. , “ A Very Fast String Matching Algorithm
For Small Alphabets And Long Patterns,” Proceedings of the Ninth Annual
Symposium on Combinatorial Pattern Matching, Lecture notes in computer science, vol.
1448, 1998, pp. 55-64.

7. M.K.G. Michailidis. P. D. , “On-line String Matching Algorithms: Survey and
Experimental Results,” International Journal of Computer and Mathematic, vol. 76,
2000, pp. 411-434.

8. N. Nadia, “Minimal deterministic left-to-right pattern-matching automata,”
SIGPLAN Not., vol. 33, no. 1, 1998, pp. 40-47;

9. G.G.H. Baeza-Yates. R. , “A New Approach To Text Searching,” Communications of
the Association for Computing Machinery (ACM 1994), vol. 35, 1992, pp. 74-82.

10. R.S.M. Boyer, J. S. , “A Fast String Searching Algorithm,” Communications of the
Association for Computing Machinery (ACM 1994), vol. 20, 1977, pp. 762-772.

11. C. Maxime, et al., “Speeding Up Two String-Matching Algorithms,” Book Speeding
Up Two String-Matching Algorithms, Series Speeding Up Two String-Matching
Algorithms, ed., Editor ed.^eds., Springer-Verlag, 1992, pp.

12. G. Navarro and M. Raffinot, “A bit-parallel approach to suffix automata: Fast
extended string matching ”Springer, vol. Volume 1448/1998, 1998, pp. 14-33; DOI
10.1007/BFb0030776.

13. R.M.R. Karp, M. O. , “Efficient randomized pattern-matching algorithms,” IBM
Journal of Research and Development, vol. 31, 1987, pp. 249-260.

14. S.S. Sheik, Aggarwal, S. K., Poddar, A., Balakrishnan, N., Sekar, K., “ A Fast Pattern
Matching Algorithm,” Journal of Chemical Information and Computer Sciences, vol. 44,
2004, pp. 1251-1256.

15. R. Tathoo, Virmani, A., Lakshmi, S. S., Balakrishnan, N., Sekar, K..“TVSBS: A Fast
Exact Pattern Matching Algorithm for Biological Sequences,” Journal of Indian
Academy of Sciences, vol. 91, 2006, pp. 47-53.

16. H. Yong, et al., “A Fast Exact Pattern Matching Algorithm for Biological
Sequences,” Proc. International Conference on BioMedical Engineering and
Informatics, 2008. BMEI 2008., 2008, pp. 8-12.

2012Mustafa Abdul Sahib Naserمصطفى عبد الصاحب ناص

134 |11th Scientific Conference 19-20 Nov.2011|

الھجینة لحل مشكلة البحث عن تطابق السلسة التام) السریع- القفز(خوارزمیة

مصطفى عبد الصاحب ناصر. م. م

منصور الجامعةكلیة ال

المستخلص
الأساسيالدوربسببالحاسباتعلوممجالاتمنالعدیدفيالزاویةحجرتحتلالسلسلةتطابقعنالبحثمشكلة

وتطبیقھاالمشكلةھذهلحلالخوارزمیاتمنالعدیداقتراحتمفقد,لذالك.المختلفةالحاسوبتطبیقاتمجالفيتلعبھالذي
سلسلةعنوالبحثالحاسباتحمایةوانظمةالانترنیتعلىالبحثومحركاتالمعلوماتواسترجاعالتشغیلنظممعظمفي

خلالمراعاتھایجبمھمةعواملعدةھناك.والبروتینالجینومسلسلةبیاناتقواعدفيالامینیةالاحماضمنمعینة
البحثعملیةفيالمستھلكوالوقتالتطابقمراتوعددمقارنتھایجبالتيالرموزعددمثلالتطابقعنالبحثعملیة

البحثلخوارزمیةالجیدةالخصائصبینالجمعخلالمنھجینةتطابقخوارزمیةیقدمالبحثھذا.معینةسلسلةعن
اختبارتمحیث.اقلوكلفةعالیةبسرعةالتطابقعنالبحثمشكلةلحلطریقةأفضلوأیجادالقفزخوارزمیةوالسریع

وذاتكفوئةنتائجوفرةالھجینةالخوارزمیةانحیثالقیاسیةالبیاناتمنمختلفةأنواعباستخدامھجینةالةالخوارزمی
مناقلوعددالبحثعملیةخلالالمقارناتمناقلعددتوفیرحیثمنالأصلیةالخوارزمیاتمعمقارنةعالیةموثوقیة
الخوارزمیةتتیح،ذلكإلىبالإضافة.الاطوالمختلةانماطمبأستخداالھجینةالخوارزمیةتطبیقعندالتطابقمحاولات
ھجینةخوارزمیاتمعتقارنحینماالمقارنةحالاتوافضلأسوأفيالتعقیدحیثمنافضلأداءنوعیةالمقترحةالھجینة

.اخرى

