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In this paper, it has been dealt with basic Gompertz distribution. The maximum
likelihood, Bayes methods of estimation were used to estimate the unknown shape

parameter. The failure rate (hazard) function with the least loss was found using different
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priors (Gamma, exponential, chi-square and triple prior) under symmetric loss function

z (Degroot loss function). A comparison was made about the performance of these
estimators with the numerical solution that was found using expansion methods (Bernstein
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polynomial and power function) which was applied to find the failure rate function
numerically. The proficiency test of the proposed methods was conducted with a number
of test examples. Finally, for computations the Matlab (R2015b) is used.

1. INTRODUCTION
Benjamin Gompertz (1825) has proposed the basic Gompertz
(BG) distribution [1]. It is important in describing the pattern
of adult deaths and actuarial tables. The Gompertz distribution
has many real life applications, especially medical and
actuarial studies. In addition, it used as a survival model in
reliability and failure rate (Hazard) [2].
The probability density function (pdf) and cumulative
distribution function of (BG) random variable given as [3]:
fith) =hexp[t+AM1—-€9] ; t>0, ...(1)
FtM) =1-exp[M1—€Y] ; t>0, ...(Q2)
where A > 0 is the shape parameter.
The corresponding reliability function, R(t), and failure
rate function, h(t), at mission time t are given as [3, 13]:
R(t) =exp[ M1 -€9]; t>0, ..(3)

_ f() _ Aexpt+2(a-ebH] _ t
h(t)—R(t) = DG = M @)
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The basic Gompertz distribution belongs to the
exponential family of lifetime distribution, the Gompertz
function is a type of mathematical model for a time series, and
this function originally designed to describe human mortality
but since modified to be applying in biology, with regard to
detailing populations. It has been introduced by many authors
some of whom are Gompertz [1] is formulating the Gompertz
model for human composition mortality and greeting actuarial
tables. Lenart [4] derived the maximum likelihood estimators
of the parameters that included the moments of the Gompertz
distribution. Sanku Dey etal. [5] Discuss the statistical
properties and different methods of estimation of the
Gompertz distribution with application. Hanaa and Nouf [6]
study the estimation of some unknown parameters of the Beta
exponential Gompertz distribution using complete samples.
Garg etal. [7] Study the properties and the maximum
likelihood estimators of the parameters of the Gompertz
distribution on mortality in mice.

In this work, the informative priors three single priors and
one triple prior with De-groot loos function are used to find
the failure rate function. As well as, numerical method
(expansion methods: Bernstein polynomial and power
function) [8, 9, 10], are used to estimation the failure rate
function h(t), in this method expanding h(t) in terms of a set of
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power function as in [11,12] to find approximate estimation of
h(t), and then comparison between the exact and all estimator
using mean square errors(MSE).

2. MAXIMUM LIKELIHOOD ESTIMATOR
Lett=(t, t,, ..., t;) be the life time of a random sample of
size n drawn independently from basic Gompertz distribution
defined by (1). The likelihood functions for the given sample
an observation defined as [13]:
L (A t)= [T, £(t;] )= A" el Zatit A Ty ef)]
.. (5)

In(L) = nlnA + XL, t;+ A XL, (1— e%)

The maximum likelihood estimator (MLE) of
unknown shape parameter A , denoted by Ay, yields by

taking the derivative of natural log likelihood function with
respect to A and setting it equal to zero as:
Aw = ‘T“ where k= Y1, (1-— e%) ...(6)

The MLE’s of R(t) and h(t), based on the invariant
property of the MLE are defined as:

RwL = exp [’iML (1-¢Y] NG

~ ’S —n t
hw(t) = Au €' = Wlfetl) .. (8)

2.1. Bayes Estimator
From Baye’s rule the posterior pdf of unknown parameter
A, results by combining likelihood function L (A|t) with
density function of prior distribution g(}) as[14]:

LD g®
(A t)=——-—"— .. (9
t) i LAY g@)da ©)

The most widely used prior distribution of the parameter A
is the gamma distribution with hyper-parameter ‘a’ and ‘b’
with pdf given by [15].
g (V)= F‘Z—) Aled 2>0 anda,b>0 ... (10)

The posterior distribution of the unknown parameter A  of
BG have been obtained by substitute eq.(5) and eq.(10) in
eq.(9):

A ol Byt B (-] B et b
I'(a)

T (A= —
1 I

A el Ziby i 2 ZLy (1= ) rb—a AL ebh gy,
(2)

artal (b-k)

el ool g

where k=YL, (1-¢%)
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By using the transformation y=A(b-k) and A=y/(
b —k) and the derivative with respecttoyis dA=dy/(b -
k) then we obtain the final formula as:

nta Dta-l
N &-Mb-k)

w0ty & ()

I'(n+a)

The second prior distribution exponential distribution with
hyper-parameter ‘a’ having pdf given by [16].

g,(A) = ae ™ ;A>0 anda>0...(12)

The posterior distribution of the unknown parameter A of
BG have been obtain by combining eq. (5) and eq. (9) with
eq.(12) as:

ool Ty G+ B (-], a o M)

m,(A|t)= - = —
2(A 1) o LI A B (-] an g Jo A eMad) gy,

where k= Y1, (1-¢%)

Then using the transformation y=A(a—k) and A=y
/ (a—k) and the derivative with respecttoy is di=dy/(a
— k) then we obtain the final formula as:

*on oA@k)

(0l 1= & .(13)

I(n+1)
Similarly, the third prior distribution is assumed to be the
chi-squared distribution with hyper-parameter ‘c’. The pdf of
this prior is [17]:
g, =

A2l w2

m ;A>0 andc>0 (14)

The posterior distribution of the unknown parameter A of
BG have been obtain by combining eq. (5) and eq.(9) with
eq.(14) as:

(M| t)=
An el Zing tit A Zq (€] 3(e/2)-1 ¢ 4/2 /2¢/2 1 2)
el Tt AT (-] (e/2)1 eM2/2¢/2T(c/2) dA

ANH(E/2) 1 g A(05-K)

- f(;”}\n+(c/2)-1 eA05K) g2

where k=Y, (1-¢%)

Then using the transformation y=X(05-k) and A=
y/(0.5-k) and the derivative with respecttoy is diA=dy/
(0.5 — k) then we obtain the final formula as:
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n+(c/2) )Ln+(c/2)-1 -1(0.5-k)
& MO.

my (0] )=

T(n+ (c/2)) - (19)
2.2. Gamma-Exponential and Chi-Square Distributions as
Triple Priors
Consider the first prior distribution for A as in eq.(10) and
the second prior distribution for A as in eq.(12) with the third
prior distribution for A as in eq.(14).
The triple prior distribution for A can be defined by
combining these three priors as follows:
}\a+(c/2)»2 -A(a+b+0.5) b2
g, = - -

0 ..(16)

2T ;A>0 anda, b, c>

Hence, The posterior distribution of A based on this triple
prior distribution of A for given data t can be obtained as
follows:

Aol Zhq it A ST (1-efi)] 23a+(c/2)-2 ¢ Aa+b+0.5) , pa
2¢/2 T (a+c/2)

foo an e[ Zinzl G+ Zinzl a- eli ) aat+(c/2)-2 o-A(a+b+0.5) , pa
0 2¢/2 T (a+c/2)

(A t)=
da

an+a+(c/2)2 o-A(a+b+0.5-K)

- f;")‘n+a+(c/2)-2 eA@t+b+0.5-k) 42

where k=Y, (1-¢')

By using the transformation y = A (a+b+0.5 — k) and A =
y/ (a+b+ 0.5 — k) and the derivative with respectto y is d\ =

dy / (a+b+ 0.5 — k) then we obtain the final formula as:
n+a+(c/2)-2

_ (atb+0.56)" T Matb+0.5-k)
ma(1L) T(n+a + (c/2)-1) - (A7)
2.3. Bayes Estimators Under the De-groot Loos

Function(DLF) (Weighted Balance Loos Function):

In Bayesian estimation, we consider a type of loss
function, which classified as a symmetric function was
introduced by De-groot (2005) [16, 18, 19]:

Mo (A1)
L(A, 1)= = ... (18)
. ~ A2 2E (A
Risk=E[L(A A)] =E & - 2232 +1
Then
a 22 2E(Q) _-2E(A2) 423 EQ®
PR [ 22 A2 + 1] - i3

The Bayes estimator under this a symmetric loss function
is denoted by A4 :
r _ E(2D)
YT

Therefor the Bayes estimators of A based on the DLF is:
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~ . E(no|on

A= Loy ... (19)

where

E(h@®]t) = f; h®Om@lt)dA

Now, the Bayes estimator of the hazard function h(t)
corresponding to m; (A | t) can be found as:

E,(h(® | t) = [, h®)m@A[t)dr

N+ s ntal g A(bk)

_ (®4 .t (0K
_fo Ae I'(n+a)

¢ R n+a -
LB e e g

By using the transformation y = A (b — k) which implies
that A =y /(b — k) and the derivative with respecttoy is diA =
dy/ (b —Kk):

et T(n+a+1)

En(h0 | O = Tfrary -~ @0
Now
Er,(R*@® | t) = [ h*@OmQA[t)dA
(a2 ot (b»k)“+a an+a-1 g-A(b-k)
_fo A e I'(n+a)
n+a
:eZtr((:-f)a) f0°° Antatl oAbk gy
Then

e?! I'(n+a+2)

E‘r[1( h2 (t) | E ) = (b-k)z I'(n+a)

.. (21)

Substituting eq. (20) and eq.(21) in eq.(19) we have:
~ 2 T(n+a+2) (b-k)T(n+a) _ et (n+a+2)
hy(t) =2 =

1® (b-k)° T(n+a) et F(n+a+1) (b-k)

(22)

The Bayes estimator of the hazard function h(t)
corresponding to m,(A|t), mg(A|t)and my(A|t) can be
found by similarly method and we get the following formulas:

~ t(n+3

R,(t)="2 ((a:) ) ... (23)
~ t 2) +2

fy(t)= S0t @242 (+0 _(SC_/k)” ) ... (24)
b, (=L@t @D o5

(b+a+0.5-k)

2.4. Estimate Failure Rate Function Using Numerical
Method
In this section, we introduce expansion method by two
ways (Bernstein polynomial and power function), which is use
to estimate the failure rate function h(t), as follows [11, 12]:
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h,(t) = X8 o cmPn(® t=0 ...(26)

where cm are unknown coefficients and Pm(t) are known
functions.

The first way, we take hp(t) = hg(t) and Ppy(t) = BR() ,
where Bp (t) are Bernstein polynomials which are given by
8]:

B = () 1 —pr e
0 <t<1 ...(27

m=20,1,..,n ,

and n isthe polynomial degree.

The second way, we take h,(t) = hp(t) and P (t) a set of
power functions as:
Pr(t) = t"

m=0,1,...n ...(28)

Now, let { to, ..., t, } Dbe a set of points in the subinterval
[to, to], that is equation(26) becomes:
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ZE}:O Cmpm(tk) = j\\M]_,etk k=0,..,n

From above equation, we are obtain two linear systems of
(n) equations and (n) unknowns ¢, , m= 0, ..., n. The first
system, where Pm(t) as equation (27) and the second as
equation (28).

Finally, solve these systems for coefficients c,'s using
Gauss-elimination to find the approximate solution of h(t) by
two ways.

When using Bernstein polynomials, we need to transform
the interval [a, b] to [0, 1], then we can convert the variable so
that the problem is reformulated on [0, 1], as following:
where x € [a, b] let t=(x-a)/(b-a) then

e L
=0,1,..,n

2.5. Examples
Test examples are present in this section for different

hn(tk) = 31:0 Cmpm(tk) k= 0, e (29) i A ) i .
values (n) of different intervals to find best estimate of failure
Recall equation(8), and substitute Q) into rate function h(t) by using mean square error, show in tables
equation(29) we have: (1- 5). Where Ay, k as in equation(6) and t e [ty, t;] with
ti=t, +(i-h, i=1,2, ...,n and h=(t,—t)/n.
Table 1: Examplel with [0, 1]
n n=10 n=25 n=50
err
errg=Y.(h(t) — hg(t))? 1.4791e-30 1.0502e-29 3.0596e-27
errp=Y.(h(t) — hp(t))?2 1.5777e-30 1.5185e-25 4.3769e-06
= —h 2 a 1.8055e-08 0.998 7.4971e-09 0.777 8.8454e-08 0.782
R e 19 ' 19 ' 1.95
err=x(h(t) — h,(t))? a | 1.6780e-07 1.901 8.4856¢-08 2.052 2.7753e-06 2.1
err=Y (h(t) — h3(t))2 c | 7.0471e-09 -2.422 6.4236e-09 -2.538 5.9343e-05 -2.53
a 0.1 0.274 0.349
err,=Y.(h(t) — h,(t))2 1.4333e-09 0.1 9.7818e-12 0.1 5.5507¢e-11 0.1
c 0.009 0.007 0.009
Table 2: Example2 with [0, 10]
n n=10 n=25 n=50
err
errg=Y. (h(t) — hB@Z* 1.9983e-37 1.1520e-36 1.6234e-35
errp=Y(h(t) — hp(t))? 4.7356e-26 1.4302e-29 3.2802e-12
_ s, | a ] 0.007 i 0.001 ] 0.01
err;=Y,(h(t) — hy (t)) b 2.7166e-08 2571 1.0391e-08 3582 4.8349e-10 3397
err,=Y (h(t) — h,(t))2 a | 2.2081e-05 3841 2.0440e-11 5371 2.8896¢-10 5966
errs=X.(h(t) — h3(t))? ¢ | 7.0533e-08 -4 9.6271e-09 -3.999 6.1649¢-09 -3.999
a 0.35 0.35 0.35
err,=Y (h(t) — hy(t))? 2.7310e-10 1734 9.9996e-11 2425 2.7784e-12 2703
c 0.009 0.01 0.0193
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n n=10 n=25 n=50
err
errg=Y. (h(t) — hg(t))? 1.1911e-44 1.7691e-44 6.2183e-44
erre=Y(h(t) — hp(t))?2 3.5705e-22 1.4379¢-18 4.8257e-16
_ & g a ] 0.0001 ] 0.0001 ] 0.0001
err,=Y.(h(t) — hy (1) o] 1241216 15188140 1.4125¢-16 31671852 3.6861e-18 39460355
err,=Y,(h(t) — h,(1))? a | 4.0640e-16 22781071 6.0777e-17 47505406 6.1304e-20 59187573
err3=Y(h(t) — h3(t))2 ¢ | 3.3019-15 -4 3.7881e-16 -4 1.2677e-16 -4
0.001 0.001 0.001
err,=y (h(t) — h,(t))? 9.2855e-16 7605080 2.1282e-16 15858888 3.8649e-17 19758784
0.001 0.001 0.001
Table 4: Example4 with [2, 5]
n n=10 n=25 n=50
err
errg=3(h(t) — hg(t))?2 2.5278e-34 2.0102e-33 1.0022e-30
errp=Y(h(t) — hp(t))? 1.6027e-29 1.8321e-26 2.4267e-17
~ 0.5694 0.7287 0.57779
_ _ 2 _ _ -
ern=Y.(h(t) — hy (1)) 2.5398¢e-12 o1 1.7072e-12 118 1.4648¢-13 G
err,=Y.(h(t) — h,(t))?2 3.5688e-07 118 2.1235e-06 130 4.1813e-07 134
errz=Y.(h(t) — hz(1))? 1.5758e-10 -3.9745 1.0495e-11 -3.9769 2.0919e-12 -3.9776
0.0009 0.001 0.009
err,=Y (h(t) — h,(t))2 3.0575e-11 39 2.1384e-12 43 1.0935e-12 48
0.008 0.0099 0.1567
Table 5: Example5 with [5, 10]
n n=10 n=25 n=50
errg=Y. (h(t) — hgﬁ‘ 4.9959¢-38 2.1453e-37 9.7654e-36
errp=Y(h(t) — hp(t))? 1.3982e-23 5.8073e-28 3.7265e-22
- 0.0009 0.00981 0.00939
— _ 2 _ - -
err=%(h(t) — hy (1) 2.2123e-12 o716 1.3667e-12 2012 2.1667e-13 8353
err,=Y (h(t) — h,(t))? 2.8152e-09 10114 8.0127e-11 11855 4.7562e-10 12478
errs=y(h(t) — h3(t))? 7.1577e-13 -3.9997 2.3666e-13 -3.99975 2.1803e-15 -3.99976
0.0001 0.00099 0.00096
err=3(h(t) — hy(t))? 3.9448e-12 3388 3.5460e-13 3957 1.0183e-13 4165
0.0099 0.00099 0.00098

3. CONCLUSINS
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The most important conclusion for estimating the shape
parameter (L) of basic Gompertz distribution, with the

assumption that the scale parameter is known are:
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1) From tables (1), (2) and (3) of the intervals [0, 1], [0, 10]
and [0, 20] respectively, the results show that the value of
(MSE) of all estimator are decreasing with increasing
interval for all sample size.

2) From all tables (1-5) the numerical method by using
Bernstein polynomials gives best estimate for all different
value of (n).

3) From table (5) the results show the values of (MSE) for
h; islessthan h; , h, and h, for all different value of
(n).

4) In general, from the numerical methods, we can notice that
(Bernstein polynomials method) takes the best results from
the (power function) for all different value of (n) and
different intervals, but Bernstein polynomials method
requires converting all intervals into [0, 1], therefore as
future research, some suggestions have been put forward:
using another distribution define of interval [0, 1].

5) From table (3) of the interval [0, 20] and table (4) of the
interval [2, 5] show the values of (MSE) for h, and h,
respectively are the best estimation for all different values
of (n).
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