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Abstract 

 
The two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal 

properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform 

temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its 

outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature 

and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is 

selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the 
approximated thermal conductivity at the interface between adjacent control volumes. A temperature dependent specific 

heat capacity proposed by a 4th Degree polynomial is fitted. A good agreement is obtained when the predicted results 

are compared with those obtained from the analytical solution. 
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1. Introduction 
 

The performance of air separation plants and 
storage tanks for cryogenic liquids and liquefied 

hydrocarbons depends majorly on the 

characteristics of its thermal insulating materials. 

Most of these thermal insulations operate under 
atmospheric or medium vacuum pressure and it 

use Perlite (a loose granulated material of 

volcanic glass origin heated at 850-900 C
o
 to 

vaporize the high water content that is trapped in 

its structure and allowing its volume to be porous 

and expanded up to 167   times its original 

volume). A common property of all cryogenic 

thermal insulating materials is that it operates 
under high temperature deference between 

atmospheric air and cryogenic fluid temperatures. 

Therefore, filling it inside a vacuumed leak tight 

annular space separating the atmosphere from 
cryogenic fluid vessels is necessary to avoid the 

drop in its efficiency due to the penetration and 
freeze of water vapor and carbon dioxide. 

The sudden filling of an empty cryogenic 

liquid storage tank initially at atmospheric 

temperature with a cryogenic liquid at its 
saturation temperature will initiate a sudden high 

temperature difference between the terminals of 

the annular space containing the thermal 
insulating material. This high temperature 

difference is behind the dependence of thermal 

conductivity and specific heat capacity  of the 
thermal insulation material on its temperature. In 

addition, it will initiate a potential for the 

evaporation of cryogenic liquid due to the 

transient heat transfer inside the cryogenic liquid 
storage tank. This energy loss is of a great 

economic interest especially when the size of 

cryogenic liquid storage tank is relatively big. 
Reference [1] presented an analytical double-

series solution for transient heat conduction in 
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polar coordinates (2-D cylindrical) for multi-layer 
domain in the radial direction with spatially non-

uniform but time-independent volumetric heat 

sources. Inhomogeneous boundary conditions of 
the third kind are applied in the direction 

perpendicular to the layers. Only homogeneous 

boundary conditions of the first or second kind are 

applicable on  = constant surfaces. 

Reference [2] have used the PAK-T software 

package, which is based on the finite element 
method using the Galerkin approach to solve the 

non-linear transient two-dimensional heat 

conduction through an insulation wall of tank for 
transportation of liquid aluminum. The objective 

was to optimize, under certain boundary 

conditions, the thickness of the insulation material 

which its thermal properties is a temperature 
dependent. 

Reference [3] presented an analytical series 

solution for transient boundary-value problem of 

heat conduction in r spherical coordinates. 

The proposed solution is applicable in spherical 
cone, hemisphere, spherical wedge or full sphere. 

Spatially non-uniform, (only andr -dependent), 

time independent volumetric heat sources may be 
present in the layers. Inhomogeneous, time 

independent,  -dependent boundary conditions 

of the first, second or third kind may be applied 

on the inner and outer radial boundaries, and only 

homogenous boundary conditions of the first or 

second kind may be applied on the  -direction 

boundary surfaces. 
Reference [4] has investigated analytically the 

unsteady heat conduction in composite fiber 

winded cylindrical shape laminates. This solution 

is valid for the most generalized boundary 
conditions that combine the effects of conduction, 

convection and radiation both inside and outside 

the cylindrical composite laminates. The Laplace 
transformation has been used to change the 

problem domain from time into frequency. An 

appropriate Fourier transformation has been 
derived using the Sturm-Liouville theorem. Due 

to the difficulty of applying the inverse Laplace 

transformation, the Meromorphic function method 

is utilized to find the transient temperature 
distribution in laminate. 

Reference [5] has used the cylindrical 

coordinates and Reference [6] has used the 
spherical coordinates. Both references has used 

the Kirchhoff‟s transformation to solve 

analytically the non-linear partial differential 

equation of transient heat conduction through a 
hollow cylindrical or spherical thermal insulation 

material of a thermal conductivity temperature 

dependent property proposed by an available 
empirical function. It is assumed that this 

insulating material is initially at a uniform 

temperature. Then, it is suddenly subjected at its 
inner radius with a step change in temperature. 

Four thermal insulation materials were selected. 

An identical analytical solution was achieved 

when comparing the results of temperature 
distribution with available analytical solution for 

the same four case studies that assume a constant 

thermal conductivity. It is found that the 
characteristics of the thermal insulation material 

and the pressure value between its particles have a 

major effect on the rate of heat transfer and 

temperature profile. 
In this paper, the two-dimensional, body-fitted 

coordinate, non-linear partial differential equation 

of transient heat conduction through a thermal 
insulation material of a thermal conductivity 

temperature dependent property proposed by an 

available empirical function  cbTak  , [7], 

and of a temperature dependent specific heat 
capacity property proposed by a 4

th
 Degree 

polynomial fit will be investigated numerically 

using the FVM. This insulating material is 

initially at a uniform temperature  iT . Then, it is 

suddenly subjected at its inner surface with a 

constant temperature  oT ,  io TT   and subjected 

at its outer surface with a natural convection heat 

transfer boundary condition associated with a 

periodic change in ambient temperature  T  and 

heat flux of solar radiation. Two thermal 

insulation materials will be selected, [7], each of 

outside radius of  m1 . The first is Perlite of 

thickness  mm800  with a characteristic mean 

particle diameter of  mmdm 5.0  and density of 

 3/64 mkg  at  Pa510  atmospheric pressure. 

The second is Perlite of thickness  mm200 with a 

characteristic mean particle diameter of 

 mmdm 5.0  and density of  3/50 mkg  at a 

gas pressure  Pa1.0 .  The fully implicit time 

scheme will be selected to represent the time 

discretization. The arithmetic mean thermal 

conductivity will be chosen to be the value of the 
approximated thermal conductivity at the interface 

between adjacent control volumes. To validate the 

predicted one-dimensional results, both profiles of 
the temperature and the rate of heat transfer will 

be compared with the one-dimensional analytical 

close form solution, [5], which assumes that only 

the thermal conductivity of thermal insulation 
material is a temperature dependant property. 
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2. Finite Volume Model 

 

2.1. Grid Generation 

 
In the Finite Volume Method, the first step is 

to divide the domain into a number of discrete 

control volumes;  rN  for One-Dimensional 

domain and  zr NN  for Two-Dimensional 

domain. A general nodal point is identified by P. 
In One-Dimensional domain, the nodes to the 

west and east of P are identified by W and E 

respectively. The west side boundary of the 

control volume is referred to by „w‟ and the east 
side of the control volume is referred by „e‟, 

Figure (1). In Two-Dimensional domain, the 

nodes to the west, east, bottom and top of P are 
identified by W, E, B and Top respectively. The 

side boundaries of the control volume is referred 

to by; „w‟, „e‟, „b‟ and „top‟ for the west, east, 

bottom and top sides respectively, Figure (2). The 
time domain is divided into a number of time 

steps of size t . Variables at the previous time 

level are indicated by the superscript (o, Old). In 

contrast, the variables at the new time level are 

not superscripted [8]. 

2.2. Initial and Boundary Conditions of 1-D 

Model 

 
Consider a hollow cylindrical thermal 

insulation material of temperature dependent 

thermal conductivity proposed by an available 

empirical function  cbTak  , [7], and of a 

temperature dependent specific heat capacity 
property proposed by a 4

th
 Degree polynomial fit 

and of inside radius  1R , outside radius  mR 12   

and of infinitesimal thickness z . This insulating 

material is initially at a uniform temperature

 KTi 300 . The boundary condition at  1Rr   

is suddenly subjected with a constant temperature

 KTo 77  while it is kept at the value of the 

initial temperature at  mR 12  . No convection or 

radiation heat transfer at the boundaries and no 
internal heat generation, as shown in Figure (3). 

 

 
 

 

 

 
 

Fig. 1. One-Dimensional control volume. 

 

 

 
 

Fig. 2. Two-Dimensional control volume. 
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Fig. 3. Initial and boundary conditions of one-dimensional model. 
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2.3. Discretization of 1-D model 

 
The governing One-Dimensional energy 

equation is: 

    21,
1

RrR
r

T
Trk

rrt

T
TC 





















                                 

                                                                  ...(1) 
 

Multiply Equation (1) by  dtdV. , 

 dzdrdrdV ...   and then integrate over the 

control volume faces, yields; 
 

   

    





















   

   





r

T
Trk

rr
dtdzdrdr

t

T
TCdtdzdrdr

tt

t

e

w

n

s

top

b

tt

t

e

w

n

s

top

b

1
....

....





 

 

Using fully implicit scheme; 
 

   

    dt
r

T
Tkr

r

T
Tkr

TTrrTC

tt

t we

o
PPP








































     …(2) 

 

Each of the boundary conditions is substituted 

into Equation (2). Then divide each of the 

resulting equation by t and rearrange yields: 
 

u
o
P

o
PWWEEPP STaTaTaTa          …(3) 

 

P
o
PWEP Saaaa   

 

 
t

rrTC
a Po

P






 

 

Since uniform control volumes with size r  are 

used. Hence,   rNRRr /12   

Where  uPEW SSaa ,,,  are listed in Table (1). 

 

 
 

Table 1,  

Discretization parameters of one dimensional model. 

 

  
 

 
 

 

 

Zone Wa  Ea  PS  
uS  

Internal nodes rw kw T 

∆r
 

reke T 

∆r
 

0 0 

West Boundary 0 reke T 

∆r
 −

rw kw T 

∆r 2 
 

rw kw T 

∆r 2 
To  

East Boundary rw kw T 

∆r
 

0 
−

reke T 

∆r 2 
 

reke T 

∆r 2 
Ti 
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2.4. Initial and boundary conditions of 2-D  

model. 

 
Consider a Two-Dimensional model of liquid 

nitrogen cylindrical storage tank of a hemispherical 

dish head. This storage tank is covered with a 
hollow cylindrical thermal insulation material of 

temperature dependent thermal conductivity 

proposed by an available empirical function

 cbTak  , [7], and of a temperature dependent 

specific heat capacity property proposed by a 4
th
 

Degree polynomial fit and of inside radius  1R , 

outside radius  mR 12  . This insulating material 

is initially at a uniform temperature  KTi 300 . 

The boundary condition at  1Rr   is suddenly 

subjected with a constant temperature  KTo 77 , 

as illustrated in Figure (4), and subjected at its 

outer surface with a natural convection heat 

transfer boundary condition associated with a 

periodic change in ambient temperature  T , as 

shown in Figure (5), and heat flux of incident solar 

radiation, as show in Figure (6). The value of the 

free convection heat transfer coefficient between 
ambient air and the outer surface of the storage 

tank is  KmWho ./5 2 , [9], with no internal heat 

generation. The modeling of periodic change in 

ambient temperature and the transient heat flux of 
incident solar radiation due to movement of the 

sum from sunrise at (Time=6:00) to sunset at 

(Time=18:00) are given as follows: 
 

 
 








 


24

122
cosmax

Time
TTTT mm


 

 

12
3600

,
2

280,300

minmax

minmax








t
Time

TT
Tand

KTKT

m

 

 

 






















 





2412,0

126,
24

62
cos

60,0

Time

Time
Time

q

Time

qE


 

 

 






















 





2418,0

186,
24

122
cos

60,0

Time

Time
Time

q

Time

qT


 

 

 

 






















 





2418,0

1812,
24

122
sin

120,0

Time

Time
Time

q

Time

qW


 

 

 

2.5. Discretization of 2-D model 

 
The governing Two-Dimensional energy 

equation is: 

 

   

  






































z

T
Tk

z

r

T
Trk

rrt

T
TC

1


            …(4) 

 

Since the physical domain is non-uniform. 
Therefore, a transformation from physical domain 

(r, z directions) to computational domain ( ,  
directions) is introduced. A two dimensional body 

fitted coordinate system is used. The jacobian of 

transformation is defined as follows, [10]: 
 































z
z

z
z

r
r

r
rwhere

rzzr
zz

rr
J

,,,:

 
Substituting the jacobian of transformation into 

Equation (4) and rearrange, yields: 

 

   

 

 

  





































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















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

























T
TkbJ

T
TkbJ

T
TkaJ

T
TkaJ

t

T
TCJ

1

1

2

1

    …(5) 
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zzrr

zrzr

zrzr

b

zr
wherea

zr
wherea





































1

22
2

22
1

,:;

,:;

 

 

Multiply Equation (5) by  dtdV. , 

  ddddV ..  and then integrate over the 

control volume faces, yields; 
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1

...

...
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...

 

Using fully implicit scheme; 
 

   
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







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






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












                                                                         …(6) 

Each of the boundary conditions is substituted into 
Equation (6). Then divide each of the resulting 

equation by t and rearrange yields: 
 

u
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


     …(7) 

 

P
o
PBTopWEP Saaaaaa   

 

 
t

TCJ
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P
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
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r

N
N
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Where  
uPBTopEW SSaaaa ,,,,,  are listed in 

Table (2). 

 

2.6. Solver 

 
Equations (3) and (7) are solved using the 

TDMA, [8]. 

 

 

3. Thermal Conductivity 

 
The dependence of thermal conductivity on 

temperature is suggested by the empirical function

 cbTak  , [7]. The values of  cba ,,  for the 

two selected thermal insulation materials are given 
in Table (3). This empirical function is valid in a 

temperature rang of  K40077 . 

 

 

4. Specific Heat Capacity 

 
Each of the two selected thermal insulation 

materials is originally made from Quartz glass. 

Therefore, the temperature dependence of specific 

heat capacity of Quartz glass for a temperature 

range of  K30077  is given in Table (4), [11], 

and its relation with temperature is represented 

using a 4
th
 Degree polynomial fit as shown in 

Table (5). 
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5. Results and Discussion 

 

5.1. 1-D model 
  

The One-Dimensional model with the chosen 

values of initial and boundary conditions is shown 
in Figure (3). 

The first step to validate the numerical solution 

is to choose the grid and time sizes that are 
adequate for obtaining the minimum error of 

results. This task is accomplished through a Gird 

Independency Test GIT. Two thermal insulation 
materials were selected, [7]. The first is Perlite of 

thickness  mm800  with a characteristic mean 

particle diameter of  mmdm 5.0  and density of 

 3/64 mkg  at  Pa510  atmospheric pressure, 

it is associated with a grid size of 50rN . The 

second is Perlite of thickness  mm200 with a 

characteristic mean particle diameter of 

 mmdm 5.0  and density of  3/50 mkg  at a 

gas pressure  Pa1.0  and it is associated with a 

grid size of 100rN .  A time step of 

min01t is chosen, as shown in Figure (7). 

The arithmetic mean thermal conductivity is 
chosen to be the value of the approximated thermal 

conductivity at the interface between adjacent 

control volumes, as estimated in Table (6). 
Figure (8) shows a good agreement when the 

numerical results of temperature distribution and 

the rate of heat transfer, for the two selected 

thermal insulation materials,  are compared with 

the analytical results at time intervals of 

hrandt 7224,18,12,6,3 , using a fully 

implicit time scheme. 
Figure (8) clarify that the characteristics of the 

thermal insulation material and the pressure value 

between its particles have a major effect on the rate 

of heat transfer and consequently the temperature 
profile. For instance, the dominant heat transfer 

mode when choosing Perlite at  Pa510  

atmospheric pressure is by heat conduction of the 
interstitial gas between the particles, whereas the 

heat transfer by radiation is negligible. When the 

pressure within a thermal insulation material is 

lowered to a value, the percentage of heat transfer 
by heat conduction of the interstitial gas between 

the particles becomes negligibly small when 
compared with the percentage heat transfer by 

radiation and conduction over the bulk material. 

The gas pressure, at which this is reached, depends 
on the characteristic diameter of the thermal 

insulation material. A gas pressure of  Pa1.0  is 

sufficient for Perlite with a characteristic mean 

particle diameter of  mmdm 5.0 . 

 
 

5.2. 2-D model 
  

The Two-Dimensional model with the chosen 

values of initial and boundary conditions is shown 

in Figures (4), (5) and (6) respectively. This Two 
thermal insulation materials were selected, [7]. The 

first is Perlite of thickness  mm800  with a 

characteristic mean particle diameter of 

 mmdm 5.0  and density of  3/64 mkg  at 

 Pa510  atmospheric pressure. The second is 

Perlite of thickness  mm200 with a characteristic 

mean particle diameter of  mmdm 5.0  and 

density of  3/50 mkg  at a gas pressure

 Pa1.0 . The arithmetic mean thermal 

conductivity is chosen to be the value of the 
approximated thermal conductivity at the interface 

between adjacent control volumes, as estimated in 

Table (6). In order to obtaining the minimum error 
of results, a grid size of (25X200) is used to model 

the domain of the two selected thermal insulation 

materials with a time step size of min10t , as 

shown in Figure (9). 
Figures (10) and (11) shows the predicted 

numerical results of temperature distribution and 

the rate of heat transfer, for the two selected 

thermal insulation materials, at time intervals of 

hrandt 4524,18,12,6,3 .The fully implicit 

time scheme is selected to represent the time 

discretization. 

It is assumed that the convergence value is 
(0.001), which is estimated on the basis of the 

difference between the predicted values of 

temperature in two successive iterations. 
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Table 2, 

 Discretization parameters of two dimensional model. 

Zone Ea  
Wa  

Topa  Ba  
PS  

uS  

Internal 

nodes 

 





















11 ba

TkJ e

 

 





















11 ba

TkJ w

 

 





















12 ba

TkJ top

 

 





















12 ba

TkJ b

 

0 0 

Surface 
(BCDEFGH) 

 





















11 ba

TkJ e

 

0  





















12 ba

TkJ top

 

 





















12 ba

TkJ b

 

 














2/

1





a

TkJ w

 

 

o

w

T
a

TkJ














2/

1





 

Lower  

Dish 

(JON) 

0  





















11 ba

TkJ w

 

 





















12 ba

TkJ top

 

 





















12 ba

TkJ b

 

ohaJ  1
 

 ThaJ o1

 

East  

Surface 

 (NM) 

0  





















11 ba

TkJ w

 

 





















12 ba

TkJ top

 

 





















12 ba

TkJ b

 

ohaJ  1  
 eo qTh

aJ







1  

Top Dish 

(MLK) 

0  





















11 ba

TkJ w

 

 





















12 ba

TkJ top

 

 





















12 ba

TkJ b

 

ohaJ  1  
 to qTh

aJ







1  

West  

Surface 

 (JK) 

0  





















11 ba

TkJ w

 

 





















12 ba

TkJ top

 

 





















12 ba

TkJ b

 

ohaJ  1  
 wo qTh

aJ







1  

Face AB   





















11 ba

TkJ e

 

 





















11 ba

TkJ w

 

 





















12 ba

TkJ top

 

0 0 0 

Face HI  





















11 ba

TkJ e

 

 

 





















11 ba

TkJ w

 

0  





















12 ba

TkJ b

 

0 0 

Corner A 0  





















11 ba

TkJ w

 

 





















12 ba

TkJ top

 

0 ohaJ  1   ThaJ o1

 

Corner B  





















11 ba

TkJ e

 

0  





















12 ba

TkJ top

 

0  














2/

1





a

TkJ w

 

 

o

w

T
a

TkJ














2/

1





 

Corner H  





















11 ba

TkJ e

 

0 0  





















12 ba

TkJ b

 

 














2/

1





a

TkJ w

 

 

o

w

T
a

TkJ














2/

1





 

Corner I 0  





















11 ba

TkJ w

 

0  





















12 ba

TbkJ

 
ohaJ  1   ThaJ o1
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Table 3, 

Empirical function for the selected thermal insulation materials, [7]. 

 

Insulating material 

Empirical function  cbTak  ,  KmW ./  

a  b  c  

Perlite in air 

Papmmdmkg m
53 10,5.0,/64   

 

31025.8   

 

410165.1   

 

0.1  

Perlite - vacuum 

Papmmdmkg m 1.0,5.0,/50 3   

 

4109112.1   

 

12104757.3   

 

 

678.3  

 

 

Table 4, 

Specific heat capacity of Quartz glass, [11]. 

T (K) 50 100 150 200 250 300 

C (kj/kg.K) 0.095 0.21 0.41 0.54 0.65 0.745 

 

 

Table  5,  

Polynomial fit of specific heat capacity for Quartz glass. 

   KkgkjTTC n

n

n ./,

4

0




   

0  1  2  3  4  

-1102.16667  
310485582.6   -5109.92778  

-7103.9926-   
-10105.333  

 

 

Table (6)  

Interblock nonlinear thermal conductivity. 

Thermal conductivity Arithmetic mean 

 Tke
      2/TkTk EP   

 Tkw
      2/TkTk WP   

 Tkb
      2/TkTk BP   

 Tktop       2/TkTk TopP   
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Fig. 4. Initial and boundary conditions of two-

dimensional model. 

   
   ./50,5.0,8.0,2

./64,5.0,2.0,1

3
1

3
1

mkgmmdmRvacuumPerlite

mkgmmdmRairinPerlite

m

m








 

 
 

   
 

Fig. 5. Change of atmospheric temperature during a 

typical day.   
 

 

 

 

 

 

 

 

 

  
 

 

Fig. 6. Change of incident solar radiation on the wall 

surfaces of the storage tank in a typical day. 

 
 

 
 

 

 
 

Fig. 7. GIT test of one-dimensional model. 
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(1)  Temperature 

 

 

 

 

(2)  Heat transfer. 

 

Fig. 8. Time history of predicted results for one-dimensional model. 

 

(i) Solid line: Analytical solution, [5] 

(ii) Dashed line: Numerical solution FVM [Present work]. 
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(a) Physical domain 

                                                                                                   

 

 

 

(b) Computational domain 

 

 

 

Fig. 9. Two dimensional model, (Grid resolution =25X200). 
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(a) Temperature, [K]. 

 

 

 

               
 

(b) heat flux, [W/m
2
] 

 

Fig. 10. Time history of predicted results for two-dimensional model, insulation material: Perlite in air (dm=0.5 

mm, =64 kg/m
3
). 
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(a) Temperature, [K]. 

 

 
 

(b) heat flux, [W/m
2
]. 

 
Fig. 11. Time history of predicted results for two-dimensional model, insulation material: Perlite - vacuum 

(dm=0.5 mm, =50 kg/m
3
). 
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6. Conclusions 

 
 It is found that the characteristics of the thermal 
insulation material and the pressure value between 

its particles have a major effect on the rate of heat 

transfer and temperature profile. The dominant 
mode of heat transfer when choosing a specific 

thermal insulation material at atmospheric pressure 

is by heat conduction of the interstitial gas between 

its particles, whereas the heat transfer by radiation 
is negligible. When the pressure within a thermal 

insulation material is lowered to a vacuum level, 

the percentage of heat transfer by heat conduction 
of the interstitial gas between its particles becomes 

negligibly small when compared with the 

percentage heat transfer by radiation and 

conduction over the bulk material. 
 On the other hand, a maximum increase of 

about  80 𝐾  is observed when comparing the 

temperature value of the thermal insulation 
material at the projected area of the outer surface 

of the Two-Dimensional model that is facing the 

moving source of the incident solar radiation with 
that of the One-Dimensional model. This increase 

in the temperature is due to the presence of the 

incident solar radiation and the natural convection 

heat transfer boundary condition that is associated 
with a periodic change in ambient temperature. 

 In general, the optimum selection of thermal 

insulating material for a specific cylindrical storage 
tank of liquefied cryogenic fluid is that with a 

minimum heat leakage (minimum boil off rate of 

cryogenic fluid), a minimum amount of insulating 

material (minimum cost) and a maximum storage 
capacity of the storage tank (minimum thickness of 

the thermal insulating material). This optimum 

selection is accomplished when choosing the 

Perlite of density  3/50 mkg  at a gas pressure

 Pa1.0  when compared with Perlite of density 

 3/64 mkg  at  Pa510  atmospheric pressure. 
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Nomenclature 

 
a Constant 

B, b Bottom 

b Constant 

c Constant 

C Specific heat Capacity, kJ/kg.K 

d Particle diameter, mm 

E, e East 

H Height, m 

ho Free convection heat transfer 

coefficient, W/m
2
.K 

k Thermal conductivity, W/m.K 

N Number of control volumes 

N, n North 

q Heat flux of incident solar radiation, 

W/m
2
 

r Distance along the r-direction, m 

S, s South 

R1 Inner radius, m 

R2 Outer radius, m 

T Temperature, K 

Time Time, hr 

Top Top 

top Top 

t Time, second 

W, w West 
z Distance along the z-direction, m 

 

 

 

 

 

 

 

Greek symbols 

 

 Change in magnitude 

 Density, kg/m
3
 

 -direction 

 direction 

 

Subscripts 

 
i Initial 

m Mean 

max Maximum value 

min Minimum value 

o Inner surface 

∞ Ambient air 

 

 

Superscripts 

 
o Old 

 

 

Abbreviation 

 
FVM Finite Volume Method 

GIT Grid Independency Test 

TDMA Tri-Diagonal Matrix Algorithm 
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توصيم انحرارة انًتغير يع انسين خلال عازل نهحرارة راث خواص حراريت تحري عذدي ل

 يتغيرة يع درجت انحرارة
 

 يشعم عبذ الأيير عبذ انكريى
 اندايؼت انًسخُصشٌت  /كهٍت انهُذست / قسى انهُذست انًٍكاٍَكٍت

dr.mishal04@gmail.com : الانكخشوًَ انبشٌذ  

 

 

 
 انخلاصت

 
حخذاو حى إخشاء دساست ػذدٌت نخىصٍم انحشاسة ثُائً انبؼذ انًخغٍش يغ انضيٍ خلال ػاصل نهحشاسة راث خىاص حشاسٌت يخغٍشة يغ دسخت انحشاسة باط

ثى حؼشضج إنى حغٍش يفاخئ فً دسخت انحشاسة . افخشاض أٌ هزِ انًادة انؼاصنت كاَج فً انبذاٌت بذسخت حشاسة يُخظًت وثابخت حى. طشٌقت انحدىو انًحذدة

ة َخٍدت الإشؼاع وبقًٍت ثابخت ػُذ سطحها انذاخهً وحؼشضج إنى اَخقال انحشاسة بانحًم انحش يقخشٌ بخغٍش دوسي فً دسخت حشاسة اندى وكًٍت انطاقت انحشاسي

حى اخخٍاس قًٍت انًؼذل انحسابً . انخدضئت انضيٍُت نهحم انؼذدي انضًًُ انخاو نًٍثم ًَىرجالاحى اخخٍاس . ٌ يخخهفخٍٍ نؼضل انحشاسةيحى اخخٍاس يادث. شًسًال

اسخخذاو يؼادنت يٍ انذسخت انشابؼت نخًثم حى كًا . نهخىصٍم انحشاسي نخًثم انقًٍت انخقشٌبٍت نهخىصٍم انحشاسي ػُذ انحذ انفاصم بٍٍ انحدىو انًحذدة انًخداوسة

يغ حهك انًخحصهت يٍ انحم حى انحصىل ػهى حىافق خٍذ ػُذ يقاسَت انُخائح انؼذدٌت   .قًٍت انسؼت انحشاسٌت انُىػٍت نهؼاصل وانخً حؼخًذ ػهى دسخت انحشاسة

 .انشٌاضً
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