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Abstract 

     In this papera prey -predator discrete dynamical system with Holling type I 

functional response is presented . The existence of all possibleequilibria have been 

obtained algebraically. The model has four equilibriaand  some conditions  for the 

local stability of its equilibria  have been established. We see that the proposed 

model has rich dynamics behavior. Aconstant rate harvesting for a single population 

is also considered  as well as the exitence of the bionomic equilibrium is dicussed 

and computed. The numerical simulation is given to conforim the theoretical 

analysis stability of  the model.Finally a general disscution is provided. 
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 الخلاصة

المفترس( مع دالة استجابة من  –)لفريسةفي هذا البحث تمت دراسة السلوك  الديناميكي لنموذج  متقطع       
النوع الاول . كذلك تم  ايجاد  نقاط الاتزان لهذا النموذج مع وضع الشروط الازمة لتحقيق الاستقرار المحلي  

ومعقد. كما درسنا في ثري  سلوك ديناميكي ذات لكل نقاط الاتزان . من خلال دراسة هذا النظام لاحظنا انه
كمية ثابتة في المجتمع  مع مناقشة واثبات وجود التوازن الايكولوجي.  اد في حالة كونههذا البحث نسبة الحصا

لتعزيز نتائح التحليل الرياضي لاستقرارية النموذج اضافة الى تقديم مناقشة  جريت واعطيت امثلة العدديةا
 عامة.

 

 

Introduction 

     During the last decades, the dynamics of prey-predator relationship have been received much 

attention in ecological science as well as mathematical modeling due to its  importance and existence 

in life.  Mathematical models have mostly use differential equations or partial differential equations or 

difference equations. These different types of models are depending on the time scale and space of 

structure of the problem [1].  

Discrete time or difference models can produce and exhibit moreplentifull dynamical behavior than 

those which have seen in continuous time models of the same type [2].Some of authors have been 
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considered stage or structure to formulate the problem in their models for more details see [ 3-10]. In 

[11], the author has been studied the same model with optimal control in continuous time form. The 

existence of periodic solutions and  stability of solutions  for prey-predator models as well as the Flip 

bifurcation andHopf bifurcation are extensively studied in the literaturesee [ 12-19]. Since the type of 

functional response can greatly effect modelpredations, thus some linear and non-linear functional 

response are considered to describe this phenomena. For examplesHolling functional response of type 

I, type  II ,and, type  III  as well as Beddington- De Angelis and Crowley –Martin functional response , 

[20-22]. The square root functional response is also studied by Liujuan Chen  and Fengde 

Chen in [23]. In this work we will investigate the dynamical behavior of non-linear system of two 

difference equations. We assume that individuals within a single population are identical and there is 

also no structuring variable within each population. 

In the litrecture a simple nonlinear equation Xt+1=f(xt) is widely used to formulate the growth of 

populations. These kinds of models are well known to possesa complicated dynamics behavior [24-

25].  In [26] F. Marotto has been studied the dynamics of discrete model for a single population and he 

investigated the existence and behavior of its equilibria the dynamic of his model is given by        

          
 (    )   where        is the density of population at period time t. His model depicts the 

threshold phenomena.Which means that at very low density many populations are tending to 

extinction rather than to growth. However, beyond some threshold the population will be growing 

according to that well known equation, logistic equation. 

This paper is organized as follows. In section 2 we formulate our two prey-predator model with 

Holling type I functional response. The existence of all its equilibria are discussed. We also derive a 

set of conditions for which the system gives alocal  stablility of allequilibria. In section 3 .Aconstant 

rate harvesting for a single population is also investigated   as well as the exitence of the bionomic 

equilibrium is dicussed and computed.  For the harvesting model some conditions are set  for the local 

stability of its equilibria. One can also note that the harvesting improve local stability the reason of  

that is harvesting  will reduce the parameter r to an acceptable level for local stability. In section 4  we 

present the numerical simulations which clarify  and conforim our theoretical analysis results. Finally 

a general disscution is provided in section 5. 

2. The model and the stability of its equilibria. 

Let xt denotes the number of prey density  and yt denotes the number of predator density in thet-th 

generation. Our model is described by the following   two of non-linear difference equations:  

 {                      

          
 (   )                  (2.1) 

The parameters r1 and r2  represent for intrinsic growth rate of prey species and the predators death 

rates respectively, while the positive parameters b1 and b2 represent the maximum per capitakilling 

rate and conversion rate of predator respectively,the predator consumes the prey by functional 

response Holling type I. Starting with initial condition (x0, y0) a trajectory of the state of population 

output is uniquely determined by the iteration the system (2.1) in the following form: 

(xt, yt)=M
t
 (x0, y0),             t= 0, 1,2,…….. 

In order to determine all possible the equilibria of the system (2.1). The following algebraic equations 

should be solved 

   
 (   )          

                                                                                                            (2.2) 

After solving the equations (2.2) we get this lemma.  

Lemma 1: 
The system (2.1) has four equilibriafor all parameters values, namely Ei,i=0,1,2,3. These are:  

1- E0 = (0,0), the trivial equilibrium is always exists. 

2- Ei= (ki, 0), i=1,2 the boundary equilibria are exists for all r1 4 where     
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For studying the local behavior of the system (2.1) at each equilibrium, one needs to compute the 

Jacobian’s matrix of the system (2.1). This can be supplied  by: 

J(x , y)=[
         

         
           

] 

Thus the characteristic polynomial of J (x,y) is        

                            F()=
2
+P+Q                                            (2,3) 

Where P = -trac(J), and  Q = det(J). 

Definition[7]: A steady (equilibrium ) point   (x, y)   for a system of two dimension is called a sink if  

| |     and | |   , (x, y) is called a source if  | |    and | |      (x, y) is called a saddle 

point  if either | |    and  | |    or | |     and | |   | |    Finally (x, y) is called a non-

hyperbolic if either | |=1 or | |=1.  

The next lemma gives the local stability of E0. 

Lemma 2:  

 i- The steady point E0  is sink point if r2<1 

ii-The steady point E0  is saddle point if r2>1 

iii-The steady point  E0 is non-hyperbolic point if r2=1 

Proof:     

It is easy to check that the roots of the equation (2.3) at E0 are 1= 0 and 2 = -r2.Thereforeall results are 

obtained. 

The Jacobain’s matrix at E1 can be written as   

J(E1)=[
 
 

 
         

  

 
    

      
  

 
    

] 

 

So that the roots of (2.3) are 1=  
 

 
         and 2=    

  

 
    . 

It is clear that if r1=4 then the E1is always non-hyperbolic point. The local stability of E1for r1> 4  is 

given in the next lemma. 

Lemma 3:  

1) The steady point E1 is sink if one of  the following conditions holds: 

i) 
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2)   The steady point E1 is source if one of  the following conditions holds: 

 i)    
  

 
   , and    
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  and      (     ) here   =(
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3) The steady point E1 is saddle point if one of  the following conditions holds:  

  i)    
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ii)    
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iii) 4    
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iv) 
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4)  The steady point E1 is non-hyperbolic point if one of  the following conditions holds: 

i)          
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   and either      
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iii)     
 

 
 

 

  
 
  

  
    {

 

 
 

 

  
   

 

  
 } and    

 

     
  

 

proof 

For (1)(i), it is clear that | |    if and  only if  4    
  

 
  . Now suppose that 

 

 
 

 

  
 
  

  
 
  

  
   

then both of N1 and N2 are greater than 
 

 
 as well as both of      

  and      
  are greater than zero 

with      
       

 .  

Therefore | |   ⇔N2-
 

 
      

 

 
⇔

 

     
     

 

     
  . Hence E1 is local stable point if  

         

For (1)(ii),if
 

 
 

 

  
 
  

  
 then N2 
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 and       

              | |   ⇔ 0       

 

 
⇔   

 

     
   Hence E1 is local stable point. 

For (2) (i), if    
  

 
then | |   . 

Now if 
  

  
 
 

 
 

 

  
 then both of N1 and N2 are  less than 

 

 
. So that | |      for all      . Hence E1 

is source. 

For (2)(ii), from proof (1) we have      
       

 . So that if      (     ) then | |   and 

| |   . Therefore E1 is source.  

The proof of (3) and (4) are clear from proof (1) and (2). 

Now we will study the local stability of E2, so that the Jacobain’s matrix at E2 is  given by 

 

J(E2)=[
 
 

 
         

  

 
    

      
  

 
    

] 

As before  a=√
 

 
 

 

  
.  Hence the roots of equation (2.3) are 1=  

 

 
         and 2 =    

  

 
    .  

Remark: It is clear that if r1=4 then  E2 is always non-hyperbolic  point. 

It remains to investigate the case when the value       in this case the next lemma gives the 

dynamics behavior of the point E2. 

Lemma 4:   

1- The steady point E2 is never to be sink. 

2- The steady point E2 is saddle point if one of  the following conditions holds: 

i- 
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iii- If     (
  

  
 

 

  
),   4   and        3 where   3= (
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3- The steady point E2 is source if one of  the following conditions holds: 

i- 
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4- E2 is non-hyperbolic point if one of  the following conditions holds: 

i- 
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iii-       , b2   and  r1= 
  
 

     
 . 

Proof (1) since for all      then the | | is never to be less than 1. Hence the result is obtained. 
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Proof (2) (i) if  
 

 
 

 

  
 
  

  
 
 

 
 

 

  
 is hold then we have 
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    . Therefore  | |   ⇔ 0     
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 . Hence E2  issaddle point . For 

(2) (ii) if 
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So that | |   ⇔
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  . Hence E2 is saddle point. 

For (2) (iii) , let r2=1 ,b2   then    
 

  
 and       

| |   ⇔
 

 
      

 

 
   ⇔0  

 

  
 

 

  
 - 
 

  
 ⇔r1 

  
 

     
.  

The same result one can have whenr2   , so that E2 is saddle point .  

Proof (3) (i) becauseof a is always positive real number for all     . Then | |     is never to be 

hold for all      so that E2 is source. 

For (3) (ii) and (iii) are clear from proof (2) (i) and (ii), respectively. 

Proof (4) (i) from proof (2) (i) we have 
 

 
      so that     ⇔ a= 

 

 
   ⇔   

 

     
  

For (4) (ii) from proof (2) (ii) one can easily get | |   ⇔   
 

     
  
 or     

 

     
 . Finally (4) (iii) 

is directly obtained from (2)(iii) . 

In order to discuss the local stability of the unique positive steady point E3, as before we need to 

compute the Jacobain’s matrix at E3 as well as  we also need to the statbility criterion  which found in 

[26] . These criterion are given in the next  lemma.  

Lemma 5: 

Let  F()=
2
+P+Q  suppose that F(1)>0, 1,2  are roots of F(0)=0 then : 

1- | |    and | |    if and only if  F(-1)>0 and Q  . 

2- | |> 1 and | |    (or | |    and | |> 1) if and only if F(-1) < 0 

3- | |> 1 and | |> 1 if and only if  F(-1)> 0  and Q  . 

4-  =-1 and | | ≠1 if and only if  F(-1)=0 and P≠ 0,2. 

The Jacobain’s matrix at E3 is given by: 

J(E3)=[
   

      
        

 

  

  
(   

     
    )  

] 

So that the P and Q in equation (2.3) are P=     
      

      and Q=(2        ) 
  

(        ) 
     . 

The next Lemma shows the dynamics of the E3. 

Lemma 6:   

1- The positive steady point E3 is sink if this condition is hold: 

i-            where    (
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  ) /{
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 √
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 √
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  )m=

(    )

    
 and 

   
(    )

    
  . 

 

2-  The positive steady point  E3 is source if               where     (
  

 
 √

  
 

 
 

(    )

        
, 

  

 
 √

  
 

 
 

(    )

        
 ) . 

3-The positive steady pointE3 is saddle point if one of these conditions holds : 

i-          where     =(0, 
 

 
 √

  

 
 

(    )

        
). 

ii-          where     =( 
 

 
 √

  

 
 

(    )

        
     ). 

4-The positive steady point E3 is non-hyperbolic  point if one of these conditions holds : 
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i-    
 

 
 √

  

 
 

(    )

        
and either    

 

 
 √

(     )

    
 or    

 

 
 √

(     )

    
 

 

ii-    
 

 
 √

  

 
 

(    )

        
and either    

 

 
 √

(     )

    
 or    

 

 
 √

(     )

    
  .  

 

Proof (1)(i) when       one can get F(1) > 0,  and if           then  F(-1)> 0 as well asQ  . So by 

lemma (5) (1) we have | |         | |     hence the positive fixed point is sink. 

Proof (2) it is easily to check that if              then F(1)> 0 ,  F(-1)> 0  and  

Q> 1 then according to lemma (5) ,(3) the positive steady (equilibrium)  point is source. 

Proof (3) if           or            then F(1)> 0 and F(-1)   0 theref- 

ore by lemma (5) , (2) the positive steady(equilibrium) point is saddle point. 

Proof (4) if the condition (i) or (ii) is satisfied then F(-1)=0 and P ≠0,2 so that the result can be easily 

obtained. 

3-Harvesting  

In this section we will consider the resource biomass for a single population is subject to a constant 

rate harvesting. That means a percentage  qExk of the population is removed at every period time k.  

Here we will also assume that the predator population is absent therefore the system (2.1) including  

harvesting becomes:  

         
 (    )         (3.1) 

Where E denotes the harvesting effort, and q is constant called the catch ability coefficient, the  

parameter    is as same as mentioned before. Recall that this system (3.1) without harvesting was 

investigated by Marotto[ 18] . 

To discuss the equilibrira analysis of the present model. One can  easy to see that the model (3.1) has 

three equilibria, namely  

e0=0,     e1=
 

  
 √

 

 
 
    

 
 ,    e2=

  

  
 √

 

 
 
    

 
 

Note that the e0 is always exists while e1, e2  are exist for all values of  

r ≥ 4(qE+1)                                             (3.2) 

The next lemma gives the local stability of e0, e1, e2 . 

Lemma(7):  

1- Local stability of e0 

i. e0  is sink if qE<1  . 

ii. e0  is source if qE>1  . 

iii. e0  is non-hyperbolic point if  qE=1 . 

2- Local stability of E1 

i. e1 is sink if  4(1+qE)< r <
(   (    )) 

   (    )
. 

ii. e1 is source if  4(1+qE)< r <
(   (    )) 

   (    )
 

iii. e1 is non- hyperbolic if r =
(   (    )) 

   (    )
 

3- Local stability of e2 

e2 is never to be sink for all values of   r ≥ 4(qE+1) therefore e2 is always source point.The proof  of  

this lemma (1) is easy so that it is omitted.   

Bionomical equilibrium: 

Bionomic equilibrium describes situation which the equilibrium level effort is determined by both of 

biological and economic parameters.In the literature, the bionomic equilibrium is said to be attained 

when the total revenue gained by selling the harvested biomass in an economicsteady orequilibrium 

case  equals the total cost to the harvested it.  

The net gain or the net economic  revenue at time k is the difference between the total revenue which 

is pqExk and the total cost C=cE.  

  N(x, E,k) = (pqxk-c)E                                                 (3.3) 

wherep is price per unit biomass and c is cost parameter of the harvesting effort.                                   
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In order to compute the bionomic equilibrium biomass level, B(x∞, E∞) where x∞ and E∞ are positive 

values. One has to solve the conditions for equilibrium – effort level , these conditions are : 

                                                       rx
2
(1-x)-qEx=x                             (3.4)                                  

                                                             (pqx-c)E = 0                                                        

After solving (3.4) we get  

   
  

  

  
 

   

    

  
 
  

   
 
 

 
 
   

    
 

For corresponding stock level x=x∞ with     
 

  
 .  

It is clear that the bionomical equilibrium B(x∞, E∞)  is exist only when these condition 
  

   
 
 

 
 

   

    
  

is satisfied and inequality of equation (3.2) holds.  

Note that if c>pqx  then the cost of harvesting is geater than the revenue so that the whole harvesting 

work will be closed alternativily if  c<pqx  then the revenue will be positive and the whole harvesting 

work will be in operation. 

1. Numerical analysis: 

Our goal in this section is to present numerical simulations that confirm the above theoretical analysis. 

At different set of parameters the localstability of equilibria is investigated numerically. 

For the steady point E1 we choose the parameters as follows: 

 r1 =4.7,r2=4.1 ,b1=0.01,b2=6 and E1=(0.693,0). So that one can easily see that the condition (i)  in 1 of 

lemma 3 issatisfied and the point is local stable.Since
 

 
 

 

  
         , 

  

  
       , 

  

  
   

         (  
  

 
)and    (            ) Hence the  E1 is locally stable according to the lemma 

3.  

Figure- 2   illustrates the local stability of E1. The trajectories of the prey population and the predator 

population are also illustrated in Figure- 1 as a function of time. 

Now the condition in Lemma 3 (ii) is satisfied by choosing these parsmeters r1=4.3, 

r2=3.6,b1=0.01,b2=6 . Therefore E1=(0.6321,0) so that
 

 
 

 

  
 =0.3333,  

 

 
 

 

  
        

  

  
         

,
  

  
         M1 (  

  

 
)   (        ) . Figure- 3   illustrates the local stability of E1 

Numerically.  

For the point E3we choose r1 =8,r2=5,b1=0.5,b2=7.947. Therefore E3=(0.7550,0.9596). I6=(0.1464, 

0.8536), I7=(0.0326, 0.7674), and I9=( 0.7500,  ) 

Figure- 4 and Figure- 5 illustrate the trajectories of the prey-predator population as a function of time  

and the local stability of the  point E3 according to the Lemma 6 respectively.  

For the harvesting model we will choose a set r=7, q=0.9, E=0.61. Then e1= 0.6732, c=0.1, p=0.3 x∞ 

=0.3704and E∞ =8.093. 

Figure- 6 illustrates local stability, while,if E=0 accordint to the work of Marottothe chaos or nowhere 

dense is appeared. This also shows that the harvesting will improve the stability. 
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Figure 1- The trajectories of the prey population and the predator population as a function of time for 

different initial points . This Figure shows That  E1 with all parameters above is local stability.. 

 
Figure 2-This figure illustrates that E1with all parameters above is local stability according to the 

condition(i) in lemma 3 

 



Nassir and Abdullah                                       Journal of Science, 2017, Vol. 58, No.4B, pp: 2177-2187 

2185 

 
Figure 3- Local stability of  E1  according to the condition(ii) in lemma 3. 

 
Figure 4-Trajectories of the prey population and the predator population as a function of time which 

illustrates that E is local stability. 
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Figure 5- This figure shows that E is local stable according to condition in Lemma 6. 

 

 

 
Figure 6- This figure shows that e1 is local stable according to condition in Lemma 7. Here 

r=7,q=0.9,E=0.61, initail value  x0 =0.55; 

 

Discussion and Conclusions 
    This work deals with the investigation of the dynamical behavior of non-linear system which 

defines by two difference equations.  The formulation of two pry-predator with Holling type I function 

response are derived,  moreover  we give  and derive the conditions for the local stability as well as  

the existence of all the equilibria. We  have been also considered  a constant rate harvesting for a 

single population. Some conditions are derived for existence of the bionomical equilibrium point and 

its value is computed for some values of parameters.   The numerical analysis has been given and it 

conformed the analytic results. 
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