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Abstract

In this papera prey -predator discrete dynamical system with Holling type |
functional response is presented . The existence of all possibleequilibria have been
obtained algebraically. The model has four equilibriaand some conditions for the
local stability of its equilibria have been established. We see that the proposed
model has rich dynamics behavior. Aconstant rate harvesting for a single population
is also considered as well as the exitence of the bionomic equilibrium is dicussed
and computed. The numerical simulation is given to conforim the theoretical
analysis stability of the model.Finally a general disscution is provided.
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Introduction

During the last decades, the dynamics of prey-predator relationship have been received much
attention in ecological science as well as mathematical modeling due to its importance and existence
in life. Mathematical models have mostly use differential equations or partial differential equations or
difference equations. These different types of models are depending on the time scale and space of

structure of the problem [1].

Discrete time or difference models can produce and exhibit moreplentifull dynamical behavior than
those which have seen in continuous time models of the same type [2].Some of authors have been
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considered stage or structure to formulate the problem in their models for more details see [ 3-10]. In
[11], the author has been studied the same model with optimal control in continuous time form. The
existence of periodic solutions and stability of solutions for prey-predator models as well as the Flip
bifurcation andHopf bifurcation are extensively studied in the literaturesee [ 12-19]. Since the type of
functional response can greatly effect modelpredations, thus some linear and non-linear functional
response are considered to describe this phenomena. For examplesHolling functional response of type
I, type Il ,and, type Ill as well as Beddington- De Angelis and Crowley —Martin functional response ,
[20-22]. The square root functional response is also studied by Liujuan Chen and Fengde
Chen in [23]. In this work we will investigate the dynamical behavior of non-linear system of two
difference equations. We assume that individuals within a single population are identical and there is
also no structuring variable within each population.
In the litrecture a simple nonlinear equation X.;=f(x;) is widely used to formulate the growth of
populations. These kinds of models are well known to possesa complicated dynamics behavior [24-
25]. In [26] F. Marotto has been studied the dynamics of discrete model for a single population and he
investigated the existence and behavior of its equilibria the dynamic of his model is given by
Xepq = 1x2(1 —x,) where x, is the density of population at period time t. His model depicts the
threshold phenomena.Which means that at very low density many populations are tending to
extinction rather than to growth. However, beyond some threshold the population will be growing
according to that well known equation, logistic equation.
This paper is organized as follows. In section 2 we formulate our two prey-predator model with
Holling type | functional response. The existence of all its equilibria are discussed. We also derive a
set of conditions for which the system gives alocal stablility of allequilibria. In section 3 .Aconstant
rate harvesting for a single population is also investigated as well as the exitence of the bionomic
equilibrium is dicussed and computed. For the harvesting model some conditions are set for the local
stability of its equilibria. One can also note that the harvesting improve local stability the reason of
that is harvesting will reduce the parameter r to an acceptable level for local stability. In section 4 we
present the numerical simulations which clarify and conforim our theoretical analysis results. Finally
a general disscution is provided in section 5.
2. The model and the stability of its equilibria.
Let x; denotes the number of prey density and y; denotes the number of predator density in thet-th
generation. Our model is described by the following two of non-linear difference equations:
Xip1=T1X2 (1-X)—b;yx
M{ t+th+11=t—(rz y2+b21;,:x§ (2.1)
The parameters r; and r, represent for intrinsic growth rate of prey species and the predators death
rates respectively, while the positive parameters b; and b, represent the maximum per capitakilling
rate and conversion rate of predator respectively,the predator consumes the prey by functional
response Holling type I. Starting with initial condition (X, Yo) a trajectory of the state of population
output is uniquely determined by the iteration the system (2.1) in the following form:
(X0 Y)=M" (X0, Yo), t=0,1,2,........
In order to determine all possible the equilibria of the system (2.1). The following algebraic equations
should be solved
r;x?(1—-x) —b;yx=x
—r, y+byx=y (2.2)
After solving the equations (2.2) we get this lemma.
Lemma 1:
The system (2.1) has four equilibriafor all parameters values, namely E;,i=0,1,2,3. These are:
1- E;=(0,0), the trivial equilibrium is always exists.

2-  E= (k;, 0), i=1,2 the boundary equilibria are exists for all r;> 4 where k; = %+ ak, = S—a
anda= |~—21 |
4 T

3- Es= (x7, y*)=(’i:1, %) the unique positive equilibrium is exist if r; >4, and

X eALl Bwhere A= (%— a, %) and B:(i §+ a),
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For studying the local behavior of the system (2.1) at each equilibrium, one needs to compute the
Jacobian’s matrix of the system (2.1). This can be supplied by:

_[2r1x —3rx® — byy —byx ]
I y) [ b,y -1, + byx
Thus the characteristic polynomial of J (X,y) is
FOM)=A"+PA+Q (2,3)

Where P = -trac(J), and Q = det(J).

Definition[7]: A steady (equilibrium ) point (x,y) for a system of two dimension is called a sink if
L] <1 and |A,] <1, (X, y) is called a source if |A;] > 1and]|A,| > 1, (X, y) is called a saddle
point if either |A;| > 1and |A,] < 1or|A] <1 and |rA;| > 1|A;| > 1.Finally (X, y) is called a non-
hyperbolic if either |A;|=1 or |A,|=1.

The next lemma gives the local stability of E,,.

Lemma 2:

i- The steady point E, is sink point if r,<1

ii-The steady point E, is saddle point if r,>1

iii-The steady point Egis non-hyperbolic point if r,=1

Proof:

It is easy to check that the roots of the equation (2.3) at Eqare A;= 0 and A, = -r, Thereforeall results are
obtained.

The Jacobain’s matrix at E; can be written as

—ir —ra+3 ~b_pa

J(Ey)= T neT 2b1
—1y + 2 +bsa

So that the roots of (2.3) are A= — 5 —rya+ 3 and A,=—r, 2 +b2a

It is clear that if r;=4 then the E,is always non-hyperbolic pomt The local stability of E.for r;> 4 is
given in the next lemma.

Lemma 3:
1) The steady point E; is sink if one of the following conditions holds:
|) —+ < <1—— and rleMlan

where M; = (4, 1?5),1\/12 = (; - )and M; = (O’W)Where N1—— + ZoandN=2— =

N,—N2’ N;—-N? b, b,

2) The steady point = is source if one of the following conditions holds.

. 16 1
i)yr > ? , and <5——

i) —+ < < — + landr; € Iy N (I, U I3) here [;= ( , ),
1
L=(0. 7) and 13 (—le,oo)

3) The steady point El is saddle point if one of the following conditions holds:
i) —+b< <—+1andrlellnM2
2
i) §+ <E< +1andr1eM1n(12u13)
i) 4<r < % and <21

. 1 1 _n L1, 1 1
iv) ———Sb—<mm{—+b—,1—z} and r, €I, N My
4) The steady point E; is non-hyperbolic point if one of the following conditions holds:

I) 7'1 16

.. 1
i) —+ < <—+1ande|ther =S —m o=
2712 171
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11 (1,1 1
i) -——=—<-= mm{— —,1——} ndry = ——
) 2 bz_b2< 2+b2 b, andry Ny—N2

proof

For (1)(i), it is clear that |A;| < 1 ifand onlyif 4<nr; < ? . Now suppose that % + i < ;—22 < ;—21 +1
then both of Ny and N, are greater than % as well as both of N; — N2 and N, — N# are greater than zero
with N; — N2 < N, — N3,

Therefore |A,| < 1<:>N2-— <a<N; — —(:)
rn € My N M,

For (1)(ii).if; — l r—zthen N<Z,N; >zand Ny — NZ > 0.Therefore |1, < 1 0<a < N; —

> <1, <—— . Hence E; is local stable point if
N,—N3 Ni—N%

%@rl < r Hence El is local stable point.

For (2) (i), if r; > —then |Aq] > 1.

Now |f < ———then both of N;and N,are less than -. So that |A,| > 1. for all r; > 4. Hence E;
is source

For (2)(ii), from proof (1) we have N; — N? < N, — N2. So that ifr; € I; n (I, U I3) then |A,| > 1and
|A,| > 1. Therefore E; is source.

The proof of (3) and (4) are clear from proof (1) and (2).

Now we will study the local stability of E,, so that the Jacobain’s matrix at E, is given by

—%r1+r1a+3 —%+b1a
‘](EZ): 0 _ b_z_
2t by,a

As before a= /%— Ti Hence the roots of equation (2.3) are A;= —%rl +ra+3and A, =—1, +
1

by

7—b2a.

Remark: It is clear that if r;=4 then E, is always non-hyperbolic point.

It remains to investigate the case when the value r; > 4. in this case the next lemma gives the
dynamics behavior of the point E,.

Lemma 4:

1- The steady point E, is never to be sink.

2- The steady point E2 is saddle point if one of the following conditions holds:

i' l_l _< +_andr1651012Wheresl (4‘ w) 12 (0 2)
2 b2 b2 —N2

1 1
< <___andr1 EllﬂSZWhere SZ —_ (m’m)
1N 272

2
iii- If r, < 1(b— < b—),bzz 4 andr, € I; N S3;where S3= (2:2 4,oo).
2 2 2
3- The steady point E; is source if one of the following conditions holds:

. 1 1
- >Z 4 —
22t
ij--—— <2l + andr; € I; NI, where 1 (; 00)

2b2b22 1 &l Ml 4NN22"
|||-b— < < ———and r; €1, N (I, UIg) where Is= (O NZ)
4- E,is non hyperbollc point if one of the following Condltlons holds:
. 1 1
I- E_b_z —< +—andr1 N_Nz

1 1 1
< 2<——E and either r; = N or rl_FN%'

iii-r, <1 ,b,>4and r= 2b2_4.

Proof (1) since for all r; > 4 then the |A| is never to be less than 1. Hence the result is obtained.
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Proof (2) (i) if 2_L1< 1425 hold then we havel—Nl < 0 and l—N2 >0 as well as
2 bz bz 2 bz 2 2

1
N,—NZ
| T 1 1 1 1 2 2
(2) (i) |fb—2<E<5—Ethen we have E—N1>O, E—N2>0,N1—N1 > 0N, —Ns >0 and
N, — N? > N, — N2.
Sothat A, < 1&=— N, < a < = — Nyes——
2 2 N;—N?
2

For (2) (iii) , let r,=1 ,b,> 4 then N; = b—and N, = 0.
2

N, — N2 > 0. Therefore |A,|<1e 0<a < % - Nyor < . Hence E, issaddle point . For

;2 . Hence E, is saddle point.

<n <
N,—N?

b3
2b,—4'
The same result one can have whenr,< 1, so that E, is saddle point .
Proof (3) (i) becauseof a is always positive real number for all r; > 4. Then |A,| < 1 is never to be
hold for all r; > 4 so that E;is source.
For (3) (ii) and (iii) are clear from proof (2) (i) and (ii), respectively.
Proof (4) (i) from proof (2) (i) we have % —N; <0sothatl, =1 a= % —N,or =

1 1 1 2 4
|7\.2| < 1<:——N1 <a<——N2C>O<—<—'—2C>r1>
2 2 T b, b;

1
For (4) (ii) from proof (2) (ii) one can easily get |1,| = 1&r, = ﬁ or 1y = N2+N Finally (4) (iii)
is directly obtained from (2)(iii) .
In order to discuss the local stability of the unique positive steady point Es, as before we need to
compute the Jacobain’s matrix at E; as well as we also need to the statbility criterion which found in
[26] . These criterion are given in the next lemma.
Lemma 5:
Let F(L)=A*+PA+Q suppose that F(1)>0, A, A, are roots of F(0)=0 then :
1- || < 1and || < 1ifandonly if F(-1)>0and Q< 1.
2- |hq|>1and |A,] < 1 (or [A4] < 1and |r,|>1)ifand onlyif F(-1) <0
3- |A4]>1and |A,|> 1ifand only if F(-1)>0 and Q> 1.
4- ),=-1and |\,| #1 if and only if F(-1)=0 and P# 0,2.
The Jacobain’s matrix at Ez is given by:

rx* —=2rx*?+1 —bx*

2 (ryx =y = 1) 1 ]
by

So that the P and Q in equation (2.3) are P= —ryx*+2rx*2 —2 and Q=21 + rr)x* —
(Bry + iry)x* — 1.
The next Lemma shows the dynamics of the Ea.

J(Es)=

Lemma 6:
1- The positive steady point E;is sink if this condition is hold:
i- x'elgNl;Nly where Ig= ( >—a , —+a) K 3 }
=(™_ /m_z _ 3 m,mr (5-3) — (Mg [ma? _ _(ptl) _(12+3)
I; = (2 4 51417y’ 2 + 4 51 +7y7y ), wherely = ( 2 + 4 3r1+r2r1'oo) m= 5+7; and
_ (p+2)
17 34,
2
2- The positive steady point Ejis source if x*elg NI, N I, where I =(52 — m—l—m,
2 4 31411y

my?  (p+1)
4 3T1+T2T1
3-The positive steady pointEs is saddle point if one of these conditions holds :

HE * — m m_z_ (T2_3)
- x"elg N Iwhere 1,=(0, 7+ |5 — 5 ==0).

m
2

m? _ (-3) , 00).
4 5T1+T'2T1
4-The positive steady point E; is non-hyperbolic point if one of these conditions holds :

ii- x*elg N I;where 112:(%+
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i- x*=2— 1273 ang either x* % 2 F [ gp oyt Ly [2132)
2 5T1+ 271 4 161 1 4 16T1
.. 3 1 — 16 1 32
ii- x* =24 (273) and either x* = X F /(r” ) or x* = f(r” )
2 5r1+r2 1 4 161, 4 161,

Proof (1)(i) when x*el, one can get F(1) > 0, and if x*el; NIy then F(-1)> 0 as well asQ< 1. So by
lemma (5) (1) we have |A,] <1 and |A,| < 1 hence the positive fixed point is sink.

Proof (2) it is easily to check that if x*elg N I; N I;,then F(1)>0, F(-1)>0 and

Q> 1 then according to lemma (5) ,(3) the positive steady (equilibrium) point is source.

Proof (3) if x*elg N 11 or x*elg N I, then F(1)> 0 and F(-1) < O theref-

ore by lemma (5) , (2) the positive steady(equilibrium) point is saddle point.

Proof (4) if the condition (i) or (ii) is satisfied then F(-1)=0 and P #0,2 so that the result can be easily
obtained.

3-Harvesting

In this section we will consider the resource biomass for a single population is subject to a constant
rate harvesting. That means a percentage gEXx, of the population is removed at every period time k.
Here we will also assume that the predator population is absent therefore the system (2.1) including
harvesting becomes:

X1 = 1% (1= %) — qExc (3.1)

Where E denotes the harvesting effort, and g is constant called the catch ability coefficient, the
parameterr is as same as mentioned before. Recall that this system (3.1) without harvesting was
investigated by Marotto[ 18] .

To discuss the equilibrira analysis of the present model. One can easy to see that the model (3.1) has
three equilibria, namely

+l

1 1 E+1 1 1 E+1
&0, eg+ 3= e 3o
Note that the e, is always exists while e;, e, are exist for all values of
r>4(qE+1) (3.2)
The next lemma gives the local stability of ey, e, €, .
Lemma(7):

1- Local stability of e,

i. e issinkifqgE<1 .

ii. eq issource if gg>1 .

iii. &g is non-hyperbolic point if gE=1.
2- Local stability of E;

. L (1+3(qE+1))?
i. epissinkif 4(1+gE)<r S r2(1iqE)
o ) (1+3(qE+1))?
ii. e;issource if 4(1+qE)<Tr S v2(liqE)
_(1+3(gE+1))®
iii. e, is non- hyperbolic if r = r2(14qE)

3- Local stability of e,
e, is never to be sink for all values of r> 4(qE+1) therefore e, is always source point.The proof of
this lemma (1) is easy so that it is omitted.
Bionomical equilibrium:
Bionomic equilibrium describes situation which the equilibrium level effort is determined by both of
biological and economic parameters.In the literature, the bionomic equilibrium is said to be attained
when the total revenue gained by selling the harvested biomass in an economicsteady orequilibrium
case equals the total cost to the harvested it.
The net gain or the net economic revenue at time K is the difference between the total revenue which
is pgEx, and the total cost C=cE.

N(x, E,k) = (pgx-C)E (3.3)
wherep is price per unit biomass and c is cost parameter of the harvesting effort.
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In order to compute the bionomic equilibrium biomass level, B(X., E.) where x, and E,, are positive
values. One has to solve the conditions for equilibrium — effort level , these conditions are :

rx?(1-x)-qEx=x (3.4)
(pgx-c)E=0
After solving (3.4) we get
rc rc?
g _1_j;+ﬁﬁ__m 1 rc?
* —q rq*> q p*qd

For corresponding stock level x=x., with x, = é .

It is clear that the bionomical equilibrium B(x.,, E) is exist only when these condition % > $+

rc?

p%q3

is satisfied and inequality of equation (3.2) holds.

Note that if c>pgx then the cost of harvesting is geater than the revenue so that the whole harvesting

work will be closed alternativily if c<pgx then the revenue will be positive and the whole harvesting

work will be in operation.

1. Numerical analysis:

Our goal in this section is to present numerical simulations that confirm the above theoretical analysis.

At different set of parameters the localstability of equilibria is investigated numerically.

For the steady point E; we choose the parameters as follows:

r,=4.7,r,=4.1 ,b,=0.01,b,=6 and E;=(0.693,0). So that one can easily see that the condition (i) in 1 of
2

lemma 3 issatisfied and the point is local stable.Since%+bi = 0.6667 o= 0.6833, ;—1+ 1=
2 2 2

0.8333M; = (4, ?)and M, = (4.004,7.8431).Hence the E; is locally stable according to the lemma

3.

Figure- 2 illustrates the local stability of E;. The trajectories of the prey population and the predator
population are also illustrated in Figure- 1 as a function of time.

Now the condition in Lemma 3 (ii) is satisfied by choosing these parsmeters r;=4.3,

r,=3.6,0,=0.01,b,=6 . Therefore E;=(0.6321,0) so that —--=0.3333, ~+-- = 0.6667, = = 0.6833
2 2 2

,;—1+ 1 =0.8333M;= (4%) M; = (0, 5.5901). Figure- 3 illustrates the local stability of E;
2

Numerically.

For the point Ezwe choose r; =8,r,=5,0,=0.5,b,=7.947. Therefore E;=(0.7550,0.9596). l¢=(0.1464,
0.8536), 1,=(0.0326, 0.7674), and ly=( 0.7500,00 )

Figure- 4 and Figure- 5 illustrate the trajectories of the prey-predator population as a function of time
and the local stability of the point E;according to the Lemma 6 respectively.

For the harvesting model we will choose a set r=7, q=0.9, E=0.61. Then e;= 0.6732, ¢=0.1, p=0.3 X,
=0.3704and E.,, =8.093.

Figure- 6 illustrates local stability, while,if E=0 accordint to the work of Marottothe chaos or nowhere
dense is appeared. This also shows that the harvesting will improve the stability.
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r1=4.7:r2=3.6:b1=.01;b2=56 and (x0,y0)=(0.7 0.1
0.7

x(t)
06| ¥(t)

prey x(t), and predator y(t)

lL L 1 1 1 1 1 1
DD 10 20 30 40 50 B0 70 80
time
Figure 1- The trajectories of the prey population and the predator population as a function of time for
different initial points . This Figure shows That E; with all parameters above is local stability..

r1=4.7;r2=4.1:b1=.01:b2=6 and (x0,y0)=(0.684,0.1)
0.1 , : , : : :

o ="
+ (a0, y=+ [
0.08 [ =

0.09

0.07 .

0.06 =

0.05 =

0.04 -

y (predators population )

0.03 -

0.02 -

0.01 =

D 1 1 1 1 ‘:_‘ 1
0.654 0.686 0.6588 0.69 0.692 0.694 0.696 0.698
¥ (preys population)

Figure 2-This figure illustrates that E;with all parameters above is local stability according to the
condition(i) in lemma 3
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r=4.3;r2=3.6;b1=.01;b2=6 and (x0,y0)=(0.7,0.2)

(< O)=>
BAsr . +  (x0y0)=+

0.1H

0.0 H

y (predators population )

0.06 H

0.04 H

0.02H

63

Figure 3- Local stability of E; according to the condition(ii) in lemma 3.

r1=8:12=5;b1=.5:b2=7.947 and (x0,y0)=(0.75,0.95)
1.05 L L L Ll L T L

064 0BS5S 0B 067 0B8 0B 07
¥ (preys population)

0
0.

x(t)
¥(t)

095 / \ RS-

0.9 =

0.85 -

prey x(t), and predator y(t)

0.75

0.7

o 10 20 30 40 50 B0 70 a0
time

Figure 4-Trajectories of the prey population and the predator population as a function of time which
illustrates that E is local stability.
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r1=8;12=5;b1=.5,b2=7 947 and (x0,y0)=(0.75,0.95)
1.02 T T T T T

T

6y ="
+ (=0, yO)=+

o
[t
3]
T

o
@
[
T
.*.

y (predators population )

0.94

092+

074 0745 075 0755 076 0765 077 0775
¥ (preys population)

Figure 5- This figure shows that E is local stable according to condition in Lemma 6.

with harvesting
: ty ! — ~— ~without harvesting H
E ‘ [l

; ’ i

E 5 § T
ost I Y
|

| ' o
0.7

| ! ,
3 :I - } : '|- ] 'l l '; w
/J;l ] _}l i — i
08 - = ,| A " I! [ %
; ! : ;

0.5 - 74 =31 ' !

Population density

_ i J : : i
0.4+ P f = o ! : |
. ! L 7
0.3 F ) ] E
Y
|

02F

0.1

1
a 5 10 15 20 25 30
Time t

Figure 6- This figure shows that el is local stable according to condition in Lemma 7. Here
r=7,0=0.9,E=0.61, initail value Xq =0.55;

Discussion and Conclusions

This work deals with the investigation of the dynamical behavior of non-linear system which
defines by two difference equations. The formulation of two pry-predator with Holling type I function
response are derived, moreover we give and derive the conditions for the local stability as well as
the existence of all the equilibria. We have been also considered a constant rate harvesting for a
single population. Some conditions are derived for existence of the bionomical equilibrium point and

its value is computed for some values of parameters. The numerical analysis has been given and it
conformed the analytic results.

2186



Nassir and Abdullah Journal of Science, 2017, Vol. 58, No.4B, pp: 2177-2187

References

1. Kuang, Y. 1977. Basic properties of the mathematical population. Biomath., 17: 129-142 (2002).

2. Agiza, H., Elabbasy, E., Metwally, H., Elsadany, A. 2009. Chaotic dynamicof discrete prey-
predator with holling type 11, Nonlinear Anal. Real WorldAppl., 10: 116-129.

3. Aiello, W.G.,H.l.., Freedman, J.,W.u.1992. Analysis of a model representing stage-structure
population growth with state-dependent time delay, SIAM J.Appl.Math. 52: 855-869.

4. AielloW.G.,Freedman, H.l. 1990. A time delay model of single-species growth with stage
structure. Math. Biosci. 101: 139-153.

5. Eladyi, S. 2000. An introduction to difference equations. Applied Science books, Springer.

6. Chen, X. 2007. Periodicity in a nonlinear discrete predator-prey system with statedependent
delays, Nonlinear Analysis: Real World Applications, 8(2): 435-446.

7.  Kar, T.K,,Pahari, U.K.2007.Modelling and analysis of a preypredator system withstage-structure
and harvesting, Nonlinear Anal. Real World Appl, 8: 601-609.

8. Sadig Al-Nassir, 2015. Optimal Harvesting of Fish Populations with AgeStructure. Dissertation,
University of Osnabruek, Germany.

9. Song, X. and Guo, H. 2008. Global stability of a stage-structured predatorprey system. Int. J.
Biomath. 1(3): 313-326.

10. Xiao, Y.,Cheng, D. and Tang, S. 2002. Dynamic complexities in predator-prey ecosystem models
with age-structure for predator. Chaos Solitons Fractals, 14: 1403-1411.

11. Sadiq Al-Nassir, 2017. The Dynamics and Optimal Control of a Prey-Predator System. Global
Journal of Pure and Applied Mathematics, 13(9): 5213-5224.

12. Hainzl, J. 1988. Stability and Hopf bifurcation in a predatorprey system with severalparameters.
SIAM J Appl Math, 48(1):70-80.

13. Harrison, GN. 1986. Multiple stable equilibria in a predatorprey system. Bull MathBiol, 42(1):37-
48.

14. Holling, C.S. 1965. The functional response of predator to prey density and its rolein mimicry
and population regulation. Mem. Ent. Soc. Canada, 4: 51-60.

15. Jing, Z.J. andYang, J. Bifurcation and chaos discrete-time predatorprey system. Chaos Solutions
Fractals, 27: 259-277.

16. May, RM.1976. Odter GF. Bifurcations and dynamic complexity in simple ecologicalmodels.
Amer Nature, 110: 573-99,

17. Robinson C. 1999. Dynamical systems, stability, symbolic dynamics and chaos. 2™ed. London,
New York, Washington (DC): Boca Raton.

18. Wang, WD., Lu, ZY. 1999. Global stability of discrete models of LotkaVolterra type. Nonlinear
Anal, 35: 101930.

19. Xia, Y.J., Cao, and Lin, M. 2007. Discrete-time analogues of predator prey modelswith
monotonic or non monotonic functional responses, Nonlinear Analysis. Real World Applications,
8(4): 1079-1095, 14.

20. Beddington, J.R. 1975. Mutual interference between parasites or predators and itseffect on
searching efficiency. J. Animal Ecol. 44: 331-340.

21. DeAngelis, D.L. Goldstein, R.A. and O'Neill, R.\V. 1975., A model for trophic interac-tion.
Ecology, 56: 881-892.

22. Lamontagne, Y., Coutu, C.and Rousseau, C.2008. Bifurcation analysis of apredator-prey system
with generalisedHolling type 11l functional response. Journal of Dynamics and Di_erential
Equations, 20(3): 535-571.

23. Chen L. and Chen F.. 2015. Dynamical analysis of a predator-prey model with square
root functional response. Journal of nonlinear functional analysis, 8: 1-12.

24. R. M. May, 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states.
Nature, 269: 471-477.

25. May, R. M. 1976. Simple mathematical models with very complicated dynamics. Nature, 261:
459-467.

26. Marotto,F.R. 1982. The Dynamics of a Discrete Population Model with Thresh-old.

Mathematical Bio. 58: 123-128.

2187


https://www.springer.com/gp/shop/science-sale?wt_mc=Internal.Textlink.3.EPR868.PP_EN_phy17j_Textlink&countryChanged=true

