
Al-Turath University College Magazine ……….…………………………………………….……………. (21)

Abstract
In this paper, a description of a design for new DES block cipher,
namely DES64X and DES128X. The goals of this design, a part of its
security level, are large implementation flexibility on various operating
systems as well as high performances. The high level structure is based
on the principle of DES and Feistel schema, and proposes the design of
an efficient key-schedule algorithm which will output pseudo-random
sequences of sub keys.
The main goal is to reach the highest possible flexibility, in terms of
round numbers, key size, and block size. A comparison of the proposed
systems on 32-bit, 64-bit operating system, using 32-bit and 64-bit Java
Virtual Machine (JVM), showed that the latter has much better
performance than the former.

 :

 ٦٤ .

 .

mailto:ammar_hussein_2004@yahoo.com

Al-Turath University College Magazine ……….…………………………………………….……………. (22)

 .

 .

 ٦٤ .

1-Introduction
DES is one of the most popular block ciphers. It is a block cipher
encrypting 64 bits of data block with a 56-bit key size. The small key
size and increased computing power of modern computers make DES
unsafe with exhaustive search attack. Therefore, a cipher based on DES
with a larger key size is necessary [1].
DES is used in many and varied crypto-based applications. It is used to
protect the secrecy of login passwords, E-mail messages, video
transmission (such as pay-per-view movies), stored data files, and
internet distributed digital content, etc [2].
In this paper, the objective is to develop a block cipher where the key
and block sizes are significantly large. The proposed block cipher relies
upon the encryption techniques of confusion and diffusion.
Confusion is accomplished through substitution. Specially chosen
sections of data are substituted for corresponding sections from the
original data. The choice of the substituted data is based upon the key
and the original plaintext. Diffusion is accomplished through
permutation. The data is permuted by rearranging the order of the
various sections. These permutations, like the substitutions, are based
upon the key and the original plaintext [3].
The substitutions and permutations are specified in the proposed
system, by the DES algorithm [4]. Chosen sections of the key and the

Al-Turath University College Magazine ……….…………………………………………….……………. (23)

data are manipulated mathematically and then used as an input to a
look-up table. These tables are called the S-boxes and the P-boxes, for
the substitution tables and the permutation tables. In software terms,
these look-up tables are realized as arrays of bytes. Usually the S-box
and P-box are combined so that the substitution and the following
permutation for each round can be done with a single operation. In
order to calculate the inputs to the S-box and P-box arrays, portions of
the data are XORed with portions of the key. One of the 32, 64-bit
halves of the 64,128-bit data and the 64,128-bit key are used. The S-
box, P-box look-up tables, and calculations, upon key and data which
generates the inputs will constitute a single round of feedback to the
system.
The same process of S-box and P-box substitution and permutation is
repeated sixteen times, forming the sixteen rounds of the block cipher
algorithm. There are also initial and final permutations which occur
before and after the sixteen rounds. These initial and final permutations
exist for historical reasons dealing with implementation on hardware
and do not improve the security of the algorithm. For this reason they
are left out of system implementations at capture time. They are,
however, included in this literature analysis as they are part of the
technical definition of the proposed system.

2-Proposed Design Description
The design has two versions, 32-bit and 64-bit. The first one was
designed for 32-bit operating system and using 64-bit block cipher with
64-bit key, the other for 64-bit operating system with same features as
in the 32-bit, however, the key length equal to 128-bit.

Al-Turath University College Magazine ……….…………………………………………….……………. (24)

2.1-DES64X
As illustrated in figure (1), the DES64X is a 16-time iteration of a
round function denoted by ROUND64, which is built as a Feistel
schema [5].
Formally, these functions take 64-bit)64(X , 64-bit round key)64(rK as

input, and 64-bit output)64(Y . The encryption)64(C of a 64-bit plaintext

)64(P is defined as:

)()64()64(mIPP (Use IP from table 1 to permute bits)

)),),......,,(64(......(64)64(1)64(2)64(0)64()64(rr rKrKrKPROUNDROUNDT

)()64(
1

)64(TIPC (Transpose using inverse IP from table 2)

Where

)64(1)64(1)64(0)64(...... rrKrKrKrK , are the sub keys produced by the key

schedule algorithm from the key)64(K .

The decryption)64(P of 64-bit cipher text)64(C is the same as the above

encryption only reversing the process of key scheduling, defined as:
)),),......,,(64(......(64)64(0)64(1)64(1)64()64(rKrKrKCROUNDROUNDP r

Al-Turath University College Magazine ……….…………………………………………….……………. (25)

Figure 1: General Flowchart of the Proposed Block Cipher

Al-Turath University College Magazine ……….…………………………………………….……………. (26)

Table (1): Initial Permutation IP 64-Bit Table (2): Inverse Initial
Permutation IP 64-Bit

2.1.1-The Internal Function
The function, used in DES64X built as Feistel schema, transforms a 64-

bit input)64(X split into left and right 32-bit halves)32()32()64(rl XXX

and a 64-bit round key)64(rK in a 64-bit output)32()32()64(rl YYY is done as

follows:

),(32()(64 64)32(1)32(1)32(1)32()32()32()32()64(rKXfXXXXROUNDYYY rlrrlrl

Figure (2) illustrates the Round Function.

1 2 3 4 5 6 7 8
1 40 8 48 16 56 24 64 32
2 39 7 47 15 55 23 63 31
3 38 6 46 14 54 22 62 30
4 37 5 45 13 53 21 61 29
5 36 4 44 12 52 20 60 28
6 35 3 43 11 51 19 59 27
7 34 2 42 10 50 18 58 26
8 33 1 41 9 49 17 57 25

1 2 3 4 5 6 7 8
1 58 50 42 34 26 18 10 2
2 60 52 44 36 28 20 12 4
3 62 54 46 38 30 22 14 6
4 64 56 48 40 32 24 16 8
5 57 49 41 33 25 17 9 1
6 59 51 43 35 27 19 11 3
7 61 53 45 37 29 21 13 5
8 63 55 47 39 31 23 15 7

Al-Turath University College Magazine ……….…………………………………………….……………. (27)

Figure 2: DES64X Round Function

Function f32 in DES64X consist of three layers, substitution layer
noted as Sub4, diffusion layer noted as Diff4, and exclusive OR as
XOR layer. The 32-bit)32(X 64-bit round key is used as input and 32-bit

)32(Y as an output. Function f32 is defined as:

)32(0)32(1)32(0)32()64()32()))(4(4(4),(32 rKrKrKXSubDiffSubrKXf

The function Sub4 is a method by which as 32-bit as input

)8(3)8(2)8(1)8(0)32(XXXXX and 32-bit as output. Defined as:

)()()()()(4)8(3)8(2)8(1)8(0)8(3)8(2)8(1)8(0)32(XSboxXSboxXSboxXSboxXXXXSubY

This is illustrated in Figure (3).

Al-Turath University College Magazine ……….…………………………………………….……………. (28)

Figure 3: 32-bit Feistel Function

2.2-DES128X
The DES128X is 16 time's iteration of a round function denoted
ROUND128 is built as a Feistel schema, with INVR128 used for
decryption.
Formally, these functions take 128-bit data block)128(X , 128-bit round

key)128(rK as input and 128-bit output)128(Y :

The encryption)128(C of 128-bit plaintext)128(P is defined as:

)()128()128(mIPP (Use IP from table 3 to permute bits)

)),),......,,(128(......(128)128(1)128(2)128(0)128()128(rr rKrKrKPROUNDROUNDT

)()128(
1

)128(TIPC (Transpose using inverse IP from table 4)

Where

Al-Turath University College Magazine ……….…………………………………………….……………. (29)

)128(1)128(1)128(0)128(...... rrKrKrKrK

Note that, the sub keys produced by the key schedule algorithm from
the key)128(K .

The Decryption)128(P of 128-bit cipher text)128(C is the same as the

encryption but in reverse order of key scheduling, defined as:
)),),......,,(128(......(128)128(0)128(1)128(1)128()128(rKrKrKCROUNDROUNDP r

Table (3): Initial permutation IP 128-bit

Table (4): Inverse Initial permutation IP 128-bit

Al-Turath University College Magazine ……….…………………………………………….……………. (30)

2.2.1-The internal function
The function used in DES128X is built as Feistel schema, which
transform a 128-bit input)128(X split into left and right 64-bit halves

)32()32()32()32()128(rrrllrll XXXXX and a 128-bit round key)128(rK in a 128-

bit output)32()32()32()32()128(rrrllrll YYYYY as follow:

)),(64((

)),(64(()(128

64)32(1)32(1)32(1

64)32(1)32(1)32(1)32()32()32()32()32()32()128(

rKXfXX

rKXfXXXXXXROUNDYYY

rrrlrr

lrlllrrrrllrllrl

Figure (4) illustrates the Round Function.

Figure 4: DES128X Round Function

Function f64 in DES128X consists of three parts, substitution part
noted as Sub8, diffusion part noted as Diff8, round key part. This
function takes 64-bit)64(X , 128-bit round key as input and 64-bit)64(Y as

an output.
The function f64 defined as:

)64(0)64(1)64(0)64()128()64())(8(8(8),(64 rKrKrKXSubDiffSubrKXf

Al-Turath University College Magazine ……….…………………………………………….……………. (31)

The function Sub8 is a method that takes 64-bit as input

)8(7)8(6)8(5)8(4)8(3)8(2)8(1)8(0)64(XXXXXXXXX and 64-bit as output.

Defined as:

)((((()()()(

)(8

)8(7)8(6)8(5)8(4)8(3)8(2)8(1)8(0

)8(7)8(6)8(5)8(4)8(3)8(2)8(1)8(0)64(

XSboxXSboxXSboxXSboxXSboxXSboxXSboxXSbox

XXXXXXXXSubY

This is illustrated in Figure (5).

Figure 5: 64-Bit Feistel Function

And the S-Box function is a lookup-up table defined in Table (5):

Al-Turath University College Magazine ……….…………………………………………….……………. (32)

Table 5: DES64X, DES128X S-Box

3-Key-Schedule Algorithm
Key scheduling is used to derive the sub keys and it will be used in the
following manner: first, the key block is divided into halves many
times depending on the size of key block. Then, the halves are
circularly shifted left by either one or two bits, depending on the round.
After being shifted, permutation operation is implemented on these
halves, and finally key production for each round is produced. Because
of the shifting process, a different subset of key bits is used in each sub
key. The key scheduling algorithm is illustrated in Figures 6 and 7.
For DES64X

)64(15)64(1)64(0)64(........... rKrKrKrK

For DES128X

)128(15)128(1)128(0)128(........... rKrKrKrK

Al-Turath University College Magazine ……….…………………………………………….……………. (33)

Figure 6: 64-bit key Schedule (KSched64X)

Figure 7: 128-bit key Schedule (KSched128X)

Al-Turath University College Magazine ……….…………………………………………….……………. (34)

4-Core System Implementation
Java language is popular because of its platform independence, making
it useful in varieties of technologies ranging from embedded devices to
high-performance systems. The platform-independent property of Java,
which is visible at the Java bytecode level, is only made possible owing
to the availability of a Virtual Machine (VM), which needs to be
designed specifically for each underlying hardware platform. More
specifically, the same Java bytecode should run properly on a 32-bit or
a 64-bit VM. In this paper, compare the behavioral characteristics of
32-bit and 64-bit VMs using the proposed design. This is done using
the DES64X and DES128X using JAVA builder 7.0.
The proposed design implementations of DES64X and DES128X are
written for two types of operating systems. By taking the advantage of
the 64-bit operating system, system implementation is done as follows;
for the DES128X, store the two block halves of each round operation in
two separate 64-bit arrays. However, instead of storing them in a 32-bit
format, these are stored in a 64-bit format which resulted from applying
the permutation to a 64-bit array.
Each round then proceeds as follows; the right half, which is already in
a 64-bit array, is XORed with the first half of the subkey, which is also
contained in a 64-bit array. The resulting 64-bit array is divided into
eight groups of eight bits, each of which is used as an index to the S-
box. Then the 128-bit permutation is applied to the 64-bit array and the
result is XORed with the second half of subkey. This mechanism treats
the S-box as a straightforward look up table. The look up table
produces a 128-byte array, rather than a 32-byte array. This result is
then XORed with the left half, which is also stored in a 64-bit format.

Al-Turath University College Magazine ……….…………………………………………….……………. (35)

The primary benefits of a 64-bit OS are in the increased computing
capacity of having twice the bandwidth of data flow and the ability to
use more system memory (RAM) than the 32-bit operating system [6].

5-Proposed Implementation
As mentioned before, the complete design was implemented with the
use of 32, 64-bit OS, with Figure (1) showing the proposed system.
Each of the DES64X and DES128X should support encryption and
decryption. Decryption, in each case, uses the same algorithm as
encryption. The only difference is that the sub keys have to be
generated in a reverse order, as compared with encryption.
Each DESXX begins with Initial Permutation IP and ends with the
inverse of the initial permutation 1IP . This system has the possibility to
process 64,128-bit independent data blocks, which increases the
operation throughput. The DESXX key scheduling can be performed
on the fly. The sub-keys generated by using the proposed key schedule
algorithm.
The key generator consists of 16 rounds. The 64,128-bits input key is
initially divide in to two parts and goes through the appropriate shift
operation and finally passed through a second round permutation for
each sub-key, as illustrated in figures 6 and 7.
At the start, of the 64-bits data block, encryption key is applied on the
key scheduler to pre compute the sixteen 64,128-bit sub keys and store
it as an array of bytes in order to force the appropriate key at the
appropriate time. Finally, the encryption key is forced and DESXX
operates in the encryption mode.

Al-Turath University College Magazine ……….…………………………………………….……………. (36)

6-Functional Description
After an initial permutation, the input data is split into two half words,
left and right. This is followed by 16 rounds of identical operations.
The right word is processed with Feistel function that includes XOR
operation, S boxes substitution and diffusion operation as depicted in
figures 5 and 6. The output of the S boxes is permuted and then XORed
with the left word. The result is used to update the right word array at
the end of each round. Also, the previous right word is stored in the left
word array. The processed key changes at each round as well, owing to
shift and permutation operations in key schedule algorithm. At the end
of the 16 rounds the left and right words are reassembled together and
passed through the inverse of the initial permutation. The DESXX core
is partitioned into two modules as shown in figure 2 and 4.
6.1-Key Process and Initial Permutation methods
In key process, a class is responsible for dividing the input key that is
used at every round. However, in initial permutation it simply performs
an initial permutation of input data bits.

6.2-S-Box Tables
This is a group of 8 input and 8 output look up tables that maps the
incoming 8-bit word into an 8-bit one for DES128X and four-8 input
and 8 output that will map the incoming 8-bit. S-box is usually
implemented as an array of constants that is indexed by the 8-bit input.

6.3-Permutation and Final Permutation Methods.
Permutation method performs a permutation on input data bits while
final Permutation method performs a final permutation of the bits of the
output data.

Al-Turath University College Magazine ……….…………………………………………….……………. (37)

6.4-Mode
This unit controls the mode of the proposed system (if mode=1 the
system is in encryption mode else the system in decryption mode).

7-Overall System Scenario
The proposed system is a block cipher designed to use simple whole-
byte operations. The system is secure and versatile because it uses large
blocks of data and a key. Both key and block size can be chosen to be
64,128-bits. The cipher uses a fix number of rounds equal to 16.
Four different stages are used during encryption and decryption, as can
be seen in Figure 1, including permutation process, applying Feistel
function, XOR operation, and mix operation. The XOR, Substitution,
and permutation stages are explained as follow: The substitute bytes
transformation (S-box) is a simple lookup table. Proposed system
defines a 16 x 16 array of byte values, the S-box, which contains a
permutation of all possible 256 8-bit values. Each byte is mapped to a
new byte in the following manner: The leftmost 4 bits are used as a
column value. Row and column values use as indexes into the S-box to
select 8-bit output.
XOR stage performs a bitwise XOR on 64, 128-bits of the state with
the 64, 128-bits of the round key. The flow of one round of the
proposed block cipher is seen in Figure 2 and 4.

The proposed block cipher is implemented using JAVA Builder 7.0
with a 64,128-bit block size, a 64,128-bit key size, and Feistel schema.
Using two key sizes is sufficient to describe the performance of the
block cipher algorithm in Java. The program is built such that all
arguments are passed from the command line, enabling the program to

Al-Turath University College Magazine ……….…………………………………………….……………. (38)

be called from scripts. Five files are expected: the text file, a file where
the encrypted data is written, a decrypted file where the decrypted
contents of the encrypted file are written. Two file containing the
64,128-bit key in hex format, and a results file. The main method
initializes the variables and ensures that the correct number of
arguments is passed from the command line, initializing the constructor
and then calls the test method.
The test method performs timing functions, results compilation, and
calls encrypt and decrypt methods, which take the key as a parameter.
The encrypt and decrypt functions initialize the cipher with the key and
read in the text file or ciphertext then perform the encryption or
decryption and writing out the results to output files.

8-Testing Data File
The program is designed to encrypt and decrypt five files of different
sizes of 1 0KB, 2MB, 20MB, 200MB and 300MB. The plaintext file
was encrypted and written to a ciphertext file then the ciphertext file
was decrypted and written to a different plaintext file with the speed of
encryption and decryption being timed (capturing several data
components during the process, including the encrypting, decrypting
and current system times). The resulting times of each file being
encrypted or decrypted written to file. The results were then compiled
and analyzed.

9-Experimental Results
Test results were being done using Windows XP SP3 professional 32-
bit and 64-bit operating system with an Intel® Core 2Due Processor

Al-Turath University College Magazine ……….…………………………………………….……………. (39)

T7250 @2.00GHz-2MB L2 Cache and 1024 MB RAM, The compilers
and libraries used are:

• Java Builder 7.0, SDK Standard Edition Version 6.5
• Java Cryptography Extension (JCE) using Crypto++ library and

JCE API [7].
Time of encryption and decryption is calculated by capturing the
current system time using Java system calls immediately before calling
either the encrypt or decrypt methods and capturing the current system
time immediately after the method returns. Finally, the finish time is
subtracted from the start time and the results are written to file.
Look at the overall performance (encryption) for different file sizes, for
the system. Execution time for each algorithm is calculated as
execution time without file I/O (only the cipher block without I/O
memory). Timing is calculated as an average of 5 runs for each
algorithm for a more accurate result. The five different files size are
considered to observe the performance of the algorithm, and resultant
times are recorded.
As mentioned above, five files of differing size were encrypted and
decrypted by each combination: 100KB, 2MB, 20MB, 200MB and
300MB. The plaintext file was encrypted and written to a ciphertext file
then the ciphertext file was decrypted and written to a different
plaintext file with the speed of encryption and decryption being timed
as in table 6,7,8,9. The encryption and decryption process was repeated
5 times to assure that the results are consistent and are valid to compare
the performance on the operating systems. The resulting times of each
run being written to file. The results were then compiled and analyzed.
Comparison of execution times for the DES64X and DES128X
encryption using different file sizes showing in table 6 and 7, and

Al-Turath University College Magazine ……….…………………………………………….……………. (40)

comparison of execution times for decryption same files are shown in
table 8 and 9. A comparison is conducted between the results of
encryption and decryption schemes in terms of the encryption,
decryption time and throughputs. A study is performed on the effect of
changing file size on throughput, and CPU time for each mode of
proposed system.

Table 6: Time consumption of DES64X for encrypt different file size
with out
File I/O (in millisecond)

File
size

32-bit OS 64-bit OS

100KB 24.39 12.5
2MB 487.8 250
20MB 4852 2350
200MB 48780.5 24250
300MB 73170.73 37500

Table 7: Time consumption of DES128X for encrypt different file size
with out File I/O (in millisecond)

File
size

32-bit OS 64-bit OS

100KB 37.037 18.867
2MB 740.7 377.35
20MB 7500.4 3675.5
200MB 73075 37850
300MB 110250.1 56603.7

Al-Turath University College Magazine ……….…………………………………………….……………. (41)

Table 8: Time consumption of DES64X for decrypt different file size
with out File I/O (in millisecond)

File
size

32-bit OS 64-bit OS

100KB 16.94 10.2
2MB 338.9 204.08
20MB 3375.8 2075
200MB 33890.2 20408
300MB 50847.5 30612

Table 9: Time consumption of DES128X for decrypt different file size
with out File I/O (in millisecond)

File
size

32-bit OS 64-bit OS

100KB 23.25 15.38
2MB 465.1 307.65
20MB 4575 3075.9
200MB 46511.6 30796.2
300MB 69767.4 46153.9

This implementation achieved a throughput as shown in tables 10 and
11.

Table 10: Throughput of DES64X to encrypt and decrypt different file
size (Megabytes/Second)

Al-Turath University College Magazine ……….…………………………………………….……………. (42)

32-bit OS 64-bit OS
Encryption 4.1 8
Decryption 5.9 9.8

Table 11: Throughput of DES128X to encrypt and decrypt different file
size (Megabytes/Second)

32-bit OS 64-bit OS
Encryption 2.7 5.3
Decryption 4.3 6.5

10-Conclusions
The work presented here is primarily concerned with the design and
implementation of new DES64X and DES128X on 32, 64 Bit
Operating System Environments. The DES128X system is more secure
but it slows down the encryption when implemented on 32-bit
platform, because it has to do more work for the same amount of input
data in a single execution cycle.
This paper focuses on system implementation based on a 64-bit
platform. The proposed DES64X on 64-bit OS implementation is faster
compared with that on 32-bit. From these results it is easy to observe
that 64-bit operating system has an advantage over other 32-bit
operating systems in terms of throughput for large data. Also DES64X
on 64-bit has almost approximately twice the throughput of DES64X
on 32-bit, in other words it needs half of the time as compared to
DES64X when implemented on 32-bit, to process the same amount of
data.

Al-Turath University College Magazine ……….…………………………………………….……………. (43)

References
[1] Stallings W., "Cryptography and Network Security", Principles

and Practice, 3rd Edition, Prentice Hill, 2002.
[2] Ashish Patel and Ajay Kumar Garg, "Study and Implementation

of Cryptographic Algorithms", 2008.
[3] K. Anup Kumar and S. Udaya Kumar, “Block cipher using key

based random permutations and key based random
substitutions”, March 2008.

[4] Lars Ramkilde Knudsen, "Block Ciphers Analysis, Design and
Applications", PhD thesis, Aarhus University, Denmark, July 1,
1994.

[5] T. Shirai and K. Shibutani, "On Feistel Structures Using a
Diffusion Switching Mechanism", Springer- Verlag, 2006.

[6] Microsoft Help and Support, “Overview of the compatibility
considerations for 32- bit programs on 64-bit versions of
Windows”,
http://support.microsoft.com/kb/896456#XSLTH312012112412012
1120120

[7] Scott oaks, "JAVA Security" 2nd Edition, 2002, O'Reilly &
Associates, Inc.
[8] H. M. Deitel, P. J. Deitel, S. E. Santry, "Advanced Java 2

Platform How To Program", 2001 by Prentice-Hall, Inc.
[9] A.Menezes, P.van Oorschot and S.Vanstone, "Handbook of

Applied Cryptography ", Y 1997 by CRC Press, Inc.
[10] Jonathan B. Knudsen, "Java Cryptography", First Edition May

1998.
[11] W. Mao, "Modern Cryptography Theory and Practice",

Prentice Hall PTR, July 25, 2003.

http://support.microsoft.com/kb/896456#XSLTH312012112412012

