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Abstract 
A procedure for generating liner binary codes with minimum hamming distance 

specified is given. The work involves the theoretical aspect in the form of two new 
theorems. Thus the details are restricted to small values of minimum distance. An 
outline of the procedure for larger values is discussed. The method relies on the fact that 
a linear binary code is a subspace of the vector space of all n-tuples. The construction of 
the code makes use of the properties of the gray code. 

Keyword: linear binary code, minimum hamming distance, and subspace of all binary 
n-tuples. 
 
 

  المستخلص
هذه البیانات یحتاج طاقة في عالمنا الحالي یتم تناقل البیانات الرقمیة عبر شبكات الحاسوب بكمیات هائلة. إرسال 

. هنا التناقل یؤدي الى حدوث إخطاء في البیانات مما یؤدي إلى إعادة إرسالها وهدر  وبذلك كلف مالیة عالیة جداً
  مالي كبیر.

(تحطیم بعض الأجهزة على سبیل  كذلك في بعض الإستخدامات الهامة هذه الأخطاء تؤدي إلى نتائج كارثیة
  أنظمة رقمیة خاصة لتصحیح الاخطاء.المثال). لذلك وجب تصمیم 

هذه الأنظمة تصمم بإضافة بیانات خاصة إلى البیانات الأصلیة تستخدم لتصحیح الأخطاء. هذه الإضافة أیضاً 
همهم هو إرسال أقل از إهتمام عدد كبیر من الباحثین تؤدي إلى كلف مالیة لذلك فأن تصمیم هذه الأنظمة ح

  المعرفة هدفها تقلیل كلف الإرسال.مایمكن من البیانات هذه 
یساهمان في  جدیدتین في هذا البحث نقدم طریقة مبتكرة تصب في تصمیم أنظمة تصحیح الأخطاء ونقدم نظریتین

  التصمیم الكفوء لهذه الأنظمة. أهم صفاتها هو الحصول على أقل عدد من الرموز لقابلیة تصحیح أخطاء معینة.
1. Introduction 

   An (n, M ,d) code may be defined [1] [2] ,and [6] of M binary vectors of length n, 
called words, such that any two codewords differ in at least d places. n is called the 
block length of the code and d is the minimum distance of the code. Since the 
principle of coding is such that a block of k information digits is encoded into a 
codeword of n digits for error correction, then M=2k for binary codes. Thus the code 
may also be symbolized by (n, k, d) or more usually (n, k). We shall use both of 
these notations. 

 
1.1. The Coding Problem 

   According to the following theorem [1],[6]; "An (n, k, d) code can correct t≤
|[ௗିଵ

ଶ
] errors (here |[x] denotes the greatest integer≤  efficient code need to have ;"(ݔ

small n (for speed), a large d(to correct many errors ). These are conflicting aims. 
The coding theory problem is stated as follows [1] [13]: 

“Given n and  d, to find a code with the greatest possible M (alternatively, given n 
and M, to find a code with the greatest d)”. 
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In this work we deal with the problem of obtaining linear binary codes, (i.e. n and 
k) for specified d. This is also emphasized by Macwilliams and Sloane [2], and 
Brower, et al [3] who state that “the function A (n, d) defined as the maximum 
number of codewords in a binary code of block length n and minimum distance at 
least d, is of considerable interest in coding theory”. 

 
1.2.  Related Work 

   The above problem has been dealt with by many. But the most notable is the 
early work of  Plotkin [4]. His work establishes upper bounds for the number of n-
digit points in codes of minimum distance d  with certain properties. He also gives 
the systematic construction of codes for given n, d. But the codes that contain the 
greatest possible numbers of points are obtained only for some n, d. The method 
given is involved and implementation is not easy. 

   The work of  Plotkin is also discussed by Quistorff  [5]  where the   Plotkin 
upper bound on the maximal cardinality of a code with minimum distance at least d 
is applied to q-ary codes preserved with the Hamming metric as coincident. The 
Plotkin bound is given by  A(n, d) ≤ 2m ≤ 2d/2d-n, if 2d >n where A (n, d) is the 
number of code points and m€N. 

 Macwilliams and Sloane [2] gave the equivalent bound A (n, d)	≤ 2 |[ d/2d-n ] 
and Berlekamp gave the bound Aq (n, d) ≤	 ௗ௤

ௗ௤ି௡
 if dq  >n for a q-ary   code, 

depending on the Plotkin bound above. 
 Ward [7] discusses the problem of designing codes with guaranteed  minimum 

distance, and gives as a consequence the Gilbert-Varshamov  bounds, and the Plotkin 
upper bounds, with their derived asymptotic bounds as well as the Griesmer bound. 
[27] These bounds result from dealing with the problem. They are all derived by 
using rather complex algebraic techniques and do not give exact results in most 
cases. Codes which satisfy the equality of the bounds are called perfect codes. The 
above problem and related bounds and their importance are also indicated by Hall 
[8]. 

The algorithmic part of the problem of finding all codewords in a C  within a 
Hamming distance d is discussed by Sudan [9]. The aim is to apply the result to 
bounded distance decoding. Spielman [10] presented the first known code that is 
encodable in linear time. However Vardy [11] suggest that in general one cannot 
compute d in polynomial time. 

Spanning a code by its minimum-weigh vectors (a problem similar  to finding a 
code C for a certain d) is discussed for specific codes by Ding and Key [12]. The 
similar problem for codes constructed from conference matrices is discussed by 
Gulliver and Harada [14], and for the perfect codes by Etzion and Vardy [15]. For 
self dual codes construction given a certain minimum weigh (minimum distance) 
bound is investigated by Sloane and Thompson [16], by Bachoc [17], [26],and[28]. 

    An important related problem is the construction of constant weight codes. The 
maximum number of codewords in a binary code of block length n and constant 
weight w, is required for a give bound on the minimum distance d. This is 
investigated by Nguyen, Gyorfi, and Massey [18]. 
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    As noted above the error correction capability of a code depends on the minimum 
distance. A great deal of work exists related to bounds on the minimum distance for 
example [19]. [20],[21], and [30]. Finding specific codewords with specific weight 
has also been dealt with, for example [22], [23], [29]. 

 

1.3.  Present Work 
   The work presented in essence deals with the problem of finding the minimum 

Hamming distance. As pointed out above, this is an important coding problem and 
most existing methods depend on involved mathematical tools. Thus making the 
algorithmic implementation rather complicated. Here we give new result which is 
rather straightforward and clean. This is achieved by dealing with the problem from 
basic principle, which of developing codes as a subspace of the binary vectors space 
of all binary n-tuples. Combinations of the vectors in this vector space are needed for 
the construction of the codes as well as establishing the subspace which facilitates 
the generation of groups of such combination. The construction of the codes use the 
well known gray code. The codes obtained are optimum i.e. for a given (n, d) the 
maximum k (information digits) are obtained. 

 

2.  The X(n) blocks 
  We give a theorem which deal with the generation of what we call the x(n) block 

defined below. These are obtained from the vector space of all possible n-tuples. The 
theorem is a general result and is used in investigating as a subspace the generated 
code. 

  2.1  The x(n) block 
         It two binary n-tuples say u and v are added mod. 2,then, 
ݑ + ݒ = 			ݖ ⟶ ݑ		 + ݖ = 	ݒ ⟶ ݒ			 + ݖ =  (1)ـــــــــــــــ                                ݑ
Considering all possible combinations of a binary n-tuple then all possible sets (u,v,z) 

are obtained. If we consider the element u then all possible sets having u as a 
common element constitute a block of such sets in each of which u appears for 
example having 2 as the common element and using decimal notation we have for 
n=4, 

 
We shall refer to such blocks as 2(4) for this example and in general 
x(n), where x is the element u and  n  the size of the binary tuple. 

 
 
Theorem (1) 

      The x(n) blocks are given by 
(i) For x=2i  ,  i=0,1,2,….,r 

Such that   r=m | x=1 , and 
M= |[2n -2|2x] .                                                               (2) ــــــــــــــ 

              The sets generating the blocks are 
              (x, vx + jx , vx + kx)                                                              (3) ــــــــــــــ 
       where, vx =2ux, u=1,2,…., m                                                      (4)  ــــــــــــــ 

         jx =0, …, x-1                                                                     (5)ـــــــــــــــ 
and  kx= jx +x                                                                             (6)ـــــــــــــــ 

(2, 4, 6) 
(2, 5, 7) 
(2, 8, 10) 
(2, 9, 11) 
(2, 12, 14) 
(2, 13, 15) 



 ٢٠١٤العدد الخاص بالمؤتمر العلمي الخامس            الجامعة                            مجلة كلیة بغداد للعلوم الاقتصادیة  
 
 

6 

(ii) For x even ≠ 2i  , i=0, 1, …, r 
The sets generating the blocks are (x, vx+ jx, vx+ kx) where with 

K=൥
݇ଵ
݇௜
݇௟
൩		 , ݇௜ = ݇௫ି௔		, ݈ =  (7)	ــــــــــــــ																																									,				ܽ

 

                       A=൥
ଵܣ
௜ܣ
௟ܣ
൩		 , ௜ܣ = (−1)௜ାଵܤ	, ݅ = 1,… ܾ		ℎݐ݅ݓ	ܾ = |݆௫|	/∗ܽ		,	  

 

ܤ                 = ൥
ܾଵ
௜ܾ

௟ܾ

൩	 , ௜ܾ = ܽ	, ݈ =  (8)  ــــــــــــــــ                                             ,ܽ

 

       and   ܶ =	 ൥
ଵݐ
௜ݐ
௟ݐ
൩ = ܭ +  (9)ــــــــــــــــــ                                                            .ܣ

      the sets are such that. 
௫ݒ                    = ݆௫				,				௫ି௔ݒ = ݆௫ି௔	 ,  and  ݇௫ = ௜ݐ 	, ݅ = 1,… ,  (10)ـــــ        ܽ

       Where a is the least value taken from ܽ = 2௭ିଵ ,  z=2, 3, …., m such that 
                 x/a  is an odd number                                                     (11)ــــــــــــــــ 

(iii) For  x  odd, ݔ ≥ 3 
The set generating the blocks are 
,ݔ) ௫ݒ + ݆௫ 			, ௫ݒ + ݇௫)                                                  (12)ـــــــــــــــــ 

                Such that: ݒ௫ = ௫ݒ −  (13)ــــــــــــــــــ                                                    1
                                  ݆௫ = ݆௫ −  (14)ـــــــــــــــــ                                                     1
                                  ݇௫ = ݇௫ିଵ + (−1)௝ೣ                                      (15)ـــــــــــــــــ 
Proof: without loss of generality take n=4 
            For  ݔ = 2௜		, ݅ = 0	, 1	, … . , ݉ 
          Take  ݔ = 1	, 2	, 4 we have 

 
 
 
 
 
 
 
 

Respectively                       ـــــــــــــــــــ
                                               (16) 

For ݒଵ = 2	, ଶݒ = 4	, and ݒସ = 8  we have 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــ  
*|݆௫| = number of elements in  ݆௫ 

4 , 6 
 5 , 7 
    .    
 9 , 13   
    . 
13 , 15 

2 , 3 
4 , 5 
   . 
   . 

14 , 15 

8 , 12 
   . 
   . 
   . 
11 , 15 
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and 
 
 
 
 
  

Respectively ـ  ـــــــــــــــــ        
                                                             (17) 
Similar pattern is obtained for x=8, 18, … It is clear from above that; 

(i) Extension to n >4 is obvious. 
(ii) For ݆௫ = 0,… , ݔ − 1	the second element in the block is ݒ௫ + ݆௫ . The third 

element is ݒ௫ + ݇௫ with ݇௫ = ݆௫ +  ݔ
 
 

(iii) For u= 1, 2, …, m,  the effect of  x  and  n  on the construction of the blocks 
is given by ݉ = |[2௡ −  (18)ــــــــــــــــــ                         [ݔ2/2

          and obviously   ݒ௫ =  .ݔݑ2
     For  x  odd 

       By Considering two successive  n  binary tuples  x=w ,  and x=z  say, where the 
corresponding. Decimals are even and odd, respectively. Obviously  w  and  z  
differ only in the right most digit, being a 0 for  w  and a I  for  z. Thus replacing  w  
by  z  affects only the third element in each set of the block for  w, increasing or 
decreasing its decimal value by one according to whether the binary  n-tuple 
corresponding to the second element in the set has a 0 (increasing) or a 1 
(decreasing) as its right most digit. Clearly this applies for all values of n, Thus we 
have relations (13), (14), and (15) above. 

       For  x  even,  ࢞ ≠ ૛࢏	࢏  , = ૙, ૚, ૛,…  ࢓,

      Without loss of generality let us take  n=5, then all the even decimal      numbers 
for gray code are: 
0, 1, 2, 4, 6, …, 26, 28, 30. 
First consider x =6. Obviously: 
଺ݒ = ସݒ =   ,଺ିଶݒ
݆଺ = ݆ସ = ݆଺ିଶ,  

଺ݐ = ݇଺ =	k4+ A4 , and T= K+A= 

⎣
⎢
⎢
⎡
݇଺
	.	.
	.
݇଺⎦
⎥
⎥
⎤
 +A 

,ଵݒ ଵݒ + 1 
ଵݒ + 2	, ଵݒ + 3  
             . 
             . 
ଵݒ + 12, ଵݒ + 13 

          

,ଶݒ   ଶݒ + 2  
ଶݒ  + 1	, ଶݒ + 3  
           . 
           . 
ଶݒ + 9, ଶݒ + 11 

,ସݒ    ସݒ + 4  
ସݒ  + 1	, ସݒ + 5  
            . 
            . 
ସݒ   + 3, ସݒ + 7    
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where A= ൦

+2
+2… .
−2
−2

൪ = ൤ܣଵܣଶ
൨	 , ݅. ଵܣ		.݁ = ܤ = ቂ22ቃ	, ଶܣ =  ܤ−

Thus ܣ௝ = (−1)௝ାଵ	ܤ, ݆ = 1,2 
This is so since 4 and 6 as binary tuples differ only in the second digit from the 
right. These digits appear in the set of all possible n-tuples in group of two 0’s and 

two 1’s. For the 0’s ൤݇଺݇଺
൨ = ൤݇ସ݇ସ

൨ +ቂ22ቃ, and for the 1’s, cancellation results in k6 

number of elements in A is |j4| and the number of sub matrices in A is given by: 
|௝଺|
ଶ
= ସ

ଶ
= 2. The same argument apply to numbers 10, 14, 18, …, i.e. 

The difference lies in the construction of A whose elements depend on ݆௫ and j=1, 2, 
…, b where b =|௝௫|

ଶ
, and taking ܽ=2 we see that B = ቂܽܽቃ , and that for any x, x-6 is a 

multiple of 4= 2a.now consider x= 12. 
ଵଶݒ = ଼ݒ =   ,ଵଶିସݒ
݆ଵଶ = ଼݆,  

⎣
⎢
⎢
⎡
݇ଵଶ
	.	.
	.
݇ଵଶ⎦

⎥
⎥
⎤
=

⎣
⎢
⎢
⎡
଼݇
	.	.
	.
଼݇⎦
⎥
⎥
⎤
+ ܣ = ܣ	݁ݎℎ݁ݓ,ܶ = ൤ܣଵܣଶ

൨,			 ଵܣ	 = ቎
4
4
4
4

቏	,			ܣଶ = ቎
−4
−4
−4
−4

቏	  

This is so because the corresponding binary tuples differ only in the third digit from 
the left. These digits appear in groups of four 0’s and four1’s in the set of all 
possible n-tuples. Following the same procedure as above we have: 
j=1, 2, …,b, b=|௝௫|

௔
	 , ܽ = 4 

B = ቎
ܽ
ܽ
ܽ
ܽ
቏  , for any x, x-12 a multiple of 8=2a, and T=

⎣
⎢
⎢
⎡
଼݇
	.	.
	.
଼݇⎦
⎥
⎥
⎤
+൤ܣଵܣଶ

൨ 

In summary, 
1) a =2 starting ݔଵ= 6 
     a =4 starting ݔଵ= 12 
     a =8 starting ݔଵ= 24 and so on.                                         ـــــــــــــــــــ  (19) ـ
2) The change is in ݇௫ only, through A, whose construction depends entirely on x. 
3) All the above result depend on a. Thus deciding a is crucial, since; 

௫ݒ =  ௫ି௔ݒ
݆௫ = ݆௫ି௔  
݇௫ = ݇௫ି௔ + ௜ܣ =ti , where A depends on B whose elements are ܽ. 

       Let us start by x=x1. Thus for any positive integers x, and y: 
          x – x1 = y(2a) = 2ya                                                     ــــــــــــــــــ  (20) ـ

୶
ୟ
= ݕ2 + ୶ଵ

ୟ
 , obviously for (20) to hold, and from (19), ୶ଵ

ୟ
 must be odd;but 2y is 

even. 
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       Therefore ୶
ୟ
 must be odd. Thus we have the general result ୶

ୟ
 must be odd for the 

least = 2௭ିଵ , i=1, 2, 3, …, m. 
2.3. Examples 

 Two examples are given which cover all cases in theorem (1). Let n=5 for 
simplicity, 
Example 1:  x=14, now x=14 ≠ 2௜ for any  i. Thus we use equations (7), (8), (9) 
and (10). First we must find a. 
Starting with  z=1,  i.e.  a=2,  which gives x/a = 14/2=7 (odd). Thus, by (9), (10), 
and (11) we get: 
ଵସݒ	            =  (21)ــــــــــــــ                                                                         ଵଶݒ
             ݆ଵସ = ݆ଵଶ                                                                        ـ    (22)ــــــــــــــ
            ݇ଵସ =t12                                                                                (23)ــــــــــــــ 

   Now for (23) t12 has elements k12, and we only know B = ቂ22ቃ. To find     j12, and 
k12: 

    here  x= 12 ≠ 2௜ for any  i. Thus by (8), (9), and (10) we get: 
ଵଶݒ	            =  (24)ــــــــــــــــ                                                                       ଼ݒ
             ݆ଵଶ =  ـ                                                                      ଼݆   (25)ــــــــــــــــ
            ݇ଵଶ = t8                                                                       (26)ــــــــــــــــــ 
And t8 has ଼݇ as elements since z=3, a=4. To find ଼݆ and ଼݇:here x=3, i.e.  

i = 3. Therefore m=|[ଷ଴
ଵ଺
	]=1. Thus u = 1, v8 = 16, and by (5) and (6):  

଼݆ =0, 1, 2, 3, 4, 5, 6, 7 and 
଼݇ = 8, 9, 10, 11, 12, 13, 14, 15,. 
Now from (26) and (8). 

              B = ቎
4
4
4
4

቏  , b= 8/4 = 2, and j = 1,2 

Thus  t12 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
8
9
10
11
12
13
14
15⎦
⎥
⎥
⎥
⎥
⎥
⎤

	+ 	൤ܣଵܣଶ
൨ = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
12
13
14
15
8
9
10
11⎦
⎥
⎥
⎥
⎥
⎥
⎤

	   

 
From (23) and (8) we get: 

          B = ቂ22ቃ , b = 8/2 = 4, j= 1, 2, 3, 4, 
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ଵܣ         = ଷܣ = ቂ22ቃ , ܣଶ = ସܣ = ቂ−2−2ቃ . Thus ݇ଵସ =	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
14
15
12
13
10
11
8
9 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

	   

The 14(5) block is therefore: 
  (14, 16, 30) 
(14, 17, 31) 
(14, 18, 28) 
(14, 19, 29) 
(14, 20, 26) 
(14, 21, 27) 
(14, 22, 24) 
(14, 23, 25) 

It is interesting to make a comparison between ଼݇, ݇ଵଶ and ݇ଵସ. It is also   
interesting to note that: 
ଵସݒ        = ଵଶݒ = and ݆ଵସ ଼ݒ = ݆ଵଶ = ଼݆ 

Note that infact we find blocks for x=8 and x=12 in finding the block for x=14. This 
is not always the case. It depends on how far is the value of  x  for  the required block 
from an  x  given by  x=2௜. 

    Example 2:    x=13. Since  x  is odd then by (13), (14), and (15): 
ଵଷݒ  = ـــــــــــ ـــــ                                                                             ଵଶݒ (27) 
  ݆ଵଷ = ݆ଵଶ                                                                               (28)ــــــــــــــــ 

    ݇ଵଷ = ݇ଵଶ +	(−1)௝ଵଶ                                                            (29)ــــــــــــــــ 
now from example 1, we have: 

ଵଷݒ      =  (30)ــــــــــــــــــ                                                                                ଼ݒ
      ݆ଵଷ =  (31)ــــــــــــــــــ                                                                                ଼݆

thus ݇ଵଷ = ݇ଵଶ + (−1)௝଼ =13, 12, 15, 14, 9, 8, 11, 10. 
 

The 13 (5) block. Is therefore:   
 

 

 

 

 

 

  (13, 16, 29) 
(13, 17, 28) 
(13, 18, 31) 
(13, 19, 30) 
(13, 20, 25) 
(13, 21, 24) 
(13, 22, 27) 
(13, 23, 26) 
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3. Codes with minimum distance    d=3  and  d=4 
Starting with a specific   d  various values for  n  and  k  can be decided since 
according to standard coding theory [24], a linear block code is a subspace of the 
vector space ݒ௡ of  n binary vectors i.e. it is such that: 
(i) It contains the zero vector (or codeword). 
(ii) The sum modulo two of any two vectors (codewords) is another vector 

(codeword) in the subspace. Finding such a subspace is possible but 
containing the maximum number of vectors is not an easy task. 

3.1.Gray Code: 
     The gray code is a reflected cod which can be constructed  recursively 
[25], so that. 
a) A 1 bit gray code has two codewords, 0  and 1. 
b) The first 2n codewords of an  (n+1) bit gray code equal the codwords of 

an  n  bit gray code written in order with a leading  0 appended. 
c) The last 2n codewords of an (n+1) bit gray cod equal to the codewords of 

an n bit gray code, but written in reverse order with a leading  1  
appended. 

For example  a 4 bit gray code in decimal notation is  
 (32)ــــــــــــــــ                   8  9  11  10  14  15  13  12  4  5  7  6  2  3  1  0
From above it is clear that the hamming distance  H  for consecutive 
codewords is H=1. 
also H = 2 for even (in distance) consecutive codewords. These properties 
play an important role in the work that follows. 
In the following we shall use decimal notation, for this gives the result in a 
neat form. Otherwise working in binary is very tedious. 
 

3.2.Codes having minimum hamming distance  d = 3: 
      This is an important case, since some important codes exist having d =3; 
in particular the hamming code. But most importantly here the procedure 
leads to the development of the case for  d  >3. 
To illustrate we use block lengths, n = 6,7. The first step is to partition the 
code block length  n  into two parts n1, and n2 . If n even then n1= n2 . If  n is 
odd then | n1 - n2| =1 
For n=6  , n1= n2=3 . The 3 bit gray code used is 0,1,3,2,6,7,5,4 . The first 
codeword is 00 (in binary  000000). From this the codeword 07 (in binary 
000111) is derived, since the hamming distance between 0 and 7 is 3. 
The structure of the codewords is shown in fig below. 

        Here H means hamming distance. 
The 8 codewords are; 
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00    31    63    52 
07    36    64    55 
Or in binary                                                                    ـ   (33)ـــــــــ
000000      011001       110011      101010 
000111      011110       110100      101101 
Also note that 
(i) O              1 ,  1                3 ,  3               2 all have  H = 1. 

(ii) 7 
						ுୀଵ					
ሱ⎯⎯⎯⎯⎯ሮ 6 , 6 

						ுୀଶ							
ሱ⎯⎯⎯⎯⎯⎯ሮ 4  ,  4 

						ுୀଵ					
ሱ⎯⎯⎯⎯⎯ሮ 5 

The code is a subspace. This is so for using result from theorem (1) given by 
blocks in the appendix we get, for example, 

		
యల
ఱమ
଺ସ
								

ఱఱ
యభ
଺ସ
											

లయ
యభ
ହଶ
				by	using	the	sets		  

 (3, 5, 6)  ,  (2, 4, 6)  , (1, 4, 5)  , and (1, 2, 3) 
           Notes: 

(i) Since the sets of codewords (0, 7)  ,  (0, 13)  , (0, 14) ,and(0, 11)  all 
have  H=3 then any of them can be taken as codewords associated 
with the codeword  00. 

(ii) The number of the codewords is the maximum possible. This is 
obvious because we are using the 3 bit gray code. 

(iii) K (the number of information digits) is given by 2k =number of 
codewords,  here  k = 3. 

(iv) Since  k and  n are known, then we can obtain the generator matrix 
G. It is given by the codewords 46, 25 and 13. note that  4, 2, and 1 
are chosen to given G in standard form. Thus 

G = ቈ
100
010

110
101

001 001
቉   This  G is the same for an (6, 3) code with d=3 

given by [24] 
For  n=7 ,  n1 = 4  ,  n2 =3 .  For   n1  we use the 4 bit gray code 
0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8. 
For n2 we use the 3 bit gray code. For the same  n, k, d, many codes 
can be obtained. 
For example: 
00     31     63     52     126     157     105     94 
 (34)ـــــــــ                93     102     150     121     55     64     36     07
Or  the code may be 
00       13       36     25       63       70       55      46 
 (35)ـــــــــــ          49    510     715     612     210     39     112     015
However the construction of both codes is similar and also to  n=6. 
For the code in (35) the construction is shown in fig below for the 
first three codewords 
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     Notes: 
(i) The  codewords are the maximum possible therefore the code is optimum. Also 

k =4 which is the maximum. 
(ii)The code is a subspace. This can be checked using theorem (1) 
(iii) Any of the sets (0,7) , (0,13) , (0, 14) and (0,11) can be used as the 

codewords associated with the codeword 00. 
(iv) The generator matrix G can be obtained by  

  G = ቎
1000
0100

110
101

0010
0001

011
111

቏ 
46
25
13
015

 (36) ــــــــــــــ                                         

This is the hamming code [24] which is known to be an optimum code  i.e. having 
the maximum  k  for given  n  and d. 
 

 
3.3. Theorem (2) 

For  d=3, 4 we have the following theorem for the construction of the code. 
Theorem (2): 

All the codewords of a linear binary code having minimum  hamming distance  d=3  
or  d =4 and block length  n  are generated (using decimal notation) as pairs (u, z)  , 
and (u, v) by 

u1z1 , … ui zi ,…, um zm 
u1v1 , … ui vi ,…, um vm                                                     (37)ـــــــــــــــ 
with ui zi and ui vi are codewords such that ui=n1 bits, zi= vi=n2 bits, n1+ n2=n and if  n  

even, n1= n2 and if  n odd | n1 - n2|=1. 
Where: 

(i)  ui , zi  , vi , i = 1,…,m are taken from the gray code of block length n1    suc such 
that w (ui+ ui+1)=2                                                   (38)ــــــــــــــ 
and w (zi+ zi+1)=1, where w is the weight of the codeword. 
for   d=3 , w (zi+ vi)=3, and                                             (39)ــــــــــــــ 
for   d=4    w (zi+ vi)= 4 
Proof:   for d=3 

 For the first row in (37). The  ui , i=1, …, m. are taken in sequence according to the 
sequence in the gray code such that consecutive codewords have  H=2; i.e.  u1=0 ,  
u2=3 and so on. 



 ٢٠١٤العدد الخاص بالمؤتمر العلمي الخامس            الجامعة                            مجلة كلیة بغداد للعلوم الاقتصادیة  
 
 

14 

The zi, i=1, …, m. are taken in sequence according to the sequence in gray code such 
H=1 for consecutive codewords, i.e. z1=0 ,   z2=1   ,   z3=3  and so on. Thus  w (zi+ 
zi+1)= ≥ 1                   (40)  ـــــــــــــــــــ 
Hence w [ (ui , zi) + (ui+1, zi+1) ] = w (ui+ ui+1)+ w(zi+ zi+1)≥3. 
For the second row in (37). Taking a codeword in the first row and its partner in the 
second row we have. 
w [(ui zi) + (ui vi)] = w (ui+ ui) + w (zi+ vi)=0+w(zi+ vi)=3, 
taking  w (zi+ vi)=3, using theorem (1). 

Now consider the codeword, ܾܽ			݀݁ܽܿ		݂݀     we need to show that (ab+de) is a codeword. 

That is to show that the code obtained is a subspace. The first  4  codewords of the 
code are, 00			310ݏ		ݒ3  which gives  w (0+s)= w (1+v)= w(s)=3                                                                  
  (41) ــــــــــ

Let  t = (a+d)  , and  x=(b+e). Then by (41)  w (b+c) =w (e+f)=s 
We have b + c=s and e+f=s. Hence (b+e)+(c+f)=0. 
Implying c+f=x. thus (a+d)(b+e)=tx and (a+d)(c+f)=tx 
Let y=(b+f) then by similar argument we have 
(a+d) (b+f)=ty  , (a+d) (e+e)= ty. Now we have to show x+y=s. 
Since b+e=x, b+f=y which gives  e+f=x+y=s. thus tx and ty are codewords. 
For d=4,  we have for (40)   w (zi+ zi+1)≥2 
Hence  w[(ui , zi) + (ui+1 zi+1)] ≥4 
Also  w(ui  zi +ui  vi)=4 by taking  w (zi+ vi)=4 from theorem (1). Now consider the 
codewords ܽܽ			݀݀ܽܿ		݀݁  (42)ــــــــــــــــــــ                        
We need to show that (aa+dd) is a  codeword which is obvious. Also we need to show  
ac  de  is a codeword. Consider the first  4  codewords 00			330ݏ		ݒ3   then ,  w(0+s)= 
w(3+v)= w(s)=4.         (43)ــــــــــ 
Let  x=(a+c) then by (43)  w(a+c)=w(d+e)=s,  we get (a+c) = (d+e) =s,  giving a+d= 
c+e=x implying  xx is a codeword. 
Let  y =a+e  then by (42)  a+e= c+d=y. giving  xy  as a codeword thus the resulting 
codewords are 

ݔ			ݔ
ݕ		ݔ . 

4. Discussion    
    We shall briefly discuss extension to d > 4, and based on the ideas implied by 
theorems (1) and (2). Consider two codewords, for example, (u  v) and (z  x). Since 
for any minimum distance it is required that w ( (u  v)+(z  x)) ≥ d, then two main 
possibilities exist: 
i. u = z, w (v + x) =d 
ii. w = (u + z) = q, w (v + x) ≥ d- q 
q may be the d for a previously obtained code, for example, if q = 3 and present d = 
7, then  u and z are of length 3, while  v  and x are of length 4. All of these are 
previously obtained codewords for code, with d < 7. Since the 0 codeword is part of 
the code, then it is possible to start with code words (0  0) and (0  d) and choosing the 
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succeeding codewords by a procedure similar form of previously obtained codes. As 
d increases, n  and  k increase and become large. 

5. Conclusion 
    In attempting to design liner binary codes with specific minimum distance, it 

became necessary to guarantee that the codewords constitute a subspace. Thus 
investigation of all combinations of a binary n-tuple revealed a process embodied in 
theorem (1) by which set of three binary n-tuples, where in each set each element 
result from mod 2 addition of the other elements, are generated in blocks where all 
the elements of a block have a common element. 
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Appendix: 
(A) The following x(n) blocks generated by theorem (1) for  n = 5 

 
 1(5)                  2(5)                  3(5)                   4(5)                     5(5) 
(1, 2, 3)           (2, 4, 6)           (3, 4, 7)              (4, 8, 12)            (5, 8, 13)  
(1, 4, 5)           (2, 5, 7)           (3, 5, 6)              (4, 9, 13)            (5, 9, 13)                       
(1, 6, 7)           (2, 8, 10)         (3, 8, 11)            (4, 10, 14)          (5, 10, 13)                                
(1, 8, 9)           (2, 9, 11)         (3, 9, 10)            (4, 11, 15)          (5, 11, 13)                                     
(1, 10, 11)       (2, 12, 14)       (3, 12, 15)          (4, 16, 20)          (5, 16, 13)                                
(1, 12, 13)       (2, 13, 15)       (3, 13, 14)          (4, 17, 21)          (5, 17, 13)                                    
(1, 14, 15)       (2, 16, 18)       (3, 16, 19)          (4, 18, 22)          (5, 18, 13)                                    
(1, 16, 17)       (2, 17, 19)       (3, 17, 18)          (4, 19, 23)          (5, 19, 13)                                
(1, 18, 19)       (2, 20, 22)       (3, 20, 23)          (4, 24, 28)          (5, 24, 13)                             
(1, 20, 21)       (2, 21, 23)       (3, 21, 22)          (4, 25, 29)          (5, 25, 13)                                      
(1, 22, 23)       (2, 24, 26)       (3, 24, 27)          (4, 26, 30)          (5, 26, 13)                                    
(1, 24, 25)       (2, 28, 30)       (3, 25, 26)          (4, 27, 31)          (5, 27, 13)                           
(1, 26, 27)       (2, 29, 31)       (3, 28, 31)                                                                                                                     

           (1, 30, 31)                              (3, 29, 30) 
 
    6(5)               7(5)                 8(5)                   9(5)                   10(5) 
(6, 8, 14)        (7, 8, 15)         (8, 16, 24)         (9, 16, 25)          (10, 16, 26)  
(6, 9, 5)          (7, 9, 14)         (8, 17, 25)         (9, 17, 24)          (10, 17, 27)                       
(6, 10, 12)      (7, 10, 10)       (8, 18, 26)         (9, 18, 27)          (10, 18, 24)                                
(6, 11, 13)      (7, 11, 11)       (8, 19, 27)         (9, 19, 26)          (10, 19, 25)                                     
(6, 16, 22)      (7, 16, 14)       (8, 20, 28)         (9, 20, 29)          (10, 20, 30)                                
(6, 17, 23)      (7, 17, 15)       (8, 21, 29)         (9, 21, 28)          (10, 21, 31)                                    
(6, 18, 20)      (7, 18, 18)       (8, 22, 30)         (9, 22, 31)          (10, 22, 28)                                     
(6, 19, 21)      (7, 19, 19)       (8, 23, 31)         (9, 23, 30)          (10, 23, 29)                                           
(6, 24, 30)      (7, 24, 22)                                  
(6, 25, 31)      (7, 25, 23)                                   
(6, 26, 28)      (7, 26, 26)                                
(6, 27, 29)      (7, 27, 30) 
 
    11(5)               12(5)               13(5)                 14(5)                15(5)    

          (11, 16, 27)      (12, 16, 28)     (13, 16, 27)      (14, 16, 28)        (15, 16, 31) 
          (11, 17, 26)      (12, 17, 29)     (13, 17, 27)      (14, 17, 28)        (15, 17, 30) 
          (11, 18, 25)      (12, 18, 30)     (13, 18, 27)      (14, 18, 28)        (15, 18, 29) 
          (11, 19, 24)      (12, 19, 3)       (13, 19, 27)      (14, 19, 28)        (15, 19, 28) 
          (11, 20, 31)      (12, 20, 2)       (13, 20, 27)      (14, 20, 28)        (15, 20, 27) 
          (11, 21, 30)      (12, 21, 24)     (13, 21, 27)      (14, 21, 28)        (15, 21, 12) 
          (11, 22, 29)      (12, 22, 26)     (13, 22, 27)      (14, 22, 28)        (15, 22, 25) 
          (11, 23, 28)      (12, 23, 27)     (13, 23, 27) 
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(B)  To show that the code in (35)  is a subspace by using the result for  x(n)  blocks in 
(A) above. 

00       13       36     25       63       70       55       46 
015     112     39     210     612     715     510     49      

By construction;  
0
15
15

       
3
12
15

        
6
9
15

   similarly for (5, 10), (3, 12). 

(0, 15) , (5, 10) , and (6, 9). For the rest of the codewords we have. 

 
13
36
25

          
13
63
70

           
13
55
46

         
13
39
210

         
13
612
715

          
13
510
49

    

 

 
112
36
210

        
112
25
39

        
112
63
715

        
112
70
612

         
112
55
49

          
112
46
510

    

 

 
36
612
510

        
36
715
49

        
36
510
612

        
6
49
715

   

 

 
36
612
510

        
36
715
49

        
36
510
612

        
36
49
715

   

 

 
39
63
510

         
36
70
49

         
36
55
612

        
39
46
715

   

And so on for all codewords. 

  


