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Abstract

A procedure for generating liner binary codes with minimum hamming distance
specified is given. The work involves the theoretical aspect in the form of two new
theorems. Thus the details are restricted to small values of minimum distance. An
outline of the procedure for larger values is discussed. The method relies on the fact that
a linear binary code is a subspace of the vector space of all n-tuples. The construction of
the code makes use of the properties of the gray code.

Keyword: linear binary code, minimum hamming distance, and subspace of all binary
n-tuples.
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1. Introduction
An (n, M ,d) code may be defined [1] [2] ,and [6] of M binary vectors of length n,
called words, such that any two codewords differ in at least d places. n is called the
block length of the code and d is the minimum distance of the code. Since the
principle of coding is such that a block of k information digits is encoded into a
codeword of n digits for error correction, then M=2¥ for binary codes. Thus the code

may also be symbolized by (n, k, d) or more usually (n, k). We shall use both of
these notations.

1.1. The Coding Problem
According to the following theorem [1],[6]; "An (n, k, d) code can correct t<

d- . .
|[Tl] errors (here |[x] denotes the greatest integer< x)"; efficient code need to have

small n (for speed), a large d(to correct many errors ). These are conflicting aims.
The coding theory problem is stated as follows [1] [13]:

“Given n and d, to find a code with the greatest possible M (alternatively, given n
and M, to find a code with the greatest d)”.
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In this work we deal with the problem of obtaining linear binary codes, (i.e. n and
k) for specified d. This is also emphasized by Macwilliams and Sloane [2], and
Brower, et al [3] who state that “the function A (n, d) defined as the maximum
number of codewords in a binary code of block length n and minimum distance at
least d, is of considerable interest in coding theory”.

1.2. Related Work

The above problem has been dealt with by many. But the most notable is the
early work of Plotkin [4]. His work establishes upper bounds for the number of n-
digit points in codes of minimum distance d with certain properties. He also gives
the systematic construction of codes for given n, d. But the codes that contain the
greatest possible numbers of points are obtained only for some n, d. The method
given is involved and implementation is not easy.

The work of Plotkin is also discussed by Quistorff [5] where the Plotkin
upper bound on the maximal cardinality of a code with minimum distance at least d
is applied to g-ary codes preserved with the Hamming metric as coincident. The
Plotkin bound is given by A(n, d) < 2m < 2d/2d-n, if 2d >n where A (n, d) is the
number of code points and m€N.

Macwilliams and Sloane [2] gave the equivalent bound A (n, d) < 2 |[ d/2d-n ]

and Berlekamp gave the bound Aq (n, d) < d;i—zn if dqg >n for a g-ary code,

depending on the Plotkin bound above.

Ward [7] discusses the problem of designing codes with guaranteed minimum
distance, and gives as a consequence the Gilbert-Varshamov bounds, and the Plotkin
upper bounds, with their derived asymptotic bounds as well as the Griesmer bound.
[27] These bounds result from dealing with the problem. They are all derived by
using rather complex algebraic techniques and do not give exact results in most
cases. Codes which satisfy the equality of the bounds are called perfect codes. The
above problem and related bounds and their importance are also indicated by Hall
[8].

The algorithmic part of the problem of finding all codewords in a C within a
Hamming distance d is discussed by Sudan [9]. The aim is to apply the result to
bounded distance decoding. Spielman [10] presented the first known code that is
encodable in linear time. However Vardy [11] suggest that in general one cannot
compute d in polynomial time.

Spanning a code by its minimum-weigh vectors (a problem similar to finding a
code C for a certain d) is discussed for specific codes by Ding and Key [12]. The
similar problem for codes constructed from conference matrices is discussed by
Gulliver and Harada [14], and for the perfect codes by Etzion and Vardy [15]. For
self dual codes construction given a certain minimum weigh (minimum distance)
bound is investigated by Sloane and Thompson [16], by Bachoc [17], [26],and[28].

An important related problem is the construction of constant weight codes. The
maximum number of codewords in a binary code of block length n and constant
weight w, is required for a give bound on the minimum distance d. This is
investigated by Nguyen, Gyorfi, and Massey [18].

4
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As noted above the error correction capability of a code depends on the minimum
distance. A great deal of work exists related to bounds on the minimum distance for
example [19]. [20],[21], and [30]. Finding specific codewords with specific weight
has also been dealt with, for example [22], [23], [29].

1.3. Present Work

The work presented in essence deals with the problem of finding the minimum
Hamming distance. As pointed out above, this is an important coding problem and
most existing methods depend on involved mathematical tools. Thus making the
algorithmic implementation rather complicated. Here we give new result which is
rather straightforward and clean. This is achieved by dealing with the problem from
basic principle, which of developing codes as a subspace of the binary vectors space
of all binary n-tuples. Combinations of the vectors in this vector space are needed for
the construction of the codes as well as establishing the subspace which facilitates
the generation of groups of such combination. The construction of the codes use the
well known gray code. The codes obtained are optimum i.e. for a given (n, d) the
maximum k (information digits) are obtained.

2. The X(n) blocks
We give a theorem which deal with the generation of what we call the x(n) block
defined below. These are obtained from the vector space of all possible n-tuples. The
theorem is a general result and is used in investigating as a subspace the generated
code.
2.1 The x(n) block
It two binary n-tuples say u and v are added mod. 2,then,
ut+tv=z — u+z=v —> v+z=u (1)
Considering all possible combinations of a binary n-tuple then all possible sets (u,v,z)
are obtained. If we consider the element u then all possible sets having u as a
common element constitute a block of such sets in each of which u appears for
example having 2 as the common element and using decimal notation we have for
n=4,

(2,4, 6)
(2,5, 7) We shall refer to such blocks as 2(4) for this example and in general
(2, 8, 10) x(n), where x is the element u and n the size of the binary tuple.
(2,9,11)
(2,12, 14)
(2,13,15)

Theorem (1)
The x(n) blocks are given by
(i) For x=2' , i=0,1,2,....,r
Such that =m | x=1, and

M= |[2" -2|2x] . (2)
The sets generating the blocks are
(X, vx F jx, vx t ky) 3)
where, vx =2ux, u=1,2,...., m 4)
Jx=0, ..., x-1 (5)
and k= jx +x (6)
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(i) Forxeven#2 ,i=0,1,....r

The sets generating the blocks are (X, vxt jx, vxt+ kx) where with
ky
ki
ky

K=|ki| , ki=k,y,l=a (7)

)

Aq
A;
A

A= JA; = (=1)"'B,i=1,..bwith b = |j,| /"a,

(8)

and T = [{;|=K+ A. {9
| £ ]
the sets are such that.

Uy =Vx_q » Jx =Jx—a » and k,=¢t;,i=1,..,a —(10)

Where a is the least value taken from a = 2271, z=2, 3, ...., m such that
x/a 1s an odd number —_1D
(111)  For x odd,x =3
The set generating the blocks are

(.X,', Uy +jx » Ux + kx) —'(12)
Such that: v, = v, — 1 _(13)
Jx=Jx—1 . —(14)
ky = kyq + (1) —(15)

Proof: without loss of generality take n=4
For x=2',i=0,1,...,m
Take x =1,2,4 we have

2,3 4.6 8,12
4,5 5,7 :
. 9,13 .
14,15 . 11,15
13,15

Respectively

(16)

Forv; =2,v, =4,and v, =8 we have

*|jx| = number of elements in j,
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vy, v +1 vy, Uy + 2 Uy Vg + 4
vi+2,v,+3 v,+1,v,+3 v,+1,v,+5
' : and :
v +12,v; +13 v, +9,v, + 11 v, +3,v,+7
Respectively
(17)
Similar pattern is obtained for x=8, 18, ... It is clear from above that;
(1) Extension to n >4 is obvious.

(1) For j, =0, ...,x — 1 the second element in the block is v, + j, . The third
element is v, + k, with k, = j, + x

(1) Foru=1,2, ..., m, the effect of x and n on the construction of the blocks
is given by m = [[2" — 2/2x] _(18)
and obviously v, = 2ux.
For x odd

By Considering two successive n binary tuples x=w, and x=z say, where the
corresponding. Decimals are even and odd, respectively. Obviously w and z
differ only in the right most digit, being a 0 for w and al for z. Thus replacing w
by z affects only the third element in each set of the block for w, increasing or
decreasing its decimal value by one according to whether the binary n-tuple
corresponding to the second element in the set has a 0 (increasing) or a 1
(decreasing) as its right most digit. Clearly this applies for all values of n, Thus we
have relations (13), (14), and (15) above.

For x even, x # 2, i=0,1,2,..,m

Without loss of generality let us take n=5, then all the even decimal  numbers
for gray code are:
0,1,2,4,6, ..., 26, 28, 30.
First consider x =6. Obviously:
Ve = Vg = Ve—2,

Je =Ja= j6—2,

[
te = kg = kat A4, and T= K+A=| :



Y1 udlall el el alal) aaal Aaalal AuliaBY o slall ol 20 Alae

+2
_ +2 Al . 2
where A= _2 = [Az] ,l.e. Ay =B = [2] ,A, = —B
-2

Thus 4; = (-1)/*' B,j = 1,2

This is so since 4 and 6 as binary tuples differ only in the second digit from the

right. These digits appear in the set of all possible n-tuples in group of two 0’s and

two 1’s. For the 0’s [:Z] [k4] [2] and for the 1’s, cancellation results in k6

number of elements in A is [j4| and the number of sub matrices in A is given by:

% = % = 2. The same argument apply to numbers 10, 14, 18, ..., i.e

The difference lies in the construction of A whose elements depend on j, and j=1, 2,
., b where b = and taking a=2 we see that B = [ ] and that for any x, x-6 is a

multlple of 4= 2a now consider x= 12.

V12 = Vg = V12-4,

112 =Js

“z‘l ] I

Ay _ |4 _|-4
| = | |+A T,where A = [Az] A = 4l A, = _4
lkuJ ™ 4 —4

This is so because the corresponding binary tuples differ only in the third digit from
the left. These digits appear in groups of four 0’s and fourl’s in the set of all
possible n-tuples. Following the same procedure as above we have:

L2 b2 e =4

a
B= g for any x, x-12 a multiple of 8=2a, and T=

a k8

In summary,
1) a=2 starting x;=6

a =4 starting x;= 12

a =8 starting x;= 24 and so on. —_(19)
2) The change is in k, only, through A, whose construction depends entirely on x.
3) All the above result depend on a. Thus deciding a is crucial, since;

Ux = VUx-a

Jx = Jx-a

k, = k,_q + A; =ti, where A depends on B whose elements are a.
Let us start by x=x1. Thus for any positive integers X, and y:

x —x1 =y(2a) = 2ya —_ (20
2 =2y + % , obviously for (20) to hold, and from (19), % must be odd;but 2y is
even.
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Therefore 2 must be odd. Thus we have the general result 2 must be odd for the
least = 2771 | i=1,2, 3, ..., m.

2.3. Examples
Two examples are given which cover all cases in theorem (1). Let n=5 for
simplicity,
Example 1: x=14, now x=14 # 2! for any i. Thus we use equations (7), (8), (9)
and (10). First we must find a.
Starting with z=1, i.e. a=2, which gives x/a = 14/2=7 (odd). Thus, by (9), (10),
and (11) we get:

V_14 = 1_712 —21)
J1a = J12 —(22)
k14. =t —(23)

Now for (23) ti2 has elements k12, and we only know B = [;] To find 12, and

k12:
here x= 12 # 2! for any i. Thus by (8), (9), and (10) we get:

V_12 = 1_78 —24)
J12 = Js —(25)
ki, =ts —_(26)

And tg has kg as elements since z=3, a=4. To find jg and kg:here x=3, i.e.
1= 3. Therefore m=|[% ]=1. Thusu =1, v8 = 16, and by (5) and (6):
Jjg=0,1,2,3,4,5,6,7 and
kg=28,9,10,11, 12, 13, 14, 15,.

Now from (26) and (8).
4
B= j{ b=8/4=2,andj=12
4
8 1 (127
9 13
10 14
111 Al _ 15
Thus tiz = 12 + [Az] = 38
13 9
14 10
L15- L11-

From (23) and (8) we get:
2] wegmoa i
B—[Z] b=8/2=4,j=1,2,3,4,
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14
15
12
A=A, = [g] Ay = A, = [_g] Thus kys = |15
11
8
[ g
The 14(5) block is therefore:
(14, 16, 30)
(14,17, 31)
(14, 18, 28)
(14, 19, 29)
(14, 20, 26)
(14, 21, 27)
(14, 22, 24)
(14, 23, 25)

It is interesting to make a comparison between kg, k,, and k4. It is also
interesting to note that:
Vig = Vi = Vg and jiu = j12 = Jg
Note that infact we find blocks for x=8 and x=12 in finding the block for x=14. This
is not always the case. It depends on how far is the value of x for the required block
froman x given by x=2¢.
Example 2: x=13. Since x is odd then by (13), (14), and (15):

V13 = V12 —{27)
J13 = J12 —(28)

kiz = kip + (=1)/12 ~—{(29)
now from example 1, we have:

V13 = Vg ——(30)
J13 = Js —(31)

thus ki3 = kyy + (—1)/8 =13, 12, 15, 14,9, 8, 11, 10.

The 13 (5) block. Is therefore:

(13, 16, 29)
(13, 17, 28)
(13, 18, 31)
(13, 19, 30)
(13, 20, 25)
(13,21, 24)
(13,22, 27)
(13, 23, 26)

10
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3. Codes with minimum distance d=3 and d=4

Starting with a specific d various values for n and k can be decided since

according to standard coding theory [24], a linear block code is a subspace of the

vector space v, of n binary vectors i.e. it is such that:

(1) It contains the zero vector (or codeword).

(11) The sum modulo two of any two vectors (codewords) is another vector
(codeword) in the subspace. Finding such a subspace is possible but
containing the maximum number of vectors is not an easy task.

3.1.Gray Code:

The gray code is a reflected cod which can be constructed recursively

[25], so that.

a) A1 bit gray code has two codewords, 0 and 1.

b) The first 2" codewords of an (n+1) bit gray code equal the codwords of
an n bit gray code written in order with a leading 0 appended.

c) The last 2" codewords of an (n+1) bit gray cod equal to the codewords of
an n bit gray code, but written in reverse order with a leading 1
appended.

For example a 4 bit gray code in decimal notation is

013267541213 151410119 8 (32)

From above it is clear that the hamming distance H for consecutive

codewords is H=1.

also H =2 for even (in distance) consecutive codewords. These properties

play an important role in the work that follows.

In the following we shall use decimal notation, for this gives the result in a

neat form. Otherwise working in binary is very tedious.

3.2.Codes having minimum hamming distance d = 3:

This is an important case, since some important codes exist having d =3;
in particular the hamming code. But most importantly here the procedure
leads to the development of the case for d >3.

To illustrate we use block lengths, n = 6,7. The first step is to partition the
code block length n into two parts ni, and nz . If n even then ni=ny . If nis
odd then | n; - no| =1

For n=6 , ni=n=3 . The 3 bit gray code used is 0,1,3,2,6,7,5,4 . The first
codeword is 00 (in binary 000000). From this the codeword 07 (in binary
000111) is derived, since the hamming distance between 0 and 7 is 3.

The structure of the codewords is shown in fig below.

0 H=2 3 H=2 6 =2 5
= A
/AS Hx

Here H means hamming distance.
The 8 codewords are;

11
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00 31 63 52
07 36 64 55
Or in binary —i(33)

000000 011001 110011 101010
000111 o11110 110100 101101
Also note that

i O 3,1 3,3—> 2allhave H=1.
H=1 H=2 H=1
(i) 7——6,6—4,4— 35

The code is a subspace. This is so for using result from theorem (1) given by

blocks in the appendix we get, for example,
36 55 63

2 A 3L by using the sets

64 64 52

(3,5,6) , (2,4,6) ,(1,4,5) ,and (1, 2, 3)
Notes:

(1) Since the sets of codewords (0, 7) , (0, 13) , (0, 14) ,and(0, 11) all
have H=3 then any of them can be taken as codewords associated
with the codeword 00.

(1) The number of the codewords is the maximum possible. This is
obvious because we are using the 3 bit gray code.

(iii) K (the number of information digits) is given by 2X =number of
codewords, here k=3.

(iv)  Since k and n are known, then we can obtain the generator matrix
G. It is given by the codewords 46, 25 and 13. note that 4, 2, and 1
are chosen to given G in standard form. Thus

100 110
G= l()1() 1()1] This G is the same for an (6, 3) code with d=3
001 001

given by [24]
For n=7, n1=4 , no=3. For ni we use the 4 bit gray code
0,1,3,2,6,7,5,4,12, 13,15, 14,10, 11, 9, 8.
For n, we use the 3 bit gray code. For the same n, k, d, many codes
can be obtained.
For example:
00 31 63 52 126 157 105 94
07 36 64 55 121 150 102 93 —i(34)
Or the code may be
00 13 36 25 63 70 55 46
015 112 39 210 612 715 510 49 (35)
However the construction of both codes is similar and also to n=6.
For the code in (35) the construction is shown in fig below for the
first three codewords

12
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0 =1 1 =1 3
> - =
H=3 H=3 H=3
0= ~ 15 3% 12 6 ~ -9

Notes:

(1) The codewords are the maximum possible therefore the code is optimum. Also
k =4 which is the maximum.

(11)The code is a subspace. This can be checked using theorem (1)

(111) Any of the sets (0,7), (0,13), (0, 14) and (0,11) can be used as the
codewords associated with the codeword 00.
(1v) The generator matrix G can be obtained by
1000 1107 46
_10100 101] 25
G=loo10 o11f 13 (36)

0001 1114015
This is the hamming code [24] which is known to be an optimum code 1i.e. having

the maximum k for given n and d.

3.3. Theorem (2)
For d=3, 4 we have the following theorem for the construction of the code.
Theorem (2):
All the codewords of a linear binary code having minimum hamming distance d=3
or d =4 and block length n are generated (using decimal notation) as pairs (u, z) ,

and (u, v) by
WiZi, ... UiZi,..., Um Zm
Uivi, ... Ui Vi,..., Un Vim (37)

with u; zi and u; vi are codewords such that ui=n; bits, zi= vi=n; bits, n;+ n,=n and if n
even, nj=mp and if n odd | n; - ny|=1.
Where:
(1) ui,z ,vi,1=1,...,mare taken from the gray code of block length n; such
that w (uit ui+1)=2 (38)
and w (zi+ zi+1)=1, where w is the weight of the codeword.
for d=3,w (z+ vi)=3, and
for d=4 w(zitvi)=4
Proof: for d=3
For the first row in (37). The u;, i=1, ..., m. are taken in sequence according to the
sequence in the gray code such that consecutive codewords have H=2; i.e. ui=0,
u2=3 and so on.

(39)

13
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The zi, =1, ..., m. are taken in sequence according to the sequence in gray code such
H=1 for consecutive codewords, i.e. zi=0, z=1 , z3=3 and so on. Thus w (zi+
ziv)= = 1 e ()

Hence w [ (ui, z) + (ui+1, zi+1) | = w (Uit uir1)+ w(zit+ zi+1)=3.

For the second row in (37). Taking a codeword in the first row and its partner in the
second row we have.

w [(ui zi) + (ui vi)] = w (uit ui) + w (zi+ vi)=0+w(zi+ vi)=3,

taking w (zi+ vi)=3, using theorem (1).

Now consider the codeword, C;l; ;ll; we need to show that (ab+de) is a codeword.
That is to show that the code obtained is a subspace. The first 4 codewords of the
code are, %(; 3171 which gives w (0+s)=w (1+v)= w(s)=3

(41)

Let t=(at+d) ,and x=(b+e). Then by (41) w (b+c) =w (e+f)=s

We have b + c=s and e+f=s. Hence (b+e)+(c+f)=0.

Implying c+f=x. thus (a+d)(b+e)=tx and (a+d)(c+f)=tx

Let y=(b+f) then by similar argument we have

(atd) (b+f)=ty , (at+d) (ete)=ty. Now we have to show x+y=s.

Since b+e=x, b+f=y which gives e+f=x+y=s. thus tx and ty are codewords.

For d=4, we have for (40) w (zit zi+1)=2

Hence w[(ui, zi) + (ui+1 zi+1)] =4

Also w(u; zi +ui vi)=4 by taking w (zi+ vi)=4 from theorem (1). Now consider the

codewords %% dd —_—(42)
ac de
We need to show that (aa+dd) is a codeword which is obvious. Also we need to show

ac de is a codeword. Consider the first 4 codewords %(; ;3 then, w(0+s)=

w(3+v)= w(s)=4. —(43)

Let x=(a+c) then by (43) w(a+c)=w(d+e)=s, we get (a+c) = (d+e) =s, giving a+d=

cte=x implying xx is a codeword.

Let y=ate then by (42) at+e=c+d=y. giving Xy as a codeword thus the resulting

codewords are J; ;C .

4. Discussion
We shall briefly discuss extension to d > 4, and based on the ideas implied by

theorems (1) and (2). Consider two codewords, for example, (u v) and (z x). Since
for any minimum distance it is required that w ( (u v)+(z x)) = d, then two main
possibilities exist:
. u=zw(v+x)=d
. w=@u+z)=qw((v+tx)=>d-q
q may be the d for a previously obtained code, for example, if q = 3 and present d =
7, then u and z are of length 3, while v and x are of length 4. All of these are
previously obtained codewords for code, with d < 7. Since the 0 codeword is part of
the code, then it is possible to start with code words (0 0) and (0 d) and choosing the

14
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succeeding codewords by a procedure similar form of previously obtained codes. As
d increases, n and k increase and become large.
5. Conclusion
In attempting to design liner binary codes with specific minimum distance, it
became necessary to guarantee that the codewords constitute a subspace. Thus
investigation of all combinations of a binary n-tuple revealed a process embodied in
theorem (1) by which set of three binary n-tuples, where in each set each element
result from mod 2 addition of the other elements, are generated in blocks where all
the elements of a block have a common element.
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Appendix:

(A) The following x(n) blocks generated by theorem (1) for n=15

1(3)
(1,2, 3)
(1,4, 5)
(1, 6,7)
(1, 8, 9)
(1, 10, 11)
(1, 12, 13)
(1, 14, 15)
(1, 16, 17)
(1, 18, 19)
(1, 20, 21)
(1,22, 23)
(1,24, 25)
(1, 26, 27)
(1,30, 31)

6(5)
(6, 8, 14)
(6,9, 5)
(6, 10, 12)
(6, 11, 13)
(6, 16, 22)
(6, 17, 23)
(6, 18, 20)
(6, 19, 21)
(6, 24, 30)
(6, 25, 31)
(6, 26, 28)
(6,27, 29)

11(5)
(11, 16, 27)
(11, 17, 26)
(11, 18, 25)
(11, 19, 24)
(11, 20, 31)
(11, 21, 30)
(11, 22, 29)
(11, 23, 28)

2(5)
(2, 4, 6)
(2,5,7)
(2,8, 10)
(2,9,11)
(2, 12, 14)
(2, 13, 15)
(2, 16, 18)
(2,17, 19)
(2, 20, 22)
(2,21, 23)
(2, 24, 26)
(2, 28, 30)
(2,29, 31)

7(5)
(7,8, 15)

(7,9, 14)

(7, 10, 10)
(7,11, 11)
(7, 16, 14)
(7,17, 15)
(7, 18, 18)
(7, 19, 19)
(7,24, 22)
(7, 25, 23)
(7, 26, 26)
(7,27, 30)

12(5)
(12, 16, 28)
(12, 17, 29)
(12, 18, 30)
(12, 19, 3)
(12, 20, 2)
(12,21, 24)
(12, 22, 26)
(12, 23, 27)

3(5)
(3,4,7)
3,5, 6)
(3,8, 11)
(3,9, 10)
(3, 12, 15)
(3, 13, 14)
(3, 16, 19)
(3,17, 18)
(3, 20, 23)
(3,21,22)
(3,24, 27)
(3,25, 26)
(3,28, 31)

(3, 29, 30)

8(5)
(8, 16, 24)
(8, 17, 25)
(8, 18, 26)
(8, 19, 27)
(8, 20, 28)
(8, 21, 29)
(8, 22, 30)
(8,23, 31)

13(5)
(13, 16, 27)
(13, 17, 27)
(13, 18, 27)
(13, 19, 27)
(13, 20, 27)
(13,21, 27)
(13,22, 27)
(13,23,27)

17

4(5)
(4,8, 12)
4,9, 13)
(4, 10, 14)
(4, 11, 15)
(4, 16, 20)
(4,17, 21)
(4, 18, 22)
(4, 19, 23)
(4, 24, 28)
(4,25, 29)
(4, 26, 30)
(4,27,31)

9(5)
(9, 16, 25)
(9, 17, 24)
(9, 18, 27)
(9, 19, 26)
(9, 20, 29)
(9, 21, 28)
(9,22, 31)
(9, 23, 30)

14(5)
(14, 16, 28)
(14, 17, 28)
(14, 18, 28)
(14, 19, 28)
(14, 20, 28)
(14,21, 28)
(14, 22, 28)

5(5)
(5,8, 13)
(5,9, 13)
(5, 10, 13)
(5,11, 13)
(5, 16, 13)
(5,17, 13)
(5, 18, 13)
(5, 19, 13)
(5,24, 13)
(5,25, 13)
(5, 26, 13)
(5,27,13)

10(5)
(10, 16, 26)
(10, 17, 27)
(10, 18, 24)
(10, 19, 25)
(10, 20, 30)
(10,21, 31)
(10, 22, 28)
(10, 23, 29)

15(5)
(15, 16, 31)
(15, 17, 30)
(15, 18, 29)
(15, 19, 28)
(15, 20, 27)
(15,21, 12)
(15, 22, 25)
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(B) To show that the code in (35) is a subspace by using the result for x(n) blocks in
(A) above.

00 13 36 25 63 70 55 46
015 112 39 210 612 715 510 49

0 3 6
By construction; 15 12 9 similarly for (5, 10), (3, 12).
15 15 15
(0, 15), (5, 10), and (6, 9). For the rest of the codewords we have.
13 13 13 13 13 13
36 63 55 39 612 510
25 70 46 210 715 49

112 112 112 112 112 112

36 25 63 70 55 46
210 39 715 612 49 510
36 36 36 6

612 715 510 49
510 49 612 715

36 36 36 36
612 715 510 49

510 49 612 715

39 36 36 39
63 70 55 46

510 49 612 715

And so on for all codewords.
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