A New Theoretical Result for Quasi-Newton Formulae for Unconstrained Optimization

Basim A. Hassan

College of Computer Sciences and Mathematics University of Mosul

Received on: 15/3/2005 Accepted on: 9/5/2005

الملخص

في هذا البحث تم استحداث عدد من البراهين النظرية لبعض الصفات الخاصة بالدالــة المعرفة حسب (1.1) لتكوين عدد من المفاهيم الجديدة المعطاة في الفقرة(2) من هــذا البحــث لصيغة [1] (Al-Bayati (1991) الصيغة الجديدة فيها توسيع مصفوفة موجبة التعريف مــن صنف Brouden.

ABSTRACT

The recent measure function of Byrd and Nocedal [3] is considered and simple proofs of some its properties are given. It is then shown that the AL-Bayati (1991) formulae satisfy a least change property with respect to this new measure .The new formula has any extended positive definite matrix of Brouden Type-Updates.

1.Introduction.

Recently Byrd and Nocedal [3] introduced the measure

defined by $\Psi: R^{n^*n} \to R$ function

$$\Psi(A) = trace(A) - f(A)$$
....(1.1)

denotes the function f(A) where

$$f(A) = In(\det A)....(1.2)$$

Byrd and Nocedal use this function to unify and extend certain convergence results for Quasi-Newton methods. In this paper, simple proofs of some of the properties of these functions are given. These properties give a new variaional result for the AL-Bayati updating formulae [1].

Lemma1.1. f(A) is a strictly concave function on the set of positive definite diagonal n*n matrices.

<u>Proof.</u> Let $A = diag(a_i)$. Then $\nabla^2 f = diag(-1/a_i^2)$ and is negative definite since a_i **f** 0 for all *i*. Hence *f* is strictly concave [7].

Lemma1.2. f(A) is a strictly concave function on the set of positive definite symmetric n*n matrices.

Proof. Let $A \neq B$ be any two such matrices. Then there exist n * n matrices X and $\Lambda(X)$ is nonsingular, $\Lambda = diag(I_i)$ such that $X^TAX = \Lambda$ and $X^TBX = I$.

Denote $C = (1-q)A + qB, q \in (0,1)$.

Then

$$X^{T}CX = (1-q)X^{T}AX + qX^{T}BX = (1-q)\Lambda + qI....(1.3)$$

Also

$$f(X^T A X) = In \det(X^T A X) = In(\det^2 X \det A) = f(A) + In \det^2 X$$
,.....(1.4) and likewise

$$f(X^T B X) = f(B) + In \det^2 X$$
....(1.5)

$$f(X^TCX) = f(C) + In \det^2 X$$
....(1.6)

Now $A \neq B \Leftrightarrow \Lambda \neq I$, so by Lemma 1.1 and Eq.(1.3) it follows for $q \in (0,1)$ that

$$f(X^{T}CX) = f((1-q)\Lambda + qI \mathbf{f} (1-q)f(A) + qf(I) = (1-q)f(X^{T}AX) + qf(X^{T}BX).$$

Hence form (1.4) – (1.6),

$$f(C) \mathbf{f} (1-q) f(A) + qf(B),$$

and so the Lemma is established [5].

Lemma.3. $\Psi(A)$ is a strictly convex function on the set positive definite symmetric n*n matrices.

Proof. This follows from Lemma 1.2 and linearity of trace(A) [5].

Lemma1.4. For nonsingular A the derivative of det(A) is given by $d(\det A)/da_{ii} = [A^{-T}]_{il} \det A$.

<u>Proof.</u> From the well-known identity $det(I + uv^T) = 1 + v^T u$ it follows that

$$\det(rA + ee_i e_j^T) = \det(I + ere_i e_j^T A^{-1}) \det rA = (1 + er(A^{-1})_{ji}) \det rA.$$

Hence

$$\frac{d \det A}{da_{ii}} = \lim_{e \to 0} \frac{\det(rA + ee_i e_j^T) - \det rA}{e} = (rA^{-1})_{ji} \det A .$$

Theorem1.1. y(A) is globally and uniquely minimized by A = I over the set of positive definite symmetric n*n matrices.

Proof. Because A is nonsingular, y is continuously differentiable and so

$$\frac{dy}{da_{ij}} = I_{ij} - \frac{1}{\det rA} \frac{d}{da_{ij}} \det rA = (I - rA^{-T})_{ij}, \dots (1.7)$$

using Lemma 1.4. Hence y is stationary when A = I and the theorem follows by virtue of Lemma 1.3.

Remark. It is also shown in [3] that A = I is a global minimizer of y(A). 2. A variational result. The Al-Bayati updating formula

$$H^{k+1} = H^{k} + \left[\frac{2g^{T} H^{k} g}{(d^{T} g)^{2}} \right] dd^{T} - \frac{H^{k} g d^{T} + d g^{T} H}{d^{T} g}, \dots (2.1)$$

Occupies a central role in unconstrained optimization. (Here d and g denoted certain difference vectors occurring on iteration k of a Quasi-Newton method, with $d^Tg \mathbf{f} 0$. $B^{(k)}$ denotes the current Hessian approximation, and $H^{(k)}$ its inverse: see, for example, [4]) A significant result due to Goldfarb [6] is that the correction in the Al-Bayati formula satisfies a minimum property with respect to a function of the form $\|E\|_{\mathbf{w}}^2 = trace(EWEW)$ (its corollary in [4]).

The main result of this paper is to show that these formulae also satisfy a minimum property with respect to the measure function y of Byrd and Nocedal defined in (1.1).

Theorem2.1: if $H^{(k)}$ is positive definite and $d^T g \mathbf{f} 0$, the variation problem

minimize
$$\Psi(H^{(K)1/2} \ rB \ H^{(K)1/2})$$
.....(2.2)
subject to $B^T = B$(2.3)
 $Bd = g$(2.4)

is solved uniquely by the matrix $B^{(k+1)}$ given by the formula (2.1). proof: the matrix product that forms the argument of Ψ can be cyclically permuted so that

$$\Psi(H^{(K)1/2} \ rB \ H^{(K)1/2}) = trace(H^{(K)} rB) - \ln(\det H^{(K)} \det rB)$$
$$= \Psi(H^{(K)} rB) = \Psi(rBH^{(K)}).....(2.5)$$

A constrained stationary point of the variational problem can be obtained by the method of lagrange multipliers.

A suitable lagrangian function is

$$L(B, \land, I) = \frac{1}{2} y(H^{(K)1/2} rBH^{(K)1/2} + trace(\land^{T} (B^{T} - B)) + I^{T} (Bd - g)$$

$$= \frac{1}{2} (trace(H^{(K)} rB) - ln det H^{(K)} - ln det rB) + trace(\land^{T} (B^{T} - B)) + I^{T} (Bd - g)$$

Where \wedge and λ are lagrange multipliers for (2.3) and (2.4), respectively. To solve the first order conditions, it is necessary to find B, \wedge and λ to satisfy (2.3), (2.4), and the equations $\partial L/\partial B_{ij}=0$. Using the identity $\partial B/\partial B_{ij}=e_ie_j^T$ and Lemma (1.4), it follows that

$$\begin{split} \partial L/\partial B_{ij} &= 0 = \frac{1}{2} (trace(H^{(K)} re_i e_j^T) - (rB^{-1})_{ji}) + trace(\Lambda^T (e_j e_i^T - e_i e_j^T)) + I^T e_i e_j^T dt \\ &= \frac{1}{2} ((rH^{(K)})_{ji} - (rB^{-1})_{ji}) + \Lambda_{ji} - \Lambda_{ij} + (Id^T)_{ij}. \end{split}$$

Transposing and adding, using the symmetry of $H^{(k)}$ and B, gives

$$H^{(K)} - rB^{-1} + ld^{T} + dl^{T} = 0$$
or
$$rB^{-1} = H^{(K)} + ld^{T} + dl^{T} = 0, \dots (2.6)$$

$$B^{-1} = H/r + ld^{T}/r + dl^{T}/r$$

which shows that the optimum matrix inverse involves a rank-2 correction of $H^{(k)}$. to determine λ , (2.6) is post-multiplied by γ . It then follows, using the equation $B^{-1}g = d$ derived from (2.4), that

$$d = Hg / r + l d^{T}g / r + dl^{T}g / r$$

and hence

$$g^{T}d = g^{T}Hg/r + g^{T}ld^{T}g/r + g^{T}dl^{T}g/r.$$

$$g^{T}d = g^{T}Hg/r + 2g^{T}ld^{T}g/r$$

$$rg^{T}d = g^{T}Hg + 2g^{T}ld^{T}g$$

$$rg^{T}d - g^{T}Hg = 2g^{T}ld^{T}g$$

$$r - g^{T}Hg/d^{T}g = 2g^{T}l$$
Rearranging this gives
$$g^{T}l = \frac{1}{2}(r - g^{T}Hg/d^{T}g)$$

and so
$$d = Hg / r + l d^{T}g / r + dl^{T}g / r$$

$$d = Hg/r + Id^{T}g/r + dg^{T}I/r$$

$$rB^{-1} = H - \frac{Hgd^{T} + dg^{T}H}{d^{T}g} + \frac{dd^{T}}{d^{T}g} \left[r + g^{T}Hg/d^{T}g \right]$$

where

$$r = g^T H g / d^T g$$

and hence the proof.

3. Conclusions:

It is a well-known consequence of the sherman-Morrison formula [4] that there exists a corresponding rank-2 update for B, which is given by the right – hand side of (2.1). Moreover the conditions of the theorem (2.1) ensure that the resulting updated matrix B is positive definite (as in [4]).

This establishes that the AL-Bayati formula satisfies first order conditions (including feasibility) for the variational problem. Finally, $\Psi(H^{(K)1/2} rBH^{(K)1/2})$ is seen to be a strictly convex function on $B \mathbf{f}$ 0 by virtue of (2.5) and Lemma (1.2), so it follows that the AL-Bayati formula gives the unique solution of the variational problem. This idea may be extended for any positive definite matrices of Broyden class.

FERENRECES

- [1] Al-Bayati, A. (1991)," A new family of self Scaling Variable Metric Algorithm for unconstrained Optimization". **Journal of Euc. And Sci.**, 25, 12.
- [2] Bellman, R. (1960) **Introduction to Matrix Analysis**, New York: McGraw-Hill.
- [3] Byrd, R.H. and Nocedal, J. (1989), "A tool for the analysis of quasi-Newton methods with application to unconstrained minimization", **SIAM J. Numer. Anal.**, 26, pp. 727-739.
- [4] Fletcher, R. (1987) **Practical Methods of Optimization**, Second Edition. Chichester: Jonhn Wiley
- [5] Fletcher R. (1991) A New variational Result for Quasi-Newton formula, SIAM Journal on Optimization, Vol. 1,pp. 18-21.
- [6] Goldfarb D. (1970), "A family of variable metric methods derived by variational means", **Math. Comp.**, 24, pp. 23-26.
- [7] Hu Y.F. and Storey C. ,(1994) , "family of Optimally conditioned QN Updates for Unconstrained Optimization" ,**Journal of Optimization theory and applications** , Vol. 83 , No.2 ,pp. 421-431 .