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Abstract  

Experimental investigation of high performance and low emission colorless combustion in a micro 

gas turbine tubular combustor with multi-line of fuel injection located in secondary zone carried out at the 

atmospheric conditions, colorless oxidation reaction is characterized by dispersed homogenies flame and 

high uniformity of average temperature inside the combustion chamber. System performance, emission gases, 

the flame capturing photo, measurements of temperature, inlet air mass flow rate and gas fuel LPG flow rate 

for variable of fuel lines mass fraction F2/F1 are recorded at low emission colorless combustion condition. for 

3.2 g/s of fuel flow rate with 6 holes and 1mm main injector holes diameter and 8 holes with 0.8mm diameter 

for secondary line of fuel injection, concluded that maximal air mass flow rate, with choked fuel flow in the 

main injector for each cases promotes the formation of colorless distributed pal blue flame combustion, with 

great effects for the equivalence ratio on the average temperature to limiting cooled flame quenching 

generation, desirable pattern factor < 0.28, increasing in combustion efficiency up to 99.68%, and decreasing 

in specific fuel consumption with rising of power generation.  

Key words: Gas Turbine, Tubular Combustor, Colorless combustion, Distributed fuel injection, LPG Fuel.  

Nomenclature  

A                     Area [m2]. 

D                     Diameter [m].  

F1                    Fuel Mass Flow Rate in main Injection Line.  

F2                    Fuel Mass Flow Rate in Secondary Injection Line. 

L                      Length [m].  

m•                   Flow Rate [kg/s].  

P                     Total Pressure [Pa].  

Pr                   Pressure Ratio (P3/P1).  

qRef                 Dynamic pressure along the combustor. 

S. L. F. I        Secondary line of fuel injection. 

T                     Total Temperature [K].  
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V                     Velocity [m/s].  

Greek Symbols  

  Ф                    Equivalence Ratio.  

θ                   Angle (Diffuser or Snout or Dome) [°].  

βsw               Swirler Blade Stagger Angle (Flat Blade) [°].  

Subscripts  

1                    At Compressor Inlet. 

3                    At Combustor Inlet. 

4                    At Combustor Outlet.  

Ref                Reference section.  

RZ                 Recirculation Zone.  

PZ                 Primary Zone.  

SZ                 Secondary Zone.  

DZ                 Dilution Zone.  

diff                 Diffuser.  

Lin                 Liner. 

sw                  Swirler. 

1. Introduction: 

The improvement of low polluting and efficient combustion systems in gas turbine combustor is the 

main goal of the combustion equipment manufacturers’. For the NOx, CO and unburned hydrocarbon (UHC) 

emissions case, most control strategies in combustion processes are based on three variables: residence time, 

temperature and oxygen availability. These strategies focus on reducing peak temperature, keeping the 

residence time, and low oxygen concentration at high temperature zones. However, two techniques are 

generally used in order to achieve these objectives: a- changing the burning process through appropriate 

burners, that operate in the formation mechanism of the pollutants and b- treatment of exhaust gases, acting 

on the mechanism of destruction of pollutants.  

Control and minimization of emissions of NOx and other pollutants are the flameless combustion 

(smoldering visible). This technique is a new type of combustion that changes the characteristics of the 

reaction zone and consequently the formation of combustion products by process modifications. Despite 

being a technique recently discovered and little known, nowadays the flameless combustion has gained 

attention in scientific circles because of the great advantages that offers in its use compared to conventional 

combustion.   

Combustion chambers are designed to mix and ignite the air and fuel mixture, and then mix in more 

added air to complete the combustion, Cohen [1]. This work present the experimental results for the effects 

of the multi-zone of oxidation reaction on the tubular gas turbine combustor and capable of achieving 

colorless low emission combustion. Colorless low emission oxidation reaction is characterized by reacting 

of distributed fuel with a high oxidizer temperature with high levels of turbulence producing a highly 

dispersed reaction zone. The highly dispersed reaction zone eliminates hot spots, the turbulence levels of the 

colorless oxidation reaction is so high that if operated in the current diffusion flame combustion technology, 

Saywers [2]. Swirl flows has been adopted to obtain internal recirculation rates in colorless combustion mode. 

The preference of LPG is chosen from this work for micro gas turbines have a wider scope of fuel. [3], studied 

numerically the difference between the combustion models in CFD mode as numerical modelling and 

validation of the combustion in a gas turbine and identified the characteristic of each models concluded,   The 

Eddy Dissipation Model (EDM) is especially suitable for the chemical reactions, which go through in a short 

time, and the fluid flow is turbulent and non-premixed. In EDM the regress of elementary reaction k, is 
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determined by the smallest of the reactants limiter and products limiter The PDF Flamelet Model (PFM) can 

be used, if the flame is turbulent, the Damköhler number is much greater than 1 and non-premixed. Chemical 

reactions not influence the mixture fraction, because it deals with elements rather than molecules, and 

elements are not affected by chemistry. Ansys Fluent Non-Premixed model can be used for fast, turbulent 

reactions, in the case of chemical equilibrium, or laminar flamelet structure. With these certain assumptions, 

the Thermochemistry can be reduced to a single parameter. [4],studied numerically the effects of reference 

area of 600 kW gas turbine tubular combustor on the burning, using  shear stress transfer model for turbulence 

flow field simulation by ANSYS CFX and PDF flamelet as combustion model with mixture of combination 

gaseous fuel and 4.288 kg/s air mass flow rate concluded as increasing in reference area caused reduction in 

burning rate with enhanced combustion process also the reduction of air velocity at the swirle region has 

develop the dispersal of flame along the combustor. [5], examined experimentally flameless oxidation to 

reduce thermal NO-formation they concluded that there are two approaches which are concerned with the 

reduction of NOx emission. In this regard, the first approach deals with NOx abatement strategies regarding 

control of NOx formation via thermal mechanisms, which avoid hot spot zones within the chamber. Other 

attempts to eliminate NOx after formation indicates the methods used in NOx abatement strategies. However 

most NOx technique is aimed at lowering the peak temperature and maintaining the residence time along 

with lower concentration of oxygen via dilution in high temperature zone, these strategies can be classified 

into three main categories : injection of diluent, exhaust gases clean-up and NOx formation prevention. These 

methods are crucial in the reduction of NOx formation by reducing the combustion chamber temperature 

(thermal NOx prevention), improve mixing or exhaust gases clean-up in which Nox is reduced after 

formation. [6] studied experimentally, the effects of mixture preparing by varying the location of Methane 

fuel injection point with respect to air injection point, for high thermal intensity swirl distribution combustion 

designed for ultra-low emission of NOx and CO Results showed for high heat release about 27MW/m3-atm 

and equivalence ratio 0.6 with 600 k preheated air, NOx decrease from 21 ppm for coaxial fuel injection case 

to 10ppm for non-premixed case and CO emission very low due to preheated air effects for all case of fuel 

injection. [7],studied experimentally, the effects of the duel fuel injection on the flameless oxidation reaction  

by using double tangential inward fuel/air premixed  injection point of Methane for local heat load 3.9-6.25 

kW and equivalence ratio 0.6  with preheated air to 600k. Results showed ultra-low with single injection of 

air and fuel as 5 ppm NO with 10 ppm of CO, while for the same equivalence ratio with dual injection showed  

higher emissions than with single injection for NO emission increased by about 20%, with minimal change 

in CO emissions. The Increase in NO emissions outlined that there is an interaction between both injections 

jets leading to an unequal distribution in the flame region. [8] studied experimentally high thermal intensity 

3.8 MW/m3-atm small scale 13.4 inch combustor for furnaces application with equivalence ratio 0.9 and 

preheated air to 930 K related the air injection to the turbulent time scale to be0.104 ms, result showed moving 

the reaction zone toward the air injection as increasing the air flow rate with constant fuel flow ate and the 

lower NOx about 10ppm and CO about 12ppm. [9], studied numerically the effects of the Position of injected 

air holes in Primary and Secondary Zones on the exit temperature profile (pattern factor) on can combustor 

of Gas Turbine for Ethanol fuel, using the FLUENT package with SST adopted model for turbulent flow and 

Non-Premixed Combustion PDF flamlet model foe combustion  processes, were varied air injection holes 

positions of the primary and secondary zone and fixed the location of the dilution zone holes. For this purpose 

each zone primary and secondary lengths were divided into four sub length: 25%, 50%, 75% and 100% of 

their original length dimensions. Concluded that the positioning of the Primary zone holes has a great 

influence on the pattern factor than the positioning of secondary zone holes, pattern factor shows high 

sensitive to rows of primary holes displacements. For the Primary zone holes, a reasonable explanation is 

based on the fact that there is a strong revers flow zone in the first three quarters of the Primary zone length. 

This condition is observed when positioning the Primary zone holes row in downstream these 0.75 of the 

primary zone length, in other words, thereby reducing the demand on the downstream zones in obtaining 

lower pattern factor. 

Developed design methodologies would be useful for researchers for preliminary design assessments 

of a gas turbine combustor. In this study, step by step preliminary design methodologies of tubular combustor 

have been used.  

The effect of the multi-line of fuel injection in the secondary zone has also been studied 

experimentally, the overall contribution to knowledge of this study is development of combustor fuel 
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injection methodologies with different variants. The other contribution to knowledge is related to novel 

combustors with a capability to produce low emissions.  

2. Combustor Preliminary design calculation: 

For the preliminary design of the combustor, a computational tool for Gas Turbine Combustor Design 

(GTCD) was used and implemented in mathcad15. Developed by Saywers [2], Lefebvre [9]. With this tool, 

it is possible to get the preliminary design of tubular combustor. The GTCD enables the design of combustors 

fueled by LPG fuel, provided that changed the thermochemical parameters of temperature increase as a 

function of equivalence ratio for fuel adopted. Such a design methodology, in which GTCD is based, 

considers for the design of combustors, two criteria that must be met in all conditions of the operating 

envelope of the combustor: aerodynamic and thermochemical. Obtained for both criteria the reference area 

of the casing cross section (Aref), corresponding to the combustor in study. It is adopted in designing the 

reference area that meets both criteria above. Defined Aref, obtained the following calculations performed 

by the tool, the main ones being:  

- Diameter of the liner (DLin).   

- Longitudinal lengths of the primary zone (LPz), secondary zone (LSz) and dilution zone (LDz).  

- Dimensions of the diffuser (LDiff) and swirler diameter (DSw). 

- Diameter of primary zone holes (DPh), secondary zone hols (DSh) and dilution zone holes (DDh). 

For the aerodynamic criterion if the combustor is dimensioned for a certain pressure loss, it will be 

large enough to accommodate the chemical reaction, J. Saywers [2]. The mixing process of fuel and air is 

extremely important. A good mix in the primary zone is essential for high burning rate and to minimize UHC 

and soot formation, H. Lefever [9] and S. Cohen [1]. A satisfactory mixed air-fuel inside the flame tube, and 

a relatively steady flow throughout the chamber, are aimed at the design of combustor, leading consequently 

to shorter combustors and lower pressure losses.  

Table 1, Pressure losses terms of aircraft and industrial engine combustor, Saywers [2]. 

Combustor type ∆𝒑𝟑−𝟒

𝒑𝟑
 

∆𝒑𝟑−𝟒

𝒒𝒓𝒆𝒇
 

𝒎𝟑. √𝑻𝟑

𝒑𝟑. 𝑨𝒓𝒆𝒇
 

Multi-can 5.3 40 3e-3 

Annular 6 20 4.5e-3 

Can-Annular 5.4 30 3.5e-3 

 

By the aerodynamic criterion, preliminary casing and flame tube diameters are estimated using 

equations 1, 2 and 3, Saywers[2]. 

𝐴𝑟𝑒𝑓 = [
𝑅𝑎𝑖𝑟

2
. [

𝑚3.√𝑇3

𝑝3
]

2 

. [

∆𝑝3−4
𝑞𝑟𝑒𝑓

∆𝑝3−4
𝑝3

]]

0.5

                                                                                                        (1)  

 
𝐴𝑙𝑖𝑛

𝐴𝑟𝑒𝑓
=  0.65                                                                                                                                            (2) 

2

3
𝐷𝐿 ≤ 𝐿𝑃𝑧 ≤

2

3
𝐷𝐿                                                                                                                                     (3) 

𝐿𝑠 =
1

2
𝐷𝐿                                                                                                                                                  (4)   

The dilution zone length ratio as a function of pattern factor for different value of pressure losses 

factor    
△𝑃3−4

𝑞𝑟𝑒𝑓
 =30, 50. 
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𝐿𝑅𝐷𝑧,30 = 2.96 − 9.86𝑄 + 13.3𝑄2                                                                                                        (5) 

𝐿𝑅𝐷𝑧,50 = 2.718 − 12.64𝑄 + 28.51𝑄2                                                                                                  (6) 

𝐿𝑅𝐷𝑧,40   Calculated by interpolation method. 

𝐿𝐷𝑧 = 𝐿𝑅𝐷𝑧,40 ∙ 𝐷𝐿                                                                                                                                   (7)         

The aerodynamic phenomena play a vital role in the design and performance of the gas turbine 

combustion. As already mentioned, generally, if the aerodynamic design is satisfactory and the fuel injection 

system is suitable for the combustor, so do not expect operational problems. Using Mathcad package to 

programming the above equations 1 to 7 for the combustor inlet boundary conditions in table 2 to get the 

final preliminary design results in table 3. 

 

 

 

  

 

 

 

 

 

 

 

 

 

3. Combustor Geometry: 

In this section, the final dimensions results of preliminary design in table 3 have drawn as geometry 

through employing AutoCAD 2016. The mainstream of the main injector line. However, the geometry that 

utilized in the experimental study as shown in Figure (1). 

 

 

 

     

 

 

 

 

 

 

 

Table: 2, Inlet boundary condition 

Dref DLin 

LDz 

Variable Value Unite 

m•
3 0.6 Kg/s 

m•
f 0.0032 Kg/s 

P3 1.5E5 pa 

Pr 1.4 - 

T3 600    K 

V3 50 m/s 

 

Variable Value Unite 

Aref 0.0346 m2 

Alin 0.0224 m2 

Asw 8.329e-4 m2 

Dref 0.21 m 

Dlin 0.17 m 

Dsw 0.048 m 

Dsw,hub 0.025 m 

Lpz 0.1269 m 

Lsz 0.0846 m 

Ldz 0.225 m 

LDiff 0.038 m 

LDom 0.0223 m 

Dph 0.022 m 

Dsh 0.014 m 

DDh 0.032 m 

θDom 69.86 º 

θDiff 26.3 º 

 

Table: 3, Preliminary design results.  

Figure: 1, Final combustor geometry for the preliminary design results.  

LSz LPz LDiff 3 4 
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4. Experimental Setup: 

The design and manufacturing of the test rig, consisting of micro gas turbine close loop system, was 

carried out at the Department of Mechanical Engineering, University of Technology, Exhaust gases 

turbocharger BBC type, exhaust plenum, exhaust gases recirculation (EGR) line, intake projection venture’s 

tube, oil lubrication system, ignition system, bearing cooling system, pitot-tube and other measurement 

device, the detail of the overall test rig setup is presented in figures: 2. 

 

 
 

5. Radial inward 90º fuel injection in secondary zone: 

related with the experimental steady-state test method and verification of the combustion with 

conventional main injector case for injection holes size (1mm) with swirler of 6 vanes, 60º degrees with the 

axial direction for each vane, [8] as shown in Figure 3, and using distribution fuel injection method by radial 

inward 90º of eight port with 0.8mm hole diameter of fuel injection port in secondary zone below the primary 

holes in about 1 cm, as shown in figure 4. In order to measure the centerline temperature along the combustor, 

outlet temperature profile, emissions gases and capturing flame by camera and combustion efficiency 

calculation. Both tests were achieved for the same primary, secondary and dilution holes geometry of inline 

arrangements, number of holes, and size, constant fuel pressure about 2 bar and the range of injected fuel 

approximately about 0-3.2 g/s of LPG gases fuel. 

 

 

 

 

Figure 2. Experimental Test Rig. 
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Figure: 3, One row of S.L. F. I. in secondary zone below primary holes about 1cm 
 

6. Combustion efficiency calculation: 

The combustion efficiency determined through a measurement of UHC and CO for LPG gas fuel, the 

imperial relationship of the combustion efficiency, UHC and CO, emissions is as follows, Hung [10]: 

ηc = 1 − (UHCEI + 0.211 COEI)10−3                                                                                                     (8) 

Where ηc= combustion efficiency 

UHCEI = emissions index of UHC, g/kg fuel  

COEI = emission index of CO, g/kg fuel              

The relation between emission index and emission expressed for UHC and CO at ISO condition are 

follow as: 

UHCEI = 0.0288UHC                                                                                                                               (9)    

COEI = 0.0503CO                                                                                                                                    (10) 

Where UHC= emission of UHC in ppmv  

CO= emission of CO in ppmv 

7. Pattern factor calculation: 

temperature profile at the exit section of the combustor defined as pattern factor represented the 

temperature homogeneity at the combustor outlet,  Lefebver [11] as follows: 

 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑇𝑚𝑎𝑥−𝑇4

𝑇4−𝑇3
                                                                                                                       (11) 

8. Results: 

For 6 holes and 1mm injection hole diameter of main injector and 8 holes with 0.8mm diameter of secondary 

line of fuel injection located in secondary zone where the fuel injector located below the primary holes in 1 

cm as shown in Figure 3, for 3.2 g/s of total fuel flow rate, results shows long pal blue continues flame 

(flameless considerations) as shown in Figure 4 produce low addle speed approximately 5500 RPM, complete 

combustion, without soot generation for this case and ultimate maximum speed about 15000 RPM, easy to 

start and accelerated the engine by both the primary and secondary fuel line. For loaded turbine figures: 5, 6 

and 7 shows the variation of temperature distribution profile along the center line of the combustor for 

different fuel mass flow rate ratio and equivalence ratio, the outcome reveals that there is increasing in 
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temperature in the secondary zone due to the effects of the secondary line of fuel injection at the expense of 

the primary zone and then decreasing in temperature along the combustor while the overall temperature 

gradient decrease and becomes more uniformity as decreasing in compressor pressure from 100 cm H2O to 

partial loaded turbine 60 cm H2O 

 

for combustor performance figures: 8, 9 and 10 shows the variation of pattern factor and average outlet 

temperature with the fuel mass flow rate ratio and equivalence ratio the outcome reveals desirable increasing 

in pattern factor for each running case of compressors pressure while the overall gradient in pattern factor 

decrease with the decreasing in compressor pressure due to the elongation of reaction zone  by the secondary 

line of fuel injection (S. L. F. I.) and decreasing in effectiveness of penetration cooling effects of all zones 

holes caused more temperature homogeneity inside the combustion chamber,  approximately constant 

average outlet temperature for all running cases. 
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Figures: 11, 12 and 13 shows the variation of combustion efficiency with fuel mass flow rate ratio and 

equivalence ratio the results shows decreasing in combustion efficiency for 100 cm H2O head of compressor 

outlet pressure due to increasing in UHC and CO emissions figure 14 because of the high effectiveness of 

cooling holes the cooled mixture caused cooled quenching  incomplete combustion for the distributed fuel 

while this effect decrease as decreasing in pressure 80 cm H2O head to partial loaded turbine 60 cm H2O head 

because of increasing in equivalence ratio caused continues flame caused increasing in efficiency and 

decreasing in emission gases CO and UHC as shown in figures 15 and 16.  

 

Figure 17, 18 and 19 shows variation of power and S.F.C results shows for constant outlet power for 

each case of compressor pressure decreasing in S.F.C as increasing in secondary line of fuel injection 

activation for each case due to increasing in fuel energy release (complete combustion) and increasing in 

S.F.C as decreasing in pressure. 
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9. Conclusions: 

In this paper a colorless flame with high-performance combustion carried out by experimental 

investigation using optimization of volumetric reaction phenomenon by using multi-line of fuel injection 

method to burned gaseous fuel (LPG). It is found that to achieve colorless flame combustion is heavily 

dependent on combustor design, the method of fuel injection. The conclusions of this study are based on the 

objectives. 

1. The colorless flame oxidation reaction mode occurred for distributed lean reaction (distributed fuel 

injection) and high air flow rates.  

2.  Equivalence ratio has an important role in distributed fuel combustion to forming continues distributed 

flame.    

3. Cooled air and low average combustor temperature have a great effect on the distributed fuel combustion 

by causing cooled quenching and rise the emission gases generation. 

4. The colorless flame combustion achieved extremely low emissions and high performance with the 

distributed flame, limit range of equivalence ration and high average temperature.  

5. High speed of fuel mass flow rates (choking range) with respect to air mass flow rate helped in promoting 

good mixing and strong reaction resulting in a high temperature field. 
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في المنطقه الثانويه لحارق أنبوبي لتوربين  مسال(تأثير حقن وقود متعدد الخطوط )غاز بترولي 
 غازي صغير 

 فؤاد عبدألأمير خلف                 محمود عطا الله مشكور                    أركان خلخال حسين   

  العراق  بغداد،، الجامعه التكنلوجيه الهندسه الميكانيكيه،قسم 
me.21325@uotechnology.edu.iq     MahmoodMashkoor@hotmail.com    arkanltaie@yahoo.com 

 الخلاصة

بحقن وقود متعدد المنافذ في  لاحتراق بأداء عالي وانبعاثات قليله بدون لهب لحارق أنبوبي لتوربين غازي صغيردراسه تجريبيه  
وموزعه ومستوى عالي من التماثل  متجانسةيتميز بشعله بدون لهب  تم تطبيقه ضمن الضروف الجويه. تفاعل الأكسدهالمنطقه الثانويه للحارق 

قياس كل من  درجات الحراره، معدل جريان لمعدل درجات الحراره داخل غرفة الأحتراق. أداء المنضومه، ألأنبعاثات الغازيه، صور للشعله، 
لحالة أحتراق واطيئ دونت  الهواء الداخل و معدل جريان وقود غازي بترولي مسال لنسب مختلفه للتدفق الكتلي في خطوط حقن الوقود 

ملم لحاقن الوقود  0.8منافذ بقطر  8ملم لحاقن الوقود الرئيسي و  1منافذ بقطر    6ثا مع\غم 3.2الأنبعاثات بدون لهب، لمعدل جريان وقود 
قود يعطي أحتراق الثانوي بينت الدراسه لأعلى معدل تدفق للهواء مع جريان وقود في حالة الأختناق في الحاقن الرئيسي لكل معدل جريان و 

د بدون لهب بلون أزرق شاحب موزع بتجانس مع تأثير كبير لنسبة تكافؤ خلط الوقود على معدل درجات الحراره والتي بدورها تحدد امكانية تول
فاض في أنخ% و 99.68فائة الأحتراق تصل الى مع زياده في ك  0.2 >اخماد اللهب البارد ومعامل لنمط درجات الحراره  مقبول تصميميا 

 معدل استهلاك الوقود النوعي مع زياده في القدره المتولده.

   .مسالبترولي وقود غازي  واطئ،انبعاث  لون،أحتراق بدون  انبوبي،حارق  غازي،توربين  - :المفتاحيةالكلمات 
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