
 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Hybridize optimization Algorithms 
for the Single Machine 

Total Tardiness Problem 
 

 
 
 
 
 

م. د. شاكر ناجي اعداد : اعداد : 
م.م. هيثم غني احمد 

م.م. اسماعيل خليل علي 
 كلية بغداد للعلوم الاقتصادية الجامعة

  
 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

3 

 
 
 

Various optimization heuristics are investigated and applied in 
a number of areas in the field of single machine scheduling 
problems. We present efficient heuristic optimization 
algorithms (Genetic Algorithm and Simulated Annealing) for 
single machine scheduling problems with and without release 
times. The increasingly important issue of parallelization is 
considered with an example implementation being provided in 
the case of single machine problem is shown. The results show 
that these algorithms were able to produce high quality 
optimization, especially for  wRjRTRjR. 
 
 
 
 
 
 
 
 
 
 
 

 
Keywords: 
Single Machine, Minimizing Tardiness, Heuristic 
Optimization, Simulated Annealing, Genetic Algorithms 
 
 
Software engineering Dept. Baghdad College of Economic Science 
University 

Abstract 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

4 

Introduction 
 

 
 

 
The study of numerical optimization heuristics and their 

application of single machine scheduling problem is an 
important consideration in a world where computer processing 
power is continually increasing and distributed computing 
systems are becoming more and more prevalent. Parallel 
implementations of such heuristics can dramatically improve 
performance and enhance the overall effectiveness of a wide 
range of machine scheduling. In this paper a broad 
introduction to the area of single machine scheduling problem 
using optimization heuristics is given. 

The two algorithms discussed here are the Simulated 
Annealing (SA) and Genetic Algorithm (GA). Both of these 
algorithms have different characteristics, which means that one 
may be more useful than the other for particular applications. 
These algorithms are used for solving problems where a 
deterministic approach may be prohibitively complex and time 
consuming. The types of problems being solved are usually 
characterized by an objective (or cost) function, the aim being 
to minimize this function. They do this by searching only a 
small part of the solution space and attempting to avoid 
solutions which do not have the characteristics of a good 
solution. Defining the characteristics of a good solution is not 
always easy and is perhaps the most important task when using 
one of the algorithms presented here. 

In (section 2 ) of this paper a detailed description of each of 
the algorithms is given. Of particular interest is the genetic 
algorithm which has been implemented in parallel for a 
number of different applications. In (section 3 )  a very brief 
description of the single machine scheduling problem is given 
with particular attention being given to the characteristics of 
this problem which make them relatively easy to perform 
under strictly limited computation time. Results of 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

5 

computational tests to evaluate the performance of these 
heuristic algorithms are reported in (section 4).  
 
1. Optimization Heuristics 
In this section two optimization techniques, simulated 
annealing and the genetic algorithm, are introduced.  
 
1.1. Simulated Annealing 

Simulated Annealing is a combinatorial optimization 
technique first introduced in 1983 by Kirkpatrick, Gelatt and 
Vecchi [7]. They used the technique for deciding the optimal 
placement of components on an integrated circuit (IC) chip. 
The number of variables in a problem of this type can be 
enormous, making determination of an optimal solution 
impossible. Simulated annealing scans a small area of the 
solution space in the search for the global minimum. 
 
 1.1.1. The Metropolis Algorithm 

Simulated annealing utilizes a process known as the 
Metropolis Algorithm which is based on the equations 
governing the movement of particles in a gas or liquid between 
different energy states. Equation (1) below describes the 
probability of a particle moving between two energy levels, ER1R 
and ER2R, 

 

              P(E) = exp kT
E∆−

                                   (1) 
 
where ΔE = ER2 R-ER1R, k is Boltzmann’s constant and T is the 

temperature. The Metropolis Algorithm uses in equation (1) to 
make a decision as to whether or not a transition between 
different energy levels will be accepted [9]. The Metropolis 
Algorithm can be summarized by the following equation (2),  



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

6 





= ∆−
1

exp
)(

T
EEP              

0

0

≥∆

⊂∆

Eif

Eif                               (2) 

Consider, now, if the evaluation of the cost function for the 
problem being solved is equivalent to the energy in (2). A 
transition which decreases the cost (an increase in energy) will 
always be accepted. However, the Metropolis Algorithm is 
structured so that a transition to a solution with a higher cost 
(lower energy) is accepted, with a probability that decreases as 
the temperature increases. This gives the algorithm the ability 
to move away from regions of local minima. This is not the 
case for the so called “iterative improvement” techniques 
which only move in the direction of decreasing cost. That is, a 
transition is only accepted if ΔE > 0.  

 
 
1.1.2. The Simulated Annealing Algorithm 

As its name suggest the simulated annealing algorithm 
simulates the annealing process. Annealing is the process by 
which a metal, initially at a high temperature, is slowly cooled 
in such a manner that the molecules in the metal are able to 
move towards a state of least energy. A metal which is in a 
state of least energy usually has a crystalline structure i.e. the 
molecules are very ordered. In the case of a combinatorial 
problem, the current solution is analogous to the structure of 
the molecules at any stage of the annealing process. 
 
The simulated annealing algorithm consists of a number of 
components. 
 

• There first must exist some measure for evaluating the 
“goodness” of a particular configuration (or solution). 
This is called the cost function or the objective function. 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

7 

 
• A cooling schedule must be determined. A cooling 

schedule defines the initial temperature, the way in 
which the temperature decreases at each iteration, and 
when the annealing should cease. Many complex 
mathematical models have been devised in 
consideration of the cooling schedule, however a simple 
model will usually suffice. 

 
• There also must be a set of rules which state how a 

particular solution is changed in the search for a better 
solution. 

 
The following is an outline of the simulated annealing 
algorithm [7]:  
1. Generate an initial solution to the problem (usually random). 
2. Calculate the cost of the initial solution. 
3. Set the initial temperature T = TP

(0)
P. 

4. For temperature, T, do many times: 
 

• Generate a new solution which involves modifying the 
current solution in some manner. 

• Calculate the cost of the modified solution. 
• Determine the difference in cost between the current 

solution and the proposed solution. 
• Consult the Metropolis Algorithm to decide if the 

proposed solution should be accepted. 
• If the proposed solution is accepted, the required 

changes are made to the current solution. 
 
5. If the stopping criterion is satisfied the algorithm ceases 

with the current solution, otherwise the temperature is 
decreased and the algorithm returns to Step 4. 
  



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

8 

1.1.3. The Cooling Schedule 
As mentioned above, the cooling schedule has three main 
purposes. 

1. It defines the initial temperature. This temperature is 
chosen to be high enough so that all proposed transitions 
are accepted by the Metropolis Algorithm. 

 
2. The cooling schedule also describes how the 

temperature is reduced. Although there are other 
methods, two possibilities are presented here. 

          
          (a) An exponential decay in the temperature:  

      TP

(k+1)
P = α ×  TP

(k)
PR             R, where 0 < α  < 1                         

(3) 
Usually α≈  0.9 but can be as high as 0.99. 
 
(b) Linear decay, here the overall temperature range 
is divided into a number of intervals, say K. 
 TP

(k+1)
P = K

kK −  × T P

(0)
P     , where k = 1,……,K                        

(4) 
3. Finally, the cooling schedule indicates when the 

annealing process should stop. This is usually referred 
to as the stopping criterion. In the case where a linear 
decay is used the algorithm can be run for its K 
iterations, provided K is not too large. For the case 
where exponential decay is used, the process usually 
ceases when the number of accepted transitions at a 
particular temperature is very small (≈0).  

 
1.2. Genetic Algorithms 
The genetic algorithm uses concepts such as selection, 
breeding and mutation which are borrowed from Darwin’s 
theory of evolution. The genetic algorithm was originally 
designed for solving problems which have a solution which 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

9 

can be represented as a binary vector. As will be seen in this 
paper, a similar strategy can be used for problems with a 
solution represented as a vector of integers. Problems solved in 
this manner, where the solution is not represented in a binary 
format, are sometimes termed evolution programs. However, 
throughout this paper we refer to our algorithm more 
generally, as a genetic algorithm. 
Unlike simulated annealing which uses a cost function, a 
genetic algorithm usually has associated with it a fitness 
function. Typically the fitness function evaluates to a figure in 
the range zero to one (ideally the optimum solution will have 
the lowest fitness, one if possible). A good fitness function 
will give an accurate indication of how “close” a feasible 
solution is to the optimal solution. 
A genetic algorithm works on a pool of solutions (sometimes 
referred to as a gene pool, where each gene is a feasible 
solution to the problem being solved). The solution pool is 
iteratively updated in an “evolutionary” manner. From a given 
pool, a number of pairs of parents are chosen for mating. In the 
mating process, a pair of parents will produce a pair of 
children. The children then undergo some mutation process, 
after which a selection is made determining which genes will 
survive to the next generation. 
 
The following is an outline of the genetic algorithm [13]:  
 

1. [Start] Generate random population of n chromosomes 
(suitable solutions for the problem).  

2. [Fitness] Evaluate the fitness f(x) of each chromosome x 
in the population.  

3. [New population] Create a new population by repeating 
following steps until the new population is complete:  

 [Selection] Select two parent chromosomes from 
a population according to their fitness (the better 
fitness, the bigger chance to be selected)  



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

10 

 [Crossover] With a crossover probability cross 
over the parents to form new  offspring (children). 
If no crossover was performed, offspring is the 
exact copy of parents.  
 [Mutation] With a mutation probability mutate 
new        offspring at each locus (position in 
chromosome).  
 [Accepting] Place new offspring in the new 
population  

4. [Replace] Use new generated population for a further run 
of the algorithm.  

5. [Test] If the end condition is satisfied, stop, and return 
the best solution in current population.  

6. [Loop] Go to step 2.  
 

2. Problem Formulation and Complexity   
The single machine total weighted tardiness problem [10] can 
be stated as follows: A set of n jobs has to be scheduled on a 
single machine. The machine can only process one job at a 
time and the execution of a job cannot be interrupted. Each job 
j becomes available at time zero, and machine idle time and 
job preemption are prohibited. Requires a predefined 
processing time pRjR , has a positive weight wRjR and a due date dRjR. 
A schedule is constructed by sequencing the jobs in a certain 
order such that the completion time CRjR of each job can be 
computed. If the completion time exceeds a job's due date, the 
objective function gets increased by a tardiness penalty wRjRTRjR , 
where TRjR = max {0,CRj R– dRjR}.The optimization goal is to find a 
processing order which minimizes the value of the sum : 

                     ∑
=

n

j 1
wRjRTRjR                                                (5) 

The problem∑
=

n

j 1
wRjRTRjR is known to be strongly NP-hard [8]. As 

far as single machine problems with unequal release times are 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

11 

concerned, only the NP-hardness of the total tardiness problem 
has been shown directly [12].  

Several enumerative methods have been presented for∑
=

n

j 1
wRjRTRjR 

, such as Branch & Bound algorithms[11]. Although these 
exact approaches have been constantly improved, they are not 
able to solve problem instances with more than 40 jobs. The 

only existing Branch & Bound algorithm for rj ∑
=

n

j 1
wRjRTRj Ris the 

one introduced by Akturk and Ozdemir [1], which has been 
applied to problems up to 20 jobs. This indicates that for large, 
industrial-sized scheduling problems only heuristic 
optimization techniques are to be considered. 
A review and comparison of such methods in the context of 

∑
=

n

j 1
wRjRTRj Ris provided by Crauwels [6]. Neighborhood-based 

approaches, in particular Tabu Search, as well as Genetic 
Algorithms turned out to be effective methods for weighted 
tardiness optimization. During the past few years, several 
enhanced variants of these methods have been developed 
[5][2][4]. Anyway, the applied techniques are very 
sophisticated and tailored to the specific properties of 

∑
=

n

j 1
wRjRTRjR. On the other hand, literature on heuristic approaches 

to rj ∑
=

n

j 1
wRjRTRj Ris very sparse. As a consequence, we decided to 

rely on existing methods for∑
=

n

j 1
wRjRTRjR and to adapt them in 

order to handle arbitrary release times. We further modified 
the methods for maximum efficiency at a reasonable level of 
solution quality. 
 
 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

12 

3. Experimental Results 
 

In this section, we present computational results for the 
single machine scheduling problems considered in this paper. 
Since efficiency is our main concern, we impose strict time 
limits for all optimization runs and analyze the resulting 
solution quality. 

Our experiments regarding∑
=

n

j 1
wRjRTRj Rare based on a set of well 

known benchmark problems taken from the OR-library [3]. 
Unfortunately, the OR-library instances are limited to 100 
jobs. However, 200-job problems generated according to the 
same scheme have been used in [2]. 
 
The Genetic Algorithm we use for our experiments can be 
described as a Standard Genetic Algorithm which has been 
modified in order to fit better into the problem environment. 
The most important aspects concerning the genetic algorithm 
are summarized in the following: 
 
Solution encoding 

We adopt a permutation based representation for the sake 
of compatibility with the local search methods. 
Additionally, it is the most natural encoding for 
sequencing and scheduling problems. 

 
Initialization  

The initial population is basically initialized at random. 
However, we  additionally insert one solution generated 
by the heuristic. By this, we possibly introduce relevant 
building blocks for high quality solutions into the 
population. 

 
 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

13 

Crossover and mutation 
We use the Order Crossover (OX) as defined by Syswerda 
[13],  and an insert based mutation operator. 

 
Hybridization 

In order to further improve solution quality, we hybridize 
the (GA) with local search algorithm (SA). A strict best 
improvement method based on the local search is used to 
re-optimize solutions after the crossover.  

 
All tests were run with n = 100 and for n = 200 and the results 
are averaged over 20 independent runs. The parameters for 
each method are summarized in Table 1 and 2. 
 

Table 1: Parameters for the Simulated Annealing 
 

TRmax 10000 
TR0 0.1 
α 0.995 

 
Table 2: Parameters for the Genetic Algorithm 

 
 Population Size n (100 or 200) 

Selection Roulette Wheel 
Crossover OX 

Crossover Rate  0.7 
Mutation Rate  0.05 

 
 
Table 3 and 4 summarize the experimental results. The ∆ - 
values represent the relative percentage deviation from the best 
known solutions. 
 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

14 

For comparison purposes, we added results achieved by the 
Problem Space Genetic Algorithm, one of the best available 
approaches for single machine scheduling problems, as 
reported in [2]. It has to be remarked that these results were 
obtained under different conditions (no time restrictions). 
 
According to Table 3, the Genetic Algorithm produces the 
most stable and robust results for n = 100. The hybridization 
algorithm produces a high ∆ -max value, although its average 
percentage deviation is still relatively low. The (GA) cannot 
maintain its result quality for the 200-job problems but still 
obtains the lowest ∆ -max value. The hybridization algorithm 
produces the lowest mean deviation. However, it had severe 
problems with one of the problem instances yielding a ∆ -max 
of 4.02 %. In general, the (GA) seems to produce the most 
stable overall result quality. Its population-based exploration 
of the solution space is obviously less prone to be trapped in 
local optima as is the case for the neighborhood-based 
methods. 

 
Table 3: Results for the 100-job instances Method 

 
Method ∆ - avg ∆ - 

median 
∆ - 

max 
GA 
SA 

Hybridization 

0. 20 % 
0.15 % 
0.04 % 

0.01 % 
0.00 % 
0.00 % 

3.80 % 
3.65 % 
0.61 % 

 
Table 4: Results for the 200-job instances 

 
Method ∆ - avg ∆ - 

median 
∆ - 

max 
GA 
SA 

Hybridization 

0.36 % 
0.35 % 
0.31 % 

0.15 % 
0.10 % 
0.06 % 

4.82 % 
4.70 % 
4.02 % 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

15 

Since there are no publicly available benchmark instances for 

rj ∑
=

n

j 1
wRjRTRjR, we generated a set of problems according to the 

scheme reported in [1]. Processing times pRjR and weights wRjR 
were randomly sampled from the uniform distributions. The 
release times follow a uniform distribution between 0 to 

α ∑
=

n

j 1
pRjR, where α ∈{0.0,0.5,1.0,1.5}. Due dates were 

computed using a randomly determined slack time dRjR- (rRjR+pRjR) 

ranging from 0 to β ∑
=

n

j 1
pRjR, where β ∈{0.05,0.25,0.5}. Using 

all possible combinations of processing time and weight 
ranges and all possible pairs of values for α  and β .Tables 5 
and 6 show the average improvement for each pair of α  and 
β . Due to our first experiments, unequal release times add a 
considerable degree of difficulty. The experimental setup is 
basically the same as for the equal release time problems. The 
parameters for the GA were not changed since we did not 
observe quality improvements. It can be observed that the 
highest improvement ratios are obtained for the problems with 
scattered release times and loose due dates. However, only 
minor improvements are possible for instances with α = 0 
which correspond to the weighted tardiness problem with 

equal release dates ∑
=

n

j 1
wRjRTRjR. (SA) shows the best overall 

behavior for both n = 100 and n = 200, whereas the Genetic 
Algorithm cannot keep up with the neighborhood-based 
methods for α  > 0. Obviously the structure of the solution 
space becomes different under arbitrary release date. The only 
small advantage of the (SA) algorithm over the hill climber 
emphasizes this assumption.  
 
 
 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

16 

Table 5: Results for the 100-job instances with unequal release 
times 

α  β  GA SA Hybridization 

∑
=

n

j 1
wRjRTRjR. 

Improve 
% ∑

=

n

j 1
wRjRTRjR. 

Improve 
% ∑

=

n

j 1
wRjRTRjR. 

Improve 
% 

0.0 
0.0 
0.0 

0.05 
0.25 
0.50 

1682922 
1433105 
616795 

0.22 % 
1.03 % 
1.48 % 

1682924 
1433107 
616670 

0.22 % 
1.03 % 
1.50 % 

1682586 
1432383 
615417 

0.24 % 
1.08 % 
1.70 % 

0.5 
0.5 
0.5 

0.05 
0.25 
0.50 

572459 
350793 
60628 

0.46 % 
7.35 % 
8.30 % 

555551 
281770 
60625 

3.40 % 
25.58 % 
8.30 % 

554975 
281694 
60595 

3.50 % 
25.60 % 
8.35 % 

1.0 
1.0 
1.0 

0.05 
0.25 
0.50 

39841 
906 

0 

4.29 % 
54.31 % 
100.00 % 

31479 
630 

0 

24.38 % 
68.20 % 
100.00 % 

31220 
553 

0 

25.00 % 
72.10 % 
100.00 % 

1.5 
1.5 
1.5 

0.05 
0.25 
0.50 

10075 
3 
0 

19.65 % 
99.71 % 
100.00 % 

9316 
3 
0 

25.70 % 
99.71 % 
100.00 % 

9291 
0 
0 

25.90 % 
100.00 % 
100.00 % 

 
Table 6: Results for the 200-job instances with unequal release 

times 
α
 

β  GA SA Hybridization 

∑
=

n

j 1
wRjRTRjR

. 

Improve 
% ∑

=

n

j 1
wRjRTRjR

. 

Improve 
% ∑

=

n

j 1
wRjRTR

jR. 

Improve 
% 

0.0 
0.0 
0.0 

0.05 
0.25 
0.50 

6835082 
5126121 
2789613 

0.12  % 
0.26 % 
0.96 % 

6835100 
5126123 
2787641 

0.12 % 
0.26 % 
1.03 % 

6834397 
5125093 
2785951 

0.13 % 
0.28 % 
1.09 % 

0.5 
0.5 
0.5 

0.05 
0.25 
0.50 

2410618 
1195804 
402520 

0.17 % 
1.09 % 
1.48 % 

2385746 
924871 
216617 

1.20 % 
23.50 % 
46.98 % 

2382848 
920035 
204202 

1.32 % 
23.90 % 
50.02 % 

1.0 
1.0 
1.0 

0.05 
0.25 
0.50 

28.199 
16 
27 

1.83 % 
79.34 % 
95.83 % 

21113 
0 
0 

26.50 % 
100.00 % 
100.00 % 

20966 
0 
0 

27.01 % 
100.00 % 
100.00 % 

1.5 
1.5 
1.5 

0.05 
0.25 
0.50 

2993 
43 
0 

61.23 % 
93.14 % 
100.00 

% 

1351 
31 
0 

82.50 % 
95.18 % 

100.00 % 

1127 
26 
0 

85.40 % 
95.90 % 
100.00 

% 
 
 
 
 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

17 

 
 

The purpose of this research was to develop and evaluate 
methodologies for solving the single machine scheduling 
problem to minimize total tardiness. Since the complexity of 
this problem is at least NP-Hard, this paper developed and 
implemented effective heuristics that would provide good 
solutions within a reasonable time. 
We presented efficient heuristic optimization methods 
(Genetic Algorithm and Simulated Annealing) for single 
machine scheduling problems with and without release times. 
The algorithms were able to produce high quality results, 
especially for  wRjRTRjR. 
Computational results show that the proposed heuristics can 
provide good solutions with the average relative deviation, it is 
shown that the combined GA/SA heuristic delivers good 
performance in obtaining the near optimal job sequence inside 
a family. Furthermore, the two promising heuristics, may be 
used in a variety of situations. 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
AND OUTLOOK 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

18 

 
 

 
 
 

1. Akturk, M. S. and Ozdemir, D. (2000). “An exact approach 
to minimizing total weighted tardiness with release dates”. 
IIE Transactions, 32:1091-1101. 

 
2. Avci, S., Akturk, M. S., and Storer, R. H. (2003).”A 

problem space algorithm for single machine weighted 
tardiness problems”. IIE Transactions, 35:479-486. 

 
3. Beasley, J. (1990).”Or-library: Distributing test problems 

by electronic mail. Journal of the Operational Research 
Society”, 41(11):1069-1072. 

 
4. Bilge, U., Kurtulan, M., and Kirac, F. (2006).”A tabu 

search algorithm for the single machine total weighted 
tardiness problem”. European Journal of Operational 
Research. In Press. 

 
5. Congram, R. K., Potts, C. N., and Van de Velde, S. 

(2002).”An iterated dynasearch algorithm for the single-
machine total weighted tardiness scheduling problem”. 
INFORMS Journal on Computing, 14(1):52-67. 

 
6. Crauwels, H. A. J., Potts, C. N., and Van Wassenhove, L. 

N. (1998). “Local search heuristics for the single machine 
total weighted tardiness scheduling problem”. INFORMS 
Journal on Computing,10(3):341-350. 

 
 

Reference 



 2008كلية بغداد للعلوم الاقتصادية الجامعة                        العدد السابع عشر ايار 
 

19 

7. Kirkpatrick, S., Gelatt, C. D., JR., and Vecchi, M. P. 
(1983). “Optimization by simulated annealing ”.Science, 
220(4598):671-680,. 

 
8. Lawler, E. L. (1977). A pseudo polynomial algorithm for 

sequencing jobs to minimize total tardiness. Annals of 
Operations Research, 1:331-342. 

 
9. Metropolis, N., Rosenblunth, A. W., Rosenblunth, M. N., 

Teller, A. H., and Teller, E. (1953).” Equations of state 
calculations by fast computing machines”. Journal of 
Chemical Physics, 21(6):1087–1092,. 

 
10.  Pinedo, M. (2002).” Scheduling: Theory, Algorithms ,and 

Systems”.     Prentice Hall, 2nd edition. 
 
11.  Potts, C. N. and Van Wassenhove, L. N. (1985). “A branch 

and bound algorithm for the total weighted tardiness 
problem”. Operations Research, 33(2):363-377. 

 
12.  Rinnooy Kan, A. H. G. (1976).” Machine scheduling 

Problems: Classification, complexity and computations”. 
Nijhoff, The Hague. 

 
13.  Syswerda, G. (1991).”Schedule optimization using genetic  

algorithms”. In Davis, L., editor, Handbook of Genetic 
Algorithms, pages 332-349. Van Nostrand Reinhold, New 
York. 

 
 
 
 
 


	اعداد : م. د. شاكر ناجي
	م.م. هيثم غني احمد
	م.م. اسماعيل خليل علي
	كلية بغداد للعلوم الاقتصادية الجامعة

