Some Result of Fuzzy Separation Axiom in Fuzzy Topological ring Space Basim Mohammed Melgat¹, Munir Abdul Khalik AL-Khafaji² ¹ Department of Public Health, College of Health and Medical Technique, Al- Furat Al- Awsat techniques / Kuffa University ² Department of Mathematics, College of Education, AL-Mustinsiryah University *Corresponding Author: Basimna73@Gmail.com Received 18/11/2019 , Accepted 28/11/2019 , published 30/12/2012 DOI: 10.18081/2226-3284/30-12/13-19 **Abstract:** In this paper, we study fuzzy separation axiom T_i , i = 0,1,2,3 in the fuzzy topological ring space. Also the relationship between the types of fuzzy separation axiom was studied. © 2019 Al Muthanna University. All rights reserved. **Keywords**: Fuzzy topological ring; fuzzy T_i space, i = 0,1,2,3 #### 1. Introduction: In 1965 [11], Zadeh L. A. gave the definition of fuzziness. After three years C. Chang [2] gave the notion of fuzzy topology. In 1990[1], Ahsanullah and Ganguli, depended on the convergent in fuzzy topological space in the sense of Lowen[7, 8] to introduce the concept of fuzzy nbhd rings which gives the necessary and sufficient condition for a prefilter basis to be fuzzy nbhd prefilter of 0 in fuzzy topological ring. Also they are study the notions of right and left bounded fuzzy set and precompact fuzzy set fuzzy nbhd rings. In 2009, Deb Ray, A. and Chettri, P [3] introduced fuzzy topology on a ring. Also in [4] they introduced fuzzy continuous function and studied left fuzzy topological ring. Our working to study fuzzy separation axiom T_i , i = 0,1,2,3 in the fuzzy topological ring space and obtaining the relationship between T_i , i = 0,1,2,3 spaces in the fuzzy topological ring space For rich the paper, some basic concept of fuzzy set, fuzzy topology and fuzzy topological ring are given below. The symbol I will denote to the closed interval [0,1]. ## **1.1 Definition** [11] A fuzzy set in R is a map $\partial: R \to I$ and, that is, belonging to I^R (the set of all fuzzy set of R). Let $E \in I^R$, for every $r \in R$, we expressed by E(r) of the degree of membership of r in R. If E(r) be an element of $\{0, 1\}$, then E is said a crisp set. ## 1.2 Definition [2] A class $\mu \in I^R$ of fuzzy set is called a fuzzy topology for R if the following are satisfied - 1) $\emptyset, R \in \mu$ - 2) $\forall E, H \in \mu \rightarrow E \land H \in \mu$ - 3) $\forall (E_j)_{j \in J} \in \mu \rightarrow \bigvee_{j \in J} E_j \in \mu$ (R, μ) is called fuzzy topological space. if $A \in \mu$ Then A is fuzzy open and A^c (complement of A) is a fuzzy closed set. ## **1.3 Definition [1, 3]** A pair (R, μ) , where R a ring and μ be a fuzzy topology on R, is called fuzzy topological ring if the following maps are fuzzy continuous: - 1) $R \times R \rightarrow R$, $(r,k) \rightarrow r + k$. - 2) $R \rightarrow R$, $r \rightarrow -r$ - 3) $R \times R \rightarrow R$, $(r,k) \rightarrow r.k$ ## 1.4 Definition [4] A family B of fuzzy nbhds of r_{α} , for $0 < \alpha \le 1$, is called a fund. system of fuzzy nbhds of r_{α} iff for any fuzzy nbhd V of r_{α} , there is $U \in B$ such that $r_{\alpha} \le U \le V$ ### 1.5 Definition [4] Let *R* be a ring and μ a fuzzy topological on *R*. Let *U* and *V* are fuzzy sets in *R*. We define U + V, -V and $U \cdot V$ as follows $$(U+V)(k) = \sup_{k=k_1+k_2} \min \{U(k_1), V(k_2)\}$$ $$-V(k) = V(-k)$$ $$(U.V)(k) = \sup_{k=k_1+k_2} \min \{U(k_1), V(k_2)\}$$ ### **1.6.Theorem** [4] If *R* is a fuzzy topological ring then there is a fundamental system of fuzzy nbhds *B* of 0 $(0 < \alpha \le 1)$, such that the conditions: - (i) $\forall U \in B$, then $-U \in B$ - (ii) $\forall U \in B$, then U is symmetric - (iii) $\forall U, V \in B$, then $U \land V \in B$ - (iv) $\forall U \in B$, there is $V \in B$ such that $V + V \le U$ - (v) $\forall U \in B$, there is $V \in B$ such that $V \cdot V \leq U$ (vi) $\forall r \in R, \forall U \in B$, there is $V \in B$ such that a $r \cdot V \leq U$ and $V \cdot r \leq U$. #### **1.7 Definition** [7] (R, μ) is fully stratified fuzzy topology on R if the fuzzy topology μ on R contain all constant fuzzy set ### **1.8 Definition [10]** A fuzzy topological space (R, μ) is said to be fuzzy T_0 -topological space iff $\forall r_\alpha, k_\alpha \in$ $R, r \neq k, \exists U \in \mu$ such that either U(r) = 1and U(k) = 0 or U(k) = 1 and U(r) = 0. #### **1.10 Definition** [10] A fuzzy topological space (R, μ) is said to be fuzzy T_1 - topological space iff $\forall r_{\alpha}, k_{\alpha} \in R, r \neq k, \exists U, V \in \mu$ such that $$U(r) = 1$$, $U(k) = 0$ and $V(r) = 0$, $V(k) = 1$ ## **1.11 Definition [10]** A fuzzy topological space (R, μ) is said to be fuzzy Hausdorff or fuzzy T_2 space iff for any two distinct fuzzy points $r_{\alpha}, k_{\alpha} \in R$, there exists disjoint fuzzy sets $U, V \in \mu$ with $$U(r) = V(k) = 1.$$ ## **1.12 Definition [10]** A fuzzy topological space (R,μ) will be called fuzzy regular if for each fuzzy point r_{α} and each fuzzy closed set H such that H(r)=0 there are fuzzy open sets U and V such that U(r)>0, $H\leq V$ and $U\wedge V=\emptyset$. ## **1.14 Proposition [10]** If a space R is a fuzzy regular space, then for any open set U and a fuzzy point $r_{\alpha} \in R$ such that cl(U)(r) = 0 there exists an open set V such that $\alpha \leq V \leq cl(V) \leq U$ #### **1.15 Definition** [10] A fuzzy topological space (R, μ) will be called normal if for each pair of fuzzy closed sets H_1 and H_2 such that $H_1 \land H_2 = \emptyset$ there exist fuzzy open sets U_1 and U_2 such that $U_1 \le H_1$ and $U_2 \le H_2$ and $U_1 \land U_2 = \emptyset$. ## **1.16 Definition [10]** A fuzzy topological space (R, μ) is said to be fuzzy T_3 -topological space iff it is fuzzy T_1 -and fuzzy regular. ## 2. Separation Axiom #### 2.1 Theorem Let (R, μ) be a fuzzy topological ring. If $k_{\alpha} \in \{r_{\alpha} : R(r) = \max\{R(h)\}, \ \forall h \in R\}$ and U is a fuzzy nbhd of 0, then k + U is a fuzzy nbhd of k such that $(k + U)(k) = \max\{R(h)\}$, $\forall h_{\alpha} \in R\}$. #### **Proof** Since U is a fuzzy nbhd of 0, there exists V fuzzy open set such that $V \subseteq U$ and $V(0) = U(0) = \max\{R(h)\}, \ \forall h \in R\}$. Let $g_k(r_\alpha): (R,\mu) \to (R,\mu), \ g_k(r) = r_\alpha + k_\alpha. \ g_k$ is a fuzzy homeo. Thus k+V is a fuzzy open set. $$k + V(k) = V(k - k) = V(0)$$ $$= \max\{R(h)\}, \quad \forall h \in R.$$ $$k + U(r) = U(r - k) \ge V(r - k) = k + V(r) \text{ for all } r \in R.$$ Thus there exists k + V fuzzy open such that $k + V \le k + U$ and $(k + V)(K) = (k + U)(k) = \max\{R(h)\}, \ \forall h \in R$ ### 2.2 Theorem Let (R, μ) be a fuzzy topological ring. If $k_{\alpha} \in \{r_{\alpha} : R(r) = \max\{R(h)\}, \ \forall h \in R\}$ and U is a fuzzy nbhd of k_{α} such that $U(k) = \max\{R(h)\}$, $\forall h \in R$, then U - k is a fuzzy nbhd of 0 such that $(U)(0) = \max\{R(h)\}$, $\forall h \in R$. ### **Proof** Since U is a fuzzy nbhd of k_{α} , there exists V fuzzy open set such that $V \subseteq U$ and $V(k) = U(k) = \max\{R(h)\}, \ \forall h \in R$. Let $g_k \colon R \to R$, $g_k(r_{\alpha}) = r_{\alpha} - k_{\alpha}$, g_k is a fuzzy homeo. Thus -k + V is a fuzzy open set. $V - k(0) = V(0 + k) = V(k) = \max\{R(h)\}, \ \forall h \in R\} = V(0).$ $U - k(r) = U(r + k) \geq V(r + k) = V - k(r)$ for all $r \in R$. Thus there exists V - k fuzzy open set such that $V - k \le U - k$ and $V(0) = U - k(0) = \max\{R(h)\}, \ \forall h \in R\}.$ #### 2.3 Definition A fuzzy topological ring (R, μ) is said to be Fuzzy T_0 – space iff for each r_α , k_α s.t $r \neq k$ there exists fuzzy open set U s.t $r_\alpha \in U$, $k_\alpha \notin U$ or $k_\alpha \in U$, $r_\alpha \notin U$ ## 2.4 Example Let Z_2 be the ring of integers modulo 2. Define fuzzy sets E_1 , E_2 , E_3 on Z_2 as $E_1([0]) = 0.9$, $E_1([1]) = 0$, $E_2([0]) = 0$, $E_2([1]) = 0.9$ for all $r \in Z_2$. Let $\mu = \{\emptyset, Z_2, E_1, E_2\}$ is a fuzzy topological ring on Z_2 , then (Z_2, μ) is a fuzzy T_0 – topological ring space. #### 2.5 Definition A fuzzy topological ring (R, μ) is said to be Fuzzy T_1 – space iff for each r_{α} , k_{α} s.t $r \neq k$ there exists fuzzy open sets U, V s.t $r_{\alpha} \in$ U, $k_{\alpha} \notin U$ and $k_{\alpha} \in V$, $r_{\alpha} \notin V$ ## 2.6 Example Let Z_2 be the ring of integers modulo 2. Define fuzzy sets E_1 , E_2 , E_3 on Z_2 as $$E_1([0]) = 0.25$$, $E_1([1]) = 0$, $E_2([0]) = 0$, $E_2([1]) = 0.25$ $$E_3([0]) = 0.25$$, $E_3([1]) = 0.25$ for all $r \in \mathbb{Z}_2$. Let $\mu = \{\emptyset, \mathbb{Z}_2, E_1, E_2, E_3\}$ is a fuzzy topological ring on \mathbb{Z}_2 , then (\mathbb{Z}_2, μ) is a fuzzy \mathbb{T}_1 – topological ring space. #### 2.7 Definition A fuzzy topological ring (R, μ) is said to be Fuzzy T_2 – topological ring space iff for any two fuzzy points r_{α} , k_{β} s.t $r \notin \text{supp}(k)$ and $k \notin \text{supp}(r)$, there exists two fuzzy open sets U, V s.t $r_{\alpha} \in U$, $k_{\alpha} \in V$ and $U \land V = \emptyset$ ## 2.8 Example Let Z_4 be the ring of integers modulo 4, with fuzzy discrete topology μ_D on it. The fuzzy topological ring (Z_4, μ_D) is Fuzzy T_2 – topological ring space. #### 2.9 Definition A fuzzy topological ring (R, μ) is said to be Fuzzy regular space if $\forall r_{\alpha} \in R$ and a fuzzy closed set F with F(r) = 0 there exists fuzzy open sets U, V such that $r_{\alpha} \in U$ and $F \subset V$ and $\Lambda V = \emptyset$. #### 2.10 Definition A fuzzy topological ring (R, μ) is said to be Fuzzy T_3 —topological ring space if (R, μ) is fuzzy T_1 —space and fuzzy regular topological ring space. ## 2.11 Example Let $\mathbb R$ be the ring of real number, with fuzzy usual topology μ_U on it. Then $(\mathbb R,\mu_U)$ is Fuzzy T_3 – topological ring space ## 2.12 Theorem If (R, μ) is fuzzy T_2 - topological ring space then $\{0_{\alpha}\}$ is fuzzy closed subset in (R, μ) . #### **Proof** Let (R, μ) is fuzzy T_2 - topological ring space. For any $r_{\alpha} \neq 0_{\alpha}$ be another fuzzy point, assume U(r) > 0, $\forall U \in \{B_0\}$, then there exists fuzzy open set V of r_{α} s.t V(0) = 0, implies $\overline{\{0\}}(r) = 0$. Since r is arbitrary. Thus $\overline{\{0_{\alpha}\}} = \{0_{\alpha}\}$ and $\{0_{\alpha}\}$ is fuzzy closed set. #### 2.13 Theorem For any fuzzy topological ring space (R, μ) , if $\{0_{\alpha}\}$ is fuzzy closed subset in R and if B_0 is a basis of fuzzy nbhd of 0_{α} , then $\Lambda_{V \in \{B_0\}} V = \{0_{\alpha}\}$. #### proof Let $\overline{\{0_\alpha\}}$ be an fuzzy closed set and $\{B_0\}$ be a basis of fuzzy nbhds of 0_α . Then by theorem 2.12, $\{0_\alpha\} = \overline{\{0_\alpha\}} = \Lambda_{V \in \{B_0\}} (\{0_\alpha\} + V) = \Lambda_{V \in \{B_0\}} V$ Thus $\Lambda_{V \in \{B_0\}} V = \{0_\alpha\}$ #### 2.14 Theorem For any fuzzy topological ring space (R, μ) , and B_0 is a basis of fuzzy nbhd of 0_{α} , if $\Lambda_{V \in \{B_0\}}V = \{0_{\alpha}\}$, then (R, μ) is fuzzy T_0 -topological ring space. #### **Proof** Let $\{B_0\}$ be a basis of fuzzy nbhds of 0_α and $\Lambda_{V\in\{B_0\}}V=\{0_\alpha\}$. Let r_α and k_α are fuzzy points with different support. Therefor $r_\alpha-k_\alpha\neq 0$, so there exists $V\in\{B_0\}$, s.t V(r-k)=0. Now by theorem 1.6, k+V(r) is fuzzy nbhd of k_α and (k+V)(r)=V(r-k)=0. Thus $r_\alpha\notin k+V$ and (R,μ) is fuzzy T_0 -topological ring space. #### 2.15 Theorem If (R, μ) is fuzzy T_0 - topological ring space, Then (R, μ) is fuzzy T_1 -topological ring space ## **Proof** Let (R, μ) be a fuzzy T_0 -topological ring space and let r_{α} and k_{α} are fuzzy points with different support. Then there exists fuzzy open set V of 0_{α} s.t (r+V)(k)=0 or (k+V)(r)=0. We can assume that V is symmetric fuzzy open set of 0_{α} . To explain that (r+V)(k)=0 if (k+1) V)(r)=0 we assume the contrary, suppose that (r+V)(k)>0, therefor (r-V)(k)>0. Implies $$(r+V)(k) = V(k-r) = V(-(r-k)) =$$ $V(r-K) = (k+V)(r) > 0.$ This contradiction, similarly if (k + V)(r) = 0. Thus (R, μ) is fuzzy T_1 -topological ring space. ## 2.16 Theorem If (R, μ) is fuzzy T_1 -topological ring space then (R, μ) is fuzzy T_3 -topological ring space. ### **Proof** Let (R,μ) is fuzzy T_1 -topological ring space and let $r \in R$, F be a fuzzy closed subset in R s.t F(r)=0, then $F^c(r)=1$ and F^c is fuzzy open set. Therefor F^c-r is an fuzzy open nbhd system of 0_α . Then there exists fuzzy open set V_0 of 0_α s.t $V_0 \le F^c-r$. Now $$\overline{V_0}=\cap (V_0+(F^c-r))=\cap (F^c-r)=\{0_\alpha\},$$ $$(r+\overline{V_0})(k)=\overline{V_0}(k-r)=\min\{\overline{V_0}(k),\overline{V_0}(-r)\}=$$ $$\min\{\overline{V_0}(k),\overline{V_0}(r)\}=\overline{V_0}(k)=V_0(k) \qquad , \forall k\in R$$ implies $r + \overline{V_0} \le F^c - r$. Thus (R, μ) is fuzzy regular and consequently it is fuzzy T_3 -topological ring space. ## **2.17.**Theorem the contrary, suppose For any fuzzy topological ring (R, μ) , the therefor (r - V)(k) > 0. following conditions are equivalent - 1) (R, μ) is fuzzy T_2 -topological ring space - 2) $\{0_{\alpha}\}$ is FZ.closed subset in R. - 3) If B_0 is a basis of nbhd of 0_{α} , then $\bigcap_{V \in B_0} V = \{0_{\alpha}\}$ - 4) (R, μ) is fuzzy T_0 -topological ring space. - 5) (R, μ) is fuzzy T_1 -topological ring space. - 6) (R, μ) is fuzzy T_3 -topological ring space. #### **Proof** By theorems 2.10, 2.11, 2.12, 2.13 and 2.14 ## 2.18 Theorem Let (R, μ) be a fuzzy topological ring, then Every fuzzy subspace of fuzzy T_0 -space is a fuzzy $T_0 - space$. ### **Proof:** Obvious ## 2.19 Theorem Let(R, μ) be a fuzzy topological ring and E is a fuzzy subring of (R, μ), if (E, μ_E) is fuzzy Hausdorff and (R/E, β) is fuzzy Hausdorff then(R, μ)is fuzzy Hausdorff. #### **Proof** If R/E is fuzzy Hausdorff, then E is fuzzy closed set in (R, μ) . If also (E, μ_E) is fuzzy Hausdorff then $\{0_\alpha\}$ is fuzzy closed in E. Hence $\{0_{\alpha}\}$ is fuzzy closed in (R, μ) , and (R, μ) is fuzzy Hausdorff. #### References [1] Ahsanullah T. M. G., On Fuzzy Neighborhood Ring, Fuzzy Set and Systems 34(1990) 255-262 North Holland [2] Chang, C. L: Fuzzy topological spaces. Math. Anal. Appl.,24(1968),182-190. [3] Deb Ray, A and Chettri, P: On Fuzzy Topological Ring Valued Fuzzy Continuous Functions "Applied Mathematical Sciences, 2009, Vol. 3, no. 24, 1177 – 1188 [4] Deb Ray, A: On (left) fuzzy topological ring. Int. Math , (2011), vol. 6, no. 25 – 28, 1303 - 1312. [5] Das, N.R. and Das, P, (2000), Neighborhood systems in fuzzy topological groups. Fuzzy Sets and Systems, 116 401-408 [6] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl, 56(1976) 621-633 [7] Lowen R., Convergence in a fuzzy topological space, Gen. Topology Appl. 10 (1979)147-160 [8] Lowen R., Fuzzy neighborhood spaces, J. Fuzzy Sets and Systems 7(1982), 165-189 [9] Palaniappan N., Fuzzy topology, Narosa Publications, 2002. [10] Warner S.: Topological Rings, North- Holland Math. 1993 [11] Zadeh, L.A: Fuzzy Sets, Information and Control,8(1965), 338-353.