

Journal of Kufa for Mathematics and Computer Vol.3, No.2, Dec , 2016 ,pp55-62

55

Formal model and Policy specification for software defined networks

Dawood salman jasim al-farttoosi

kufa of University

Dawood.jasim@uokufa.edu.iq

Abstract—Software-defined networking SDN is

 gaining a sharp increase in adoption by very well-known companies Like Google and Microsoft. Currently, the

two stands out reliability and security are the most issues that hampering the SDN rapid growth. This paper aims to

contribute to this growing area of research by exploring the SDN security issues. Novel approach will be proposed

by utilizing the well-known access control approach called theusage control UCON model and also the Flog policy

language of software defined networks SDNs. This work will be produced as a formal modelling via high-level

abstract language like Flog.

Keywords—SDN, Usage Control, Flog, Reliability and Formal Model.

 : المستخمص

عن التعريف أمثال جوجل غنية، وذلك من قبل شركات معروفة جدا عاليةتكتسب الشبكات المعرفة بالبرمجيات زيادة
 : ومايكروسوفت لذا تبرز في الوقت الحالي مشكمتان اساسيتان هما

 الموثوقية -
 الامان-

 مة في هذا المجال الحديث لمبحث وذلك من خلال ان هذا العمل يهدف الى المساه(SDN) هاتان المشكمتان تعيقان النمو السريع ل
يقترح البحث نهجا جديدا وذلك من خلال الاستفادة من نموذج (SDN) استكشاف القضايا الامنية في الشبكات المعرفة بالبرمجيات

 (flog policylanguagefor SDNS)وكذلك(Usage Control)التحكم بالوصول

1. Introduction

In the digital world, nowadays security

becomes more and more critical issue due to the

sensitiveinformationand big amount of data

transfer over theopennetwork as well as storethese

data in cloud’s repositories.Enterprise Strategy

Group ESG survey shows that 79% of

respondents claimed that network security is more

challenging than it was [15].Currently, there are

about 9 billion devices connected to the Internet

and it is expected to be 24 billion in 2020 [1].

These networking devices exchange data in

different types of networks such as

wirelesssensor, Internet of Things IoT, Cloud

networks …etc. The rigidity of traditional

network architecture makes it difficult to handle

the big amount of data in terms of

resiliencemanagement and security policy

orchestration [3], therefore the attention turned to

find alternative solutions.

To surmount the inflexibility in the

conventional network architecture, the emerging

of Software defined networking SDN, since mid

of 90s, gives hope to createaprogrammable

network that can be managed like any computing

mailto:Dawood.jasim@uokufa.edu.iq

dawoodsalmanjasimal-fartoosi

56

device and resource. In SDNcontrol and data

plane have been decoupled as depicted in figure 1

from [2].In this isolation the network

configuration becomes easy to handle from single

location usually called controller.

Figure 1: View of SDN architecture

The controller considered as the brain of

network therefore any error in control plan would

lead to network failure. Many controllers have

been introduced till now as shown in table1. Due

to this separation the networking physical

equipment(like switch, router)become like a

dump device that dedicated to perform packet

forwarding by depending on set of rules that issue

by the controller. Generally, SDN network

consists of control plane (controller and

applications) that performs various functions by

using special purpose applications (like Intrusion

Detection System IDS , Monitoring, Loud

balancing... etc.) and data plane (routers and

switches) which is responsible for packet

forwarding [4]. Applications can be written in

different languages and interact with controller

through the northbound API, then centralized

controller instructs the data plane in what action

it should act via southbound API (usually Open

Flow protocol) rather than each node in the

network configure its own forwarding decision.

Table 1: Some of SDN controllers

The emergence of SDN changes the closed

network system into open one in which many

advantages can be offered such as:

a. Extract data from control plane to

allow independent development

b. Provide global view of network

(Network centralization)

c. Rapid configuration (more flexible

than traditional)

d. Reduce the middle boxes

e. Simplify network management

f. Programmable network would

support new innovations

g. Multi-tenancy (e.g. for data clouds

and data centers)

The distinction between network

virtualization and SDN is important. Network

virtualization is the separation of logical network

from the infrastructure; however the SDN refers

to split forwarding hardware from control

decisions. Virtualization offers many benefits to

the service provider such as sharing resources,

deploy services in customise virtual networks and

decrease the cost. With SDN concept, the rapid

deployment of services in high abstraction level

can be facilitated. Hence, service providershave

been encouraged to take the advantage of SDN in

the network virtualization field, where some

efforts have been invested in this context such as

Flow Visor and SDN hypervisor [14].

Despite the advantages that offered by SDN,

the emergence of new security issues might

hamper the spreading of SDN by creating new

potential security attacks, disable the

synchronisation between controller and network

devices such as switches [5]. The next section II

Controller

name

Provider Based Year

OpenDayLi

ght

Linux
foundation

Java 2013

Beacon Stanford
University

Java 2010

Maestro Rice
University

Java 2013

NOX/POX Nicira Python/C

++

 2008/20

12

Dat

a

pla

ne

Con

trol

pla

ne

Journal of Kufa for Mathematics and Computer Vol.3, No.2, Dec , 2016 ,pp 55-62

57

will show the literature survey about SDN

security. Section III describes the Usage Control

model UCONABC as an access control method. In

section IV shows the SDN Flog language

specification and its benefits for SDN. Section V,

will present some initial ideas on defining a new

model for SDN security and robustness by

combining the UCON and Flog. Finally, the

summary of this work is provided in section VI.

1. SDN Security survey

Threats of cyber-attacks have become more

prominent than ever, for this reason many efforts

have been exerted to achieve data security,

confidentiality and integrity. The new paradigm

of SDN brings both new security mechanism and

new threats, which are different from those that

infect the traditional network [6]. Even though

SDN is not widely deployed and as yet under

development, it seems that it has a range of

research that specially focused on security

enforcement in both academia and industry field.

In [7] authors have introduced SPHINX as a

controller tool to detect any abnormal or

malicious behaviour in real-time by depending on

probabilistic and deterministic checking

method[7].However, SPHINX does not tackle the

whole issues that faced the SDN (e.g. when Open

Flow switch deals with legacy switch). Hong et

al. (2015) present TopoGuardthat extend the

security of SDN controllers by making them able

to deter topology poisoning attacks by

automatically updating the network topology with

the latest information that can be acquired from

host tracker and port manager [8].

VeriFlow [9] produce an additional layer between

data plane and control plane in order to check

and prevent any faulty rule that issued by SDN

applications from applying action in network, low

latency has been considered in

VeriFlow(debugging tool) to ensure that it will

not affect the network performance. VeriCon[10]

focused on verifying the controller applications in

large-scale network, it has the ability not only to

detect errors but also guarantee the absence of

errors since the verification process begins at

compile time. Some efforts invested in SDN

policies, Batista and Fernandez[11] propose Poder

Flow language in which knowing programming

language (e.g. java, C++, Python…etc.) is not

required to design SDN network policy, in

addition it supports authorization policies (to

define access stage) and obligation policies (to

add restriction by network operator or

controller).Lara and Ramamurthy [12] present

OpenSec framework for automating security

policy implementation, OpenSec represents a

virtual layer between the controller and user to

provide a view that reduces the difficulty during

policy creation. In addition, it enables the network

operator to write policies in readable form.

According to the latest survey about the benefits

of SDN in terms of security found that 28% of

organizations would use SDN-enabled network

security to deter (block) malicious traffic from

endpoints while keep normal ones; about 23%of

organizations would use SDN to centralize their

network security service policy and configuration

management, about 23% of organizations would

use SDN to automate network security handling

purposes [15].

2. UCONABC model

Usage Control (UCON) is a new version of access

control models in which actions and events might

cause changes in the authorization decision during

accessing time [16]. In UCON the decision can be

made by depends on authentication, obligation

and condition also known as UCONABC. Service

provision can be controlled by UCON not only

before object usage but also during the usage

time. UCON constructs predicates from variables

attributes and then map from system status into

Boolean form in order to make a decision. In

UCONABC, Authorization can be specified by

predicates of subject and object attributes,

Obligation can be specified by predicates of

subject actions while Condition can be specified

by predicates on system attributes [16].

dawoodsalmanjasimal-fartoosi

58

1. Flog SDN-Policy language

The evolution of the SDN accompanied with

effort that aims to decrease the tedious low-level

programming in which the programmer have to

deal with situations explicitly through installing

/uninstalling rules, packet processing in low-level.

Flog “is designed as an event-driven, forward

chaining logic programming language” that

proposed in [13]. Flog adopted the idea of FML

and Frenetic languages to introduce a new abstract

logic programming language that enables the

programmer to design policies in a very

convenient manner. The authors in [13] focused

on one event only, which is packet arrival at the

controller. The idea of stateful firewall that has

been mentioned in [13] can be depicted in figure

2.

Figure 2: exchanging packets between Network

1 & 2

All packets from Network1 can be

transferred to Network2 through port2, but before

routing the controller has to store the destination

IP (destip)of the packet. When any node from

Network2 tries to send packet to Network1

(through port1), in such a case the controller will

permit the access just for those nodes IP (srcip)

that have been storedalready. In consequence,

packets can send from Network1 to Network2

unconditionally, while the controller permits the

packets from Network2 to Network1 if and only if

the controller has seen node’s IP before.

1. UCONFLOG

 The quiet open network nowadays leverage

the concern of privacy and user authentication, we

believe that SDN requires both rigorous access

control mechanism and convenient abstracted

programming language for two purposes firstly:

to mitigate the malicious behavior since the

network switches are lacking intelligence and

decision-making, secondly: to decrease the

complexity of policy creation. The existing

techniques and mechanisms that have been used

in SDN access control may not adequate to

accommodate all risks (just focused on events that

occur at run time).However, in our prospect it

would be a great to embed the idea of usage

control (UCON) into SDN languages(like Flog) to

optimize the security of the network as well as to

provide the continuity and mutability concepts in

SDNpolicies. The following constructs (in terms

of F() relation) show the form of UCONFlog, which

are defining the concept of usage control to

manage the behavior of flow packets that arrive at

switch in order to access to the protected network:

F (Tryaccess) = Packet (access)

F (Permitaccess) = Controller (Access)

F (Endaccess) = Packet (Endaccess)

F (Revokeaccess) = Controller

(Revokeaccess)

We will assume that each node in protected

network is Object o, while any node from outside

will be considered as Subject s.

A. Early Authorization models

1. Early-authorization without update

Here there is no updating process for

attributes before accessing; the following

definition shows the model:

permitaccess(s,o) → (tryaccess(s,o) ˄ (P1

˄ … ˄ Pn)

Since P1,…,Pn are predicates that can be

built from subject and/or object.

Network 1 Switch

Controller

Network 2 Port 2 Port 1

Journal of Kufa for Mathematics and Computer Vol.3, No.2, Dec , 2016 ,pp 55-62

59

Now let’s put A into a plain text that

more understandable, so we can do that

by expressing every packet with

remembered IP, stored in controller’s

access control list ACL, can access,

otherwise the packet willbedropped. In

other word, when any node from

protected network (object) deals with

node from outer network (subject) then

subject’s IP will stored in object’s access

control list as a trusted entity.

permitaccess(s,o) → (tryaccess(s,o) ˄

((s.ip) o.acl))

2. Early-authorization with pre-update

Here the authorization decision requires

one or more pre-update of attributes as

the following definition:

permitaccess(s,o) → (tryaccess(s,o) ˄ (P1

˄ … ˄ Pn) ˄ preupdate(attribute))

3. Early-authorization with ongoing update

Here the authorization decision requires

updates during accessing, which means

there is no revoke at usage time. The

model can be defined as follow:

 permitaccess(s,o) →

(tryaccess(s,o) ˄ (P1 ˄ … ˄ Pn)) ˄

(onupdate(attribute) ˄ endaccess(s,o))

4. Early-authorization with post update

Here the controller should update the

subject and/or object attributes at the end

of access, the model can be defined as

follow:

permitaccess(s,o) →

(tryaccess(s,o) ˄ (P1 ˄ … ˄ Pn))

˄(postupdate(attribute) ˄ endaccess(s,o))

One of the main advantages of this model

is that it can be utilized to count how

many times that particular subject (from

outer network) sends request to object

(from protected network), in consequence

it might be used to mitigate (detect) the

DOS attack by counting the number of

requests during a period of time as the

following:

permitaccess(s,o) →

(tryaccess(s,o) ˄ ((s.ip) o.acl) ˄

postupdate(s.Time request) ˄

endaccess(s,o))

postupdate(s.Time request): s.Time

request =s.Time request + 1

B. On-authorization models

1. On-authorization without update

Here the controller has the rights to revoke

any access during the run time due to

unsatisfied predicate, the following

definition shows the model expression:

((P1 ˄ … ˄ Pn) ˄ (state(s,o)=running) →

revokeness(s,o))

 Or finish normally with satisfied predicate

as follow:

 ((P1 ˄ … ˄ Pn) ˄ (state(s,o)=running) →

endaccess(s,o))

2. On-authorization with pre-update

This is a combination between model

A2&B1, which means there is an update

process starts before accessing to enforce

the authorization decision.

3. On-authorization with on-update

Here the controllerimposes

theupdateactionfor subject and/or object

attributes duringthe access operation until

the end or revoke access, the model can be

defined as follow:

 (state(s,o)=running) ˄ (P1 ˄ … ˄ Pn) →

(onupdate(attribute)

˄(endaccess(s,o)revokeness(s,o))

4. On-authorization with post-update

dawoodsalmanjasimal-fartoosi

60

Here the controllerpostpone the update

action of subject and/or object attributes

till the end oftask(either normally or

abnormally), the model can be defined as

follow:

 (state(s,o)=running) ˄ (P1 ˄ … ˄ Pn) →

(postupdate(attribute) ˄

(endaccess(s,o)revokeness(s,o))

Now we will illustrate the block of UCONFlog by

borrowing the idea of SDN Flog language and

UCON model:

 Events Capturing

packet-in, packet-out, flow-mod,online/offline

switch, active/inactive ports…etc.

EventsHandling

After capturing events, SDN programmer should

write a proper logic program to process the fact

that generated by events.

 Policy generating

 It is the final stage in which the routing and

access control policy will be generated for

network infrastructure (e.g. switch). As the

following syntax:

(Particular packets)  (Re-action), Priority

(integer number)

Also, UCON policy model can be written in this

part.

According to [13], flow keyword has been specified

to define rules by depending on some packets’

properties such as (srcip, dstip, VLAN, etc.) to

capture new network events. After defining

properties, programmer can add constrains then pass

the captured facts to predefined database (either to

use for one time only or make it valid for future use).

The following expression will clarify the figure 2

that has been mentioned earlierby applying the

scheme of UCONFlog in below:

Events Capturing

Flow (s.destip=ip,o.srcip=ip),inport=2→

condb(ip,ip)

Events Handling

condb(ip,ip) +→ acl(ip,ip)

acl(ip,ip) + → acl(ip,ip)

Policy generating

inport(2) fwd (1), priority(0)

Do

acl(ip) → src(ip), inport (1) fwd (2), priority (0)

When

((ip=ip) ˄ipacl ˄(state(ip,ip)=running) →

revokeness(ip,ip))

Wherecondb = controller database,acl = access

control list.

.Conclusion

To sum up, it can be clearly seen that this work aims

to highlight the benefits of the new networking

architecture of SDN, especially in terms of

centralization and programmable features. We

thengave an initial idea of how to utilize the usage

control model in order to increase the SDNs

reliability and security. The logic programming

language Flog has been used as an abstract language

example to draw the new model that we

callUCONFlog. As a first step, two predicates of a new

authorization model have been written formally. For

future work, weplanto apply the same methodology

practically through using the most well-known SDN

emulator Mininet as a testbed environment.

References

[1] ValdiviesoCaraguay, Á. L., Benito Peral, A.,

Barona López, L. I., &GarcíaVillalba, L. J.

(2014). SDN: Evolution and Opportunities in

the Development IoT Applications.

International Journal of Distributed Sensor

Networks, 2014.

[2] Kreutz, D., Ramos, F. M., Verissimo, P. E.,

Rothenberg, C. E., Azodolmolky, S.,

&Uhlig, S. (2015). Software-defined

networking: A comprehensive survey.

proceedings of the IEEE, 103(1), 14-76.

[3] Raghu/Castro-leonYeluri (Enrique). (2014).

Building the Infrastructure for Cloud

Security. Springer Verlag.

Journal of Kufa for Mathematics and Computer Vol.3, No.2, Dec , 2016 ,pp 55-62

61

[4] Monsanto, C., Reich, J., Foster, N., Rexford,

J., & Walker, D. (2013, April). Composing

Software Defined Networks. In NSDI (pp. 1-

13).

[5] Hu, F., Hao, Q., &Bao, K. (2014). A survey

on software defined networking (SDN) and

openflow: From concept to implementation.

[6] Schehlmann, L., Abt, S., &Baier, H. (2014,

November). Blessing or curse?Revisiting

security aspects of Software-Defined

Networking. In Network and Service

Management (CNSM), 2014 10th

International Conference on (pp. 382-387).

IEEE.

[7] Dhawan, M., Poddar, R., Mahajan, K., &

Mann, V. (2015). SPHINX: Detecting

security attacks in software-defined

networks. In Proceedings of the 2015

Network and Distributed System Security

(NDSS) Symposium.

[8] Hong, S., Xu, L., Wang, H., &Gu, G. (2015).

Poisoning Network Visibility in Software-

Defined Networks: New Attacks and

Countermeasures.NDSS.

[9] Khurshid, A., Zhou, W., Caesar, M., &

Godfrey, P. (2012). Veriflow: verifying

network-wide invariants in real time. ACM

SIGCOMM Computer Communication

Review, 42(4), 467-472.

[10] Ball, T., Bjørner, N., Gember, A., Itzhaky,

S., Karbyshev, A., Sagiv, M.,

...&Valadarsky, A. (2014, June). Vericon:

Towards verifying controller programs in

software-defined networks. In Proceedings

of the 35th ACM SIGPLAN Conference on

Programming Language Design and

Implementation (p. 31).ACM.

[11] Batista, B., & Fernandez, M. (2014,

February). PonderFlow: A Policy

Specification Language for Openflow

Networks. In ICN 2014, The Thirteenth

International Conference on Networks (pp.

204-209).

[12] Lara, A., & Ramamurthy, B. (2014,

December).OpenSec: A framework for

implementing security policies using

OpenFlow. In Global Communications

Conference (GLOBECOM), 2014 IEEE (pp.

781-786).IEEE.

[13] Katta, N. P., Rexford, J., & Walker, D.

(2012, September). Logic programming for

software-defined networks.InWorkshop on

Cross-Model Design and Validation (XLDI).

[14] Bozakov, Z., & Papadimitriou, P. (2014,

May). Towards a scalable software-defined

network virtualization platform. In Network

Operations and Management Symposium

(NOMS), 2014 IEEE (pp. 1-8). IEEE.‏

[15] SN blogs: The security benefits of an SDN-

enabled network. (n.d.). Retrieved April 17,

2015, from

http://searchnetworking.techtarget.com/news

/4500244535/SN-blogs-The-security

benefits-of-an-SDN-enabled-network.

[16] Zhang, X., Parisi-Presicce, F., Sandhu, R., &

Park, J. (2005). Formal model and policy

specification of usage control. ACM

Transactions on Information and System

Security (TISSEC), 8(4), 351-387.

