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Abstract 

For the modern microprocessors, as 

pipelines get deeper, or issuing rate gets higher, 

the penalty imposed by branching instructions 

gets larger. To reduce this penalty, branch 

prediction is used. Branch prediction unit is an 

important part of modern processor architectures. 

Its responsibility is to predict whether branches 

will be taken or not taken before they are 

actually executed. 

The application of ANNs have been 

considered in this work as a good alternative for 

solving the problem of branch prediction. Single 

and multilayer preceptron neural nets have been 

used to design a new branch predictor. The 

designed neural nets have been tested for 

different applications. 

A comparative analysis and study have 

been carried out with the other known prediction 

techniques. The achieved results show very high 

prediction accuracy. 

The prediction accuracy rates are 

calculated for different types of neural predictors 

and conventional predictors. It has been 

concluded that the neural predictors are better 

than conventional predictors, but in the other 

side, when using adaptive techniques, the neural 

predictors are comparable to conventional two-

level predictors with the same size of input. 

Regarding the same hardware budget, neural 

predictors are the best, but they might take more  

time for computing branch prediction than 

conventional predictors. 

 

 

 

 

1. Introduction 

Branch instructions permit a program to 

control what instructions are executed. If then, 

and looping instructions represent the main 

examples of conditional instructions. They test 

some conditions, and depending on the outcome, 

execution proceeds down one of two possible 

paths. Branch instructions have exactly two 

possible outcomes: not-taken, the sequential case 

in which the program continues executing the 

instructions that immediately follow the branch, 

and taken, the non-sequential case in which 

execution jumps to a target specified in the 

branch instruction. The target can lie anywhere 

within the program. 

Other control flow instructions can 

transfer execution to some other program 

location but are not conditional. These jump 

instructions either jump to the target specified in 

the instruction (direct jumps), or jump to a target 

that has been computed and whose address is 

found in a register (indirect jumps). A procedure 

call is an example of the former, and a procedure 

return is an example of the latter. As with 

branches, some time is required to determine 

jump targets. Direct jumps can be resolved early 

with proper hardware in the fetch stage to extract 

the jump target from the instruction, or the 

targets that can be predicted. Indirect jumps 

generally cannot be resolved early, and instead 

must proceed through the pipeline in order to 

read their target from the register file, just like 

any other instruction. Fortunately, their targets 

can also be predicted. 
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The ratio of branches accounts for about 

20% from instruction in general programs. This 

means on average, each fifth instruction is a 

branch, and the majority of branches 

(approximately 80%) are conditional [1]. 

 

2.  Branch Prediction Techniques 

Branch prediction techniques are 

classified as static or dynamic
 [1, 2]. 

Static prediction schemes can be 

regarded the simpler class. The most 

straightforward type is to predict the branch to be 

always taken by observing that majority of 

branches is taken. Static schemes can also be 

based on branch op-codes. Another simple 

method is using the direction if the branches to 

make a prediction. If the branch is backward, 

i.e., the target address (decrementing), it is 

predicted to be taken. Otherwise, if the branch is 

forward, the prediction is not to be taken. This 

strategy tries to take advantage of loops in the 

program. It works well for programs with many 

looping structures. However, it does not work 

well in the case where there are many irregular 

branches. Profiling is another static strategy 

which uses previous runs of a program to collect 

information on the tendencies of a given branch 

to be taken or not taken and preset a static 

prediction bit in the op-code of the given branch. 

Later runs of the program can use this 

information to make predictions. This strategy 

suffers from the fact that runs of a program with 

different input data sets usually result in different 

branch behaviors. While dynamic prediction may 

change to reflects the time-varying activity of the 

program. 

The second class is the dynamic branch 

prediction, which make use of the information 

gathered at run-time to predict branch direction. 

There are several dynamic branch predictors in 

use or being researched nowadays. Those 

include One-Level branch predictors, Two-Level 

branch predictors and Hybrid predictors. 

 

(2-1) Branch Target Buffer (BTB) 

 It is a cache indexed by instruction 

address that stores the target address for the most 

recently taken branches. When an instruction is 

fetched [3], the same address is offered to BTB, 

if there is a match in BTB, the next instruction is 

fetched using the target address specified in the 

BTB if branch is predicted as taken. 

 

(2-2) One-Level Branch Prediction 

The most basic mechanism is a simple table of 

binary values, one per branch. This value is 

updated to provide the last outcome witnessed 

for each branch, and so each time a branch 

changes direction from taken to not-taken or 

vice-versa a misprediction results. Making the 

table entries not-taken outcome decrements the 

counter (until it hits 00), and each taken outcome 

increments it (until it hits 11). Values of 00 and 

01 produce a not-taken prediction, and values of 

10 and 11 produce a taken prediction. 

 

(2-3) Two-Level Branch Prediction 

More bits can be added to the two-bit 

counters, but too many bits make it difficult for 

the predictor to learn legitimate changes in 

direction. A better refinement is to explicitly 

track branch history patterns, and each branch 

makes different predictions depending on the 
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recent history. These predictors are called two-

level predictors. A local history predictor keeps a 

table of shift registers, one entry per branch. To 

make a prediction, the predictors looks up the 

branch’s history and then uses the history to 

index the now-familiar table of two-bit counters. 

These counters now track the taken/not-taken 

behavior of branch history patterns, and not the 

overall behavior of individual branches. This 

permits common patterns, like alternating 

branches (TNTN…), to be correctly predicted, 

and can also learn irregular patterns that 

correspond to some program or input data 

behavior (e.g. TTTNTTTN…) [3]. 

 

3- Conventional Predictors 

Some particular configurations will be 

described her in order to be used as a base for the 

proposed predictor. 

 

(3-1) Global Adaptive (GA) Predictor 

As shown in Figure 1, GAg uses a single 

global branch history register (GBHR) that 

records the outcome of the last K branches 

encountered, and a single global pattern history 

table (PHT) containing an array of prediction 

counters. To generate a prediction, the k bit 

pattern in the first level GBHR is used to index 

the array of two-bit saturating prediction 

counters in the second level PHT. Each branch 

prediction seeks to exploit correlation between 

the next branch outcome and the outcome of the 

k most recently executed branches. The GBHR 

and the prediction counter in the PHT are 

updated as soon as the branch is resolved. 

Unfortunately, since all the branches in GA 

predictor share a common set of prediction 

counters in the PHT, the outcome of one branch 

may interfere with the prediction of all other 

branches. To solve this problem, a two direction 

PHT is used and this type is called Gas. The 

PHT has its rows indexed by the GBHR and its 

columns indexed by the branch address. The 

GBHR is n-bits wide register used to address the 

rows of the PHT. 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram of the GAg predictor. 

 

(3-2) Gshare Predictor 

As shown in figure 2, Gshare scheme 

attempts to reduce interference by randomizing 

the index to second level table through xor-ing 

the GBHR with branch addresses, the gshare 

scheme can produce new distinct indexing values 

for counters, each associated with a static 

branch. This xor-ing can reduce interference 

between branches while retaining the advantages 

of using long GBHR to exploit branch 

correlation. However, this scheme offers limited 

benefits, because randomization can only 

“blindly” separate alised branches. 

Consequently, this process may reduce 

destructive interference simple by chance. 
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Figure 2: Diagram of the Gshare predictor. 

 

 

(3-3) Per-Address Adaptive (PA) Predictor 

The architecture of PAg consists of two 

tables. The first-level table, called BHT, has 

multiple shift-registers. Each of these registers is 

used to record past branch outcomes for a single 

static branch. The branch outcome patterns 

recorded in BHT are then used to index in 

second level, which is a single global PHT. Or a 

two direction table which is called branch history 

table (BHT) as shown in Fig.3 which is known 

as PAs. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Diagram of the PAs predictor. 

 

 

(3-4) Hybrid Predictors 

To further improve prediction accuracy, 

hybrid branch predictors have recently been 

proposed [4, 5, 6, 7]. Within most programs, 

some branches are best predicted using global 

history, while others are best predicted using 

local history. A hybrid branch predictor is 

composed of two or more single-scheme 

predictors and a mechanism to select among 

these predictors.  

 

4-system design 

A performance measuring tool, a trace 

program (TP) which is written in assembly 

language has been designed to operate the 

processor in a single step mode through 

providing the ability to execute one instruction at 

a time. Also, this program is able to test the 

contents of registers or memory both before and 

after the execution of each instruction. 

Five test programs have been organized to be 

used as case study to measure the performance 

for different branch prediction strategies. 

 

 (4-1) Neural Predictor design. 

Single layer and Multi layers perceptron 

neural networks have been used to design the 

neural predictor. 

The neural net is used to replace the PHT (2-bit 

counter) for the two-level adaptive predictor. 

The input to this net can be either (-1) for not 

taken or (1) for taken. 

Fig. 4.a shows the block diagram of the 

suggested SLP predictor.  

 When the actual outcome of branch 

becomes known, the training algorithm uses this 

outcome with the output to update the weights of 
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the selected perceptron. These updated weights 

are written back to the perceptron table. Weights 

updating operation are carried out, only, when 

the prediction result is not true. 

 

Fig. 4.b shows the MLP predictor. The 

least significant bits of the branch address with 

the history register have been used as inputs to 

the MLP net. 

Bipolar sigmoidal function has been used as 

activation function for the neurons. 

 

 

 

 

 

 

 

Fig 4.a: The organization of SLP NNs 

Predictor 

 

 

 

 

 

 

 

 

 

Fig. 4.b: The organization of MLP NNs 

Predictor 

 

The number of the hidden neurons used is half 

the number of input neurons.  

 

 

 

(4-2) Other implemented alternatives 

 Different types of dynamic input 

information for the neural predictor have been 

tried to implement a new combination of neural 

predictors. 

These are: 

GAs, PAs and GPA with single layer perception 

neural networks and also with multi layer 

perception. 

 

 (4-3) Estimated hardware budget 

 The hardware budget of each 

implemented predictor can be estimated 

depending on the number of bits for first 

level and every weight used in the second 

level. For SLP, each weight value is 

implemented by a single byte, and for MLP it 

is implemented by 4 bytes.  

Table 1; summarize the hardware cost for all 

discussed prediction techniques. 

 

(4-4) Performance  measure 

A comparative study between all 

predictor types and with the new suggested types 

have been carried out using the same five testing 

programs. 

Prediction accuracy represents one of the most 

important measures for the predictors. It can be 

computed as follows: - 

 Figure 5 shows the average of the 

prediction accuracy rates achieved for different 

configurations of neural network predictors and 

conventional predictors. When using the global 

information, neural predictors performs better 

than the conventional one, but for per-address 

predictors all the predictors have, nearly, the 

same performances.  
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Fig. 5 Comparison of Neural and conventional 

predictors with the same cost of hardware. 

 

 

(4-6) Hybrid predictors 

In this work two types of predictors, Gshare and 

neural, for the same history length have been 

combined to get one predictor, This hybrid 

predictor is tested as a dynamic predictor for 

PHT with 1024 entry of two-bit saturating 

counters. 

Fig. 6 shows how this combination of Gshare 

and MLP can improve the performance of the 

MLP alone in a percentage higher than the 

Gshere when it is combined with the SLP. 

 

 

 

 

 

 

 

 

Fig.6 Performances, when using hybrid 

predictors 

 

(5) Conclusions 

It can be concluded that: 

1) For non-adaptive mechanisms with the 

same history register length the performance 

of neural net predictor is better than the 

performance of conventional predictor. The 

neural net predictor is better than 

conventional predictor with global 

information, but the conventional predictor is 

better than neural net predictor with local 

information.  

2) Neural predictors can handle more 

history of branches than the conventional. 

3) Predictors with SLP can out perform 

others with MLP. That means that there is no 

 
i j k 

First 

level 
Cost 

Second 

level 
Cost 

AV.occur

act 

G(A)g-4K bits   11 11 11 2048x2 4096 93.079 

G(A)g-8K bits   12 12 12 4096x2 8192 93.531 

G(A)s-4K bits 2  9 9 9 512x4x2 4096 93.332 

G(A)s-8K bits 2  10 10 10 1024x4x2 8192 93.767 

P(A)g-4K bits  2 11 4x11 44 2048x2 4096 94.110 

P(A)g- 8K bits  2 12 4x12 48 4096x2 8192 93.813 

P(A)s-4K bits 2 2 9 4x9 36 512x4x2 4096 93.785 

P(A)s-8K bits 2 2 10 4x10 40 1024x4x2 8192 94.023 

G(A)slp-4K bits 6  7 7 7 64x8x8 4096 93.621 

G(A)slp-8K bits 6  15 15 15 64x16x8 8192 94.538 

P(A)slp-4K bits 6 2 7 4x7 28 64x8x8 4096 94.107 

P(A)slp-8K bits 6 2 15 4x15 60 64x16x8 8192 94.300 

GP(A)slp- 4K bits 6 2 7 3+4x4 19 64x8x8 4096 94.300 

GP(A)slp-8K bits 6 2 15 5+4x10 45 64x16x8 8192 93.813 

G(A)mlp-4K bits 
8  7 7 7 

(16x7+8)

x32 
3840 94.479 

G(A)mlp-8K bits 
8  13 13 13 

(22x10+1

1)x32 
7392 92.894 

P(A)mlp-4K bits 
8 2 7 4x7 28 

(16x7+8)

x32 
3840 93.612 

P(A)mlp-8K bits 
8 2 13 4x13 52 

(22x10+1

1)x32 
7392 93.749 

GP(A)mlp-4K bits 
8 2 7 3+4x4 19 

(16x7+8)

x32 
3840 93.732 

GP(A)mlp-8K bits 
8 2 13 3+4x10 43 

(22x10+1

1)x32 
7392 93.188 

 

Table 1: The cost of hardware for neural and 

conventional predictors. 

 



 7 

need to more compicated design in order to 

get higher accuracy. 

4) The operation of MLP predictor is more 

time consuming than the SLP, it takes more 

time to predict, and also it takes more time 

for weights adjustment operation. 
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