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Abstract 

     A hybrid particulate swarm optimization (hybrid) combination of an optimization 

algorithm of the particle swarm and a variable neighborhood search algorithm is 

proposed for the multi-objective permutation flow shop scheduling problem (PFSP) 

with the smallest cumulative completion time and the smallest total flow time. 

Algorithm for hybrid particulate swarm optimization (HPSO) is applied to maintain 

a fair combination of centralized search with decentralized search. The Nawaz-

Enscore-Ham )NEH) heuristic algorithm in this hybrid algorithm is used to initialize 

populations in order to improve the efficiency of the initial solution. The method 

design is based on ascending order (ranked-order-value, ROV), applying the 

continuous PSO algorithm to the PFSP, introducing the external archive set storage 

Pareto solution, and using a hybrid strategy that combines strong dominance and 

aggregation distance to ensure the distribution of the solution set. We adopted the 

Sigma method and the roulette method, based on the aggregation distance, to select 

the global optimal solution. A variable neighborhood search algorithm was proposed 

to further search the Pareto solution in the external set. The suggested hybrid 

algorithm was used to solve the Taillard test set and equate the test results with the 

SPEA2 algorithm to check the scheduling algorithm’s efficacy. 

 

Keywords: particle swarm optimization algorithm; variable neighborhood search; 

multi-objective; permutation flow shop scheduling. 
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المدتمخة عمى مذكمة ججولة  PSO ، مع تطبيق خهارزمية (ROVتختيب تراعجي )قيمة تختيب مختبة ، 
لأرشيف الخارجي ، واستخجام إستخاتيجية مختمطة لتخدين مجمهعة ا Pareto متجخ التجفق البجيل ؛ تقجيم حل

تجمع بين الييمنة القهية ومدافة التجميع.ضمان تهزيع مجمهعة الحمهل ؛ اعتماد طخيقة سيجما وطخيقة 
الخوليت عمى أساس مدافة التجميع لاختيار الحل الأمثل العالمي ؛ اقتخاح خهارزمية بحث متغيخة في الجهار 

اريته في المجمهعة الخارجية. استخجام الخهارزمية المختمطة المقتخحة لحل مجمهعة لمديج من البحث عن حل ب
 لمتحقق من فعالية خهارزمية الججولة SPEA2 ومداواة نتائج الاختبار بخهارزمية. Taillard اختبار

Introduction  
     The problem of scheduling the replacement flow shop is probably the most commonly discussed 
example of traditional scheduling problems, and work on this subject is of great significance. 
Throughout the past few decades, researchers conducted a remarkable amount of work in this field, 
most of which concentrating on solving the single-objective PFSP. Nevertheless, they also faced the 
issue of multi-objective decision-making in the real production phase. Thus, learning the algorithm to 
solve the multi-objective PFSP is of considerable theoretical importance and real interest in 
electronics.[1] 
     Research on multi-objective scheduling, based on smart algorithms, has slowly gained 
comprehensive attention from academia and engineering fields in recent years. In fact, well-known 
journals such as the "European Operations Analysis" have successively published accompanying 
special issues, supporting multi-objective intelligent algorithms in the laboratory too as well as 
applications on the problem of scheduling.[2] 
Alaa and Hanab [3] merged genetic algorithms and local search techniques and used random-based 
adaptive weighted functions to determine solutions and direct genetic operations. [4,5,6,7] They also 
introduced a multi-objective local genetic search (MOGLS) algorithm. Likewise, Hanan [ 7] used a 
random weight-based adaptive value function, selected the parent person and local search guides, and 
then provided a multi-objective genetic hybrid algorithm. Furthermore, Abbas. [ 8] proposed a type of 
virtual multi-objective annealing algorithm, which generates a set of random weight vectors to 
construct a set of evaluation functions and then performs a local search based on each evaluation 
function under the guidance of a simulated annealing strategy. 
     In comparison to the above methods,  Zilter E.[9] and Mostaaghim S [ 10]  they followed the idea 
of Pareto dominance which identifies the existing population and assigns correct adaptation values to 
the population based on this. While, at the same time, a parallel multi-target local population search is 
performed to improve the search capacity in areas with low solution density in the target region. Farid 
and Wang[ 11 ,12] have recently developed a hybrid genetic algorithm based on quantum 
computation, which also uses a fast sorting and modification value assignment assessment process, 
where the algorithm was implemented to eliminate the redundancy of human populations. 
     Particle Swarm Optimization (PSO) algorithm is a modern type of group-based optimization 
algorithm that Taillard E. [13] first proposed in 1995. The PSO algorithm is generated by the 
algorithm of optimization of Swarm Intelligence by cooperation and competition between particles 
within the population. The PSO algorithm maintains the population-based global search approach 
relative to the genetic algorithm. The search paradigm is simple and has the characteristics of quick 
convergence and high robustness. The early PSO algorithm was used to refine unconstrained 
continuous functions and was widely extended to other problems, such as voltage regulation and 
training on neural network. Jawad and Ali. [14 ] successfully used the PSO algorithm to solve the 
problem of single-objective substitution flow shop scheduling, supporting the PSO algorithm in a 
separate implementation of the Combinatorial Optimization Problem. 
     However, the latest work on multi-objective scheduling algorithms for particle swarm optimization 
is still very small. Recently suggested by Carles et al.. [15], the descriptive function is a multi-
objective PSO algorithm that is used after the time is weighted to handle the evaluation link.  
A related works[ 16,17 ] introduced a modal analysis of vibration of Euler–Bernoulli beam subjected 
to concentrated moving load. In another studys [18,19,20,21,22 ], the same flow was also presented on 
the field of optimization problem using heuristic and branch and bound methods to solve a multi-
criteria machine scheduling problem. In addition, a genetic algorithm-based anisotropic diffusion filter 
and clustering algorithms for thyroid tumor detection were introduced to solve some problems in the 
same area [23,24]. 
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Based on existing research, a hybrid particle swarm optimization algorithm is designed in this paper, 
combining the advantages of the particle swarm optimization algorithm and the variable neighborhood 
search algorithm, to solve the dual-objective flow shop scheduling problem. The hybrid algorithm uses 
ascending order the rule (ROV) continuous PSO algorithm conducts a global search. Then, it uses a 
critical path-based vector neighborhood search algorithm to conduct a local search on globally 
optimized particles, such that the algorithm maintains a fair compromise between localized search and 
centralized search. Based on the concept of Pareto domination, an effective non-inferior solution set 
update strategy was designed.  Simulation experiments were conducted on the benchmark test set, 
proposed by Taillard, and compared with other multi-objective algorithms to confirm the effectiveness 
of the algorithm. 

Problem Description 
Description of multi-objective optimization problem 

    ( )  (  ( )   ( )     ( ))                                        ( )  
     where   ,   , …,    are   objective functions,   represents the decision solution, and   represents 
the solution space. 

Consider two solutions    and   . If  
 
                                                                                                                                                   (2) 
 
 
 

then the solution    dominates the solution   , denoted as      .  
Given a solution    (optimal solution), if there is no solution that dominates    in the solution space 
 , then    is called the Pareto optimal solution, or a non-dominated solution. The set of all fee-
dominated solutions constitutes the optimal solution set in the multi-objective sense. these solutions 
constitute the Pareto Front of the problem in the objective  space. 

Description of permutation flow shop scheduling problem 
     The scheduling of the replacement flow shop can be described as [8]: n workpieces are to be 
processed on m machines. The processing sequence of each workpiece is the same, the sequence of 
workpieces processed by each machine is also the same, and the processing time of each workpiece on 
each machine. Scheduling objectives generally includes: minimizing the maximum workpiece delay; 
minimizing the total workpiece flow time (TFT); maximizing the completion time of all workpieces 
(Makespan) being the shortest; average workpiece waiting time being the shortest, etc. [8]. In this 
paper,  maximum completion time and total flow time are the shortest of the two goals.  The following 
assumptions are usually made on this problem: 
1) A workpiece can only be processed on one machine at a time; 
2) One machine can only process one workpiece at a time; 
3) Once the workpiece is processed on a certain machine, it cannot be stopped; 
4) The machining sequence of the workpiece on each machine is the same. 
The mathematical description of the scheduling problem with replacement flow shop is as follows. Let 
t ijbe the processing time of the workpiece I on machine j, except the preparation period needed for 
processing the workpiece j immediately after processing the workpiece I on the same machine. C(π i,j) 
is the workpiece. The completion period of π i in machine j, without lack of generality, assumes that 

each workpiece is processed in the order of machine 1 to m, let   *          + be a sort of all 
workpieces. 
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     Equations (4) and (5) are the calculation formulas for maximum completion time and total flow 
time, respectively. 

Hybrid particle swarm optimization algorithm for solving multi-objective replacement flow shop 

scheduling problem 

Standard Particle Swarm Optimization (PSO) 
     The optimization algorithm for base particle swarm uses a speed-position model to search. Each 
candidate solution that needs to be optimized is called a "particle". Each particle has its own position 
and speed, and the optimization function determines an adaptation value. Every particle memorizes, 
follows the best current particle, and looks for space inside the solution. Every iteration process is not 
entirely random. Based on this, the next solution should be sought until a better solution is discovered. 
The PSO algorithm is initialized into random particle category A. In each iteration, the particle 
updates itself by measuring two "extreme values": the first is the best solution found by the particle 

itself, called the specific extreme point (using       to represent its position), globally. In the PSO 
version, the other extreme point is the best solution found by the whole population, called the global 

extreme point (the best is used to represent its position). Local extreme point (using       to reflect 
position) is the best answer. After finding these two best solutions, the particle updates its own 

velocity and position according to the following equations (6 and 7). The information of particle   can 
be expressed by n-dimensional vector, the position is expressed as   ,             -, the speed 
is   ,             -, and other vectors are similar. Then the speed and position updated equations 
are: 

   
           

        (  
      

 )      (  
      

 )                                     ( )  

   
       

       
                                                            ( ) 

     where  ( )   (   ) spectrum is the inertia coefficient, β is the linear decreasing component 
and its key function is to produce disturbances to avoid premature convergence of the algorithm, c1 
and c2 are learning variables that are tuned to the best individual particles and the most global the 
maximum phase size for flying in a successful particle direction. If too small, the particles may be far 
removed from the target area. At the same time, it is not easy to fall into the optimum locale; typically 

                     are uniformly generated random numbers between [0, 1]. 
Particle swarm optimization algorithm for PFSP 

Representation of solutions and ROV rules  
     The most widely used way of coding for the PFSP problem in the literature is to use the ordering of 
the workpieces explicitly. Since the position of the particles in the continuous PSO algorithm is a 
continuous value vector to achieve the mapping relationship between the particle position vector and 
the order of the workpieces, Zitler and Thiele. [9] suggested the ROV rule to transform the continuous 

position vector of the particle     ,                  - into a discrete order of processing. 
The ROV rule is laid down as follows. First, assigning the ROV value of one to the component 
position with the smallest value for a particle position vector, then assigning the ROV value of 2 to the 
second smallest component position, and so on, until all component positions are assigned a unique 
ROV value, so that a workpiece order can be constructed based on the ROV value. 
In Table 1, a basic example is used to demonstrate the ROV rule construction procedure. Consider the 
replacement flow shop scheduling of 7 workpieces, the position vector of the particle is 6-dimensional, 
and set the position vector X i= [0.46, 2.70, 1.53, 0.81, 2.61, 0.25, and 1.08]. It can be seen that xi6 is 
the smallest, so that the ROV value of the component position corresponding to xi6 is assigned to 1, 
and then the ROV value of the component position corresponding to xi1 is assigned to 2. The ROV 
values of the component positions corresponding to xi5 and xi2 are 3, 4, 5, 6, and 7, so as to obtain the 
processing order of the workpiece, that is, π={2, 7, 5, 3, 6, 1, 4}. 
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Table 1-ROV value corresponding to particle position vector 

Position 1 2 3 4 5 6 7 

Position 
value 

0.46 2.70 1.53 0.81 2.61 0.25 1.08 

ROV 
value 

2 7 5 3 6 1 4 

 

Population initialization 
     The initial population will have any distribution, which with a great likelihood will occupy the 
whole solution space. However, in order to increase community search performance and prevent blind 
search, some of the better performing approaches would also be included in the initial sample. 
Therefore, the initial solution is generated. There are essentially two methods, one is generating 
spontaneously in a continuous interval and the other is generating by using a heuristic method of 
construction. Here, we use the highest performing NEH heuristic algorithm [23,24], which includes 
the following algorithm measures proposed jointly by Nawaz, Enscore, and Ham: 
Step 1: Arrange the n workpieces in order to decrease total processing time of the workpieces on the 
machine. 
Step 2: Schedule the first two parts to minimize the total completion time. 
Step 3: From k=3, …, n, insert the k-th work piece into k possible positions, and find the smallest part 
of the total completion time. 
The solution generated by the NEH heuristic is a sequence of workpieces, which must be converted 
into a position vector within a certain interval. Here, the conversion is implemented as follows. 

              
             

 
 (          )                                           ( ) 

     where        is the position value of the particle in the jth dimension,        is the number of the 

jth dimension workpiece obtained by the NEH method,        and        are the upper bounds of the 

particle position vector on the continuous space, respectively, and the lower bound,   , represents a 
randomly generated random number between 0 and 1. 

The random generation method is:    
      

  (    
      

 )       
      

  (    
      

 )  

  where the position vector value changes between continuous intervals,    
      

 -. The velocity 
vector value changes in a continuous,    

      
 -, while r1 and r2 are random numbers generated 

uniformly between 0 and 1. 

Multi-objective evolution strategy 
     The multi-objective evolutionary algorithm needs to ensure that Pareto's frontier is characterized by 
convergence and diversity. The key is to set a reasonable Pareto strategy for the maintenance of 
diversity and an optimal value update operation for the global particle swarm. In this article, using an 
external set (ES) for storage, a rapid Pareto-based sorting approach is used to construct non-dominated 
collection, incorporating an archive technique that incorporates a clear dominance relationship and 
aggregation distance to allow the Pareto frontier to have reasonable distribution. Two phases are also 
followed in the evaluation of the desired global solution; Management approach, using the Sigma 
method for fast convergence in the early stage, and the roulette method based on the aggregation 
distance for later in-depth search. 

Generation of external collection ES 
     After the initial population is generated, the target value of each particle is determined. The quick 
sorting method is used to sort the particles according to the target function value and the non-
dominated solution is stored in the external set ES. 
     The principle of fast sort is that each loop selects a person x from the population (usually the first 
one), and in turn compares the other individuals in the population with x. A contrast splits the species 
into two parts; the second half of the population part is the organism occupied by x, while the first half 

is occupied by non-x-related individuals of x. If    is not dominated by any other individual, then   is 
incorporated into the non-dominated set, and then the above process is repeated for the first half until 
the first half is empty. The pseudocode for quick sorting is shown in Figure-1. 
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After the update of each generation of particles is completed, the fitness value of a single particle on 
each target is calculated, along with the new external collection ES. As shown in Figure 2, the update 
principle involves: (1) If the particle dominates some of the external collection of ES Particles, delete 
the dominated particles, and add the particles to the external set ES; (2) If there are particles in the 
external set ES that dominate the particles, they are ignored; (3) If the particles and the individual 
particles in the external set ES are mutually exclusive dominate, the particle is added to the external 
collection ES. 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 1-Pseudo code for quick sort 

 

Maintenance of external collection ES 
     When all the Pareto optimal solutions that exist in the evolution cycle are kept for complex multi-
objective optimization problems, a significant amount of identical solutions may emerge in the 
external range, which does not only impact the solution's distribution efficiency but also decreases the 
solution's overhead memory and time for completeness. This paper adopts an archiving strategy to 
maintain the distribution of external collections, which combines strong dominance and aggregation 
distance to maintain external collections. 
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Figure 2-Principle of external collection update 

 
     The implementation of a strong dominance relationship allows each particle to maintain a certain 
distance, essentially regulating the degree of particle aggregation, and helping to sustain the particle 
group diversity. The concept of a close commitment to supremacy is: 

 1) If the particle      , then A f is considered strong B;  

2) For A~B, ∀ objective function m, if |  
    

 |    , (         ) is a normal number, then 
randomly choose A or B; if A is If selected, A f is considered to be strong B, and vice versa.  

If    is too low, there would be no impact of heavy supremacy. If   =0, the strong dominance 
degenerates into a dominance; if the value is too large, the strong dominance becomes stronger, 
making the particles too sparse. It can be shown that it is very important to value γ m. For this paper , 
the mathematical formula is used to determine the value. 
we have only two objectives for the case: 

   
  
      

   

 
 

C is the strong dominating coefficient, C>80. 
The aggregation interval is an operator introduced in 2002 by Wang and Farid.[12] and used in 
NSGA-II for preserving population diversity. It can be used to describe the degree of solution density. 
The size of individuals aggregating with a low aggregation rate is very large. On each sub-target, the 
aggregation distance can be obtained by the sum of the distance differences between two adjacent 
individuals. The pseudo code for computing the distance between aggregations is as follows: 

Selection of global optimal value  
     Since the global optimal solution has a very obvious guiding effect on the particles, how to choose 

a better global optimal solution       to guide the particle flight has a very important effect on the 
algorithm, which is related to the algorithm's convergence speed and solution diversity. We are 
following a two-stage leadership approach. Early stage uses the Sigma method for incredibly rapid 
convergence speed, and later stage uses the roulette method based on aggregation distance to perform 
a more in-depth scan. 
Wang and Farid. [12] suggested a system of choosing leadership based on the Sigma standard. The 
basic idea is to assign a Sigma value for each particle in the community and an external file will 

determine the particle's Sigma value. Sigma in two target cases (  represents). The formula for 
calculation is: 

  
  
    

 

  
    

                                                                 ( ) 

     where f1 and f2 are the feature values for the particle's two targets. In order to eliminate the 
likelihood that the value of π being similar to 1 or -1 due to the large variation in the target function 
magnitude, the target function is standardized. 
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where   
      

      
      

     are the maximum and minimum values of the particles on the two 
objectives , respectively, thus obtaining a new formula for calculating  : 

  
  

     
  

  
     

                                                                       (  ) 

The steps of Sigma method to solve the global extreme value are as follows: 
1- Solve the value of each particle in the population and the value of each non-dominated 
solution set in the outer set ES; 
2- Find the particle externally concentrated j closest to the value of the ÿ I Population Particle; 
3- Use jth particle solution in the outer set as gbest(i) of the population's ith atom. 
      The Sigma method is used in the early stage of the algorithm to locate the global extreme point of 
particle I from the external set, which will cause the algorithm to converge rapidly into the optimum 
global non-inferior surface. When the algorithm runs to certain algebra, the particles as the global 
extreme value are on the ideal non-inferior surface. It is appropriate to consider selecting individuals 
in the dispersed region on the front of Pareto, and to direct the particle swarm to evolve into the 
dispersed region. Then, the globally optimum individuals are updated with the following methods at 
the later stage of evolution: 
1) If the crowded distance of all individuals in Pareto is infinite, that is, only include a small number 
of boundary individuals, then randomly select one as gbest. 
2) If Pareto contains individuals with crowded distances that are not infinite, then use the roulette 
method to select, that is, choose individuals with larger crowded distances as Gbest with a higher 
probability. The calculation formula is 

 ( )  
  , -        

∑   , -        
       
   

                                                             (13) 

       where  ( ) is the probability that the ith individual in the external set is selected, 
  , -         is the     individual's aggregation distance, and pop size is the number of particles in the 
current outer range. It should be remembered that the individual aggregation distance includes an 
infinite assembly that allows the collection of roulette wheels to malfunction, so that the boundary 
points are not counted by the pop size in the formula. 

Variable neighborhood search  
Taillard E. [13] suggested a vector search algorithm for the neighborhood, which achieved successful 
results in many problems. Murata T. [15] integrated genetic algorithms with variable neighborhood 
search algorithms, and Nawaz et al. [24] tested the distribution of algorithm blends with the search 
algorithm for variable neighborhoods. The application of the variable neighborhood search algorithm 
greatly increases the centralized search capabilities of these algorithms, so that the variable 
neighborhood search algorithm is used for efficient Pareto solution searching for neighborhood. 
Execution procedure of search algorithm for vector neighborhoods is shown in Figure- 3. 
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Figure 3-Variable neighborhood search algorithm flow 

 

Algorithm flow 
     A multi-objective particle swarm optimization algorithm is used in this paper to conduct a 
decentralized PFSP search. The composition and maintenance strategy of its Pareto solution set is 
proposed, and a two-stage global optimal selection mechanism is also proposed to effectively lead 
particles to leading-edge non-dominated solution convergence. To search for further Pareto solutions, 
a variable neighborhood search algorithm is proposed to perform a clustered neighborhood search on 
the non-dominated solution obtained by the multi-objective particle swarm algorithm. The hybrid 
algorithm basic flow algorithm is as follows. 
1) Parameters of initialization algorithm: evolutionary population size (pop size), external collection 
size (ES) popsize, inertia coefficient (w), cognitive coefficient (c1) and social coefficient (c2), high 
coefficient of dominance (C). 
2) Particulate populations are initialized as follows: 
(A) Use NEH to produce a 10 percent workpiece processing sequence, and determine the scheduling 
goal and transform it to a formula-based particle location vector (5); 
 (B) Randomly produce the location vectors of the remaining 90 percent of the particles, obtain a pair 
of workpiece processing sequences in conjunction with the ROV law, and determine the two 
scheduling goals for each particle according to the addition phase sequence; 
(A) Randomly initialize vector speeds of all particles in the population; 
b) Let the current location be the local equilibrium of each particle, perform a simple sorting on the 
initial population, and apply the non-dominated solution to the external set ES; 
C) Update all extreme values. 
1) Loop steps 4)-6) until you have met the stop condition. 
2) The following operations apply to all particles: 
A) Use equations (6) and (7) to update all particle velocity and position; 
b) Determine the workpiece processing sequence corresponding to each particle position vector 
according to the ROV rule, and calculate two scheduling targets for each particle; 
A) Update the external ES set and update each particle's individual extremum. 
1) To update the external set ES, perform a variable neighborhood search algorithm for the Pareto 
solution in the external set ES. 
2) Change all extreme values. 
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3) External output Package ES. The hybrid particle swarm algorithm flow unique algorithm 

 

Simulation And Results Analysis  
    The data in this paper were based on the 120 benchmark test problems presented by Taillard [14] in 
1993, in order to check the new hybrid particle swarm optimization algorithm. The multi-objective 
mixed ion optimization algorithm proposed in this paper is used to solve the problem, and, under the 
same hardware conditions, the popular hardware is used. To solve this, the strong dominant 
evolutionary algorithm (SPEA2) is used, and the results obtained from the two algorithms are 
compared. The 2015b matlab programming algorithm is used, the computer Processor is Intel core i7, 
the key frequency is 2.7 G,  the physical memory is 8 GB, and the operating system is Windows eight. 
First, a brief introduction to the strongly dominated evolution algorithm is presented. 

Strongly Dominating Evolutionary Algorithm 
    Zitzler and Thiele [9] suggested a fast evolutionary pareto algorithm (SPEA), based on the 1999 
Pareto approach. In 2001, SPEA was strengthened to fix its limitations, and SPEA2 was proposed [7]. 
Within the SPEA2 algorithm, an intensity value is assigned to each particle in the population and elite 
group. The strength value contains information about the dominance relation and information about 
the distance. The ranking value of each particle is determined by the intensity of the individual which 
controls the current particle. At the same time, the algorithm uses niche strategy to evaluate each 
particle's density information. The final value of fitness is the sum of the sorted quantity and the 
particle density. Furthermore, the bidding technique is followed to ensure elite selection size. 

Evaluation Index 
The number of non-dominated solutions (NPS) measures the number of non-dominated solutions 
that can be sought by multiple algorithms, which can be compared to the whole Pareto frontier. 
1) The Spacing Metric (SM) evaluates the distribution of the solution set in the target space by 
calculating the change in distance between each individual in the solution set and the neighboring 
individual, and determines its evaluation function as follows: 

  √
∑ ( ̅    )

  
   

   
                                                          (  ) 

where       (∑ |  
    

 | 
   )                       is the number of individuals in the 

solution set;  ̅ is the average value of all  ; the smaller the value of S, the more uniform the 
distribution of the solution set. 
2) Diversification metric (DM). This metric helps to measure the solution set's extensibility. The 
absolute Euclidean distance between the person and other entities is calculated by this metric. The 
evaluation role is described as follows: 

   √   ∑(‖     ‖)

 

   

                                                   (  ) 

where    is the Euclidean distance between non-dominated solutions    and   . 
3) Relative percentage increase indicator (RPI). This indicator is used to judge the relative 
growth rate of the solution from the ideal point in the solution. The ideal point is the solution 
consisting of a single target optimal value in the algorithm, and the RPI is the growth rate of each 
solution in the solution set from the ideal point. The Ideal Solution average value sets the makepan 
value to min(MS) and to min(TFT) for the optimal solution. The I Pareto makespan value is expressed 
as MS(S(i)) and the TFT value is expressed as TFT(S(i)); the relative growth ratio indicator function is 
then defined as: 

    
∑[   (  ( ( ))     (  ))     (   ( ( ))     (   ))]

 
                    (  ) 

where N is the number of solutions in the Pareto solution set. 
Experimental Parameter Settings  
     The experimental parameters of this equation are calculated as follows: c1 = c2=2.0, the initial 
value of the inertia coefficient w is calculated to 0.9, β = 0.975, the minimum cannot be less than 0.4, 
the particle's minimum position value xmin = 0, the particle's maximum position value xmax = 4.0, the 
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particle’s minimum velocity value vmin = −4.0, the particle's maximum velocity value vmax = 4.0. 
Every instance runs 10 times autonomously and continuously. 
     The SPEA algorithm's experimental parameters are set as follows: the initialization method is the 
same as the algorithm in this article, using the NEH and random initialization combination, using the 
competition selection strategy, the crossover operator uses OX crossover, the mutation method is the 
interchange mutation, the crossover probability is set to 0.8, and the mutation probability is set to 0.8. 
The population size is 40 and the maximum number of iterations is 500. 

Comparison and Analysis of Experimental Results  
     This paper picks 30 questions from the 20 workpiece series in the TA test set issue for review and 
compares the sample data from the http:/mistic.heig-vd.ch/taillard/ Taillard website. The combined 
multi-objective particle swarm in this article MPSO-VNS describes the algorithm, and the two 
indicators are contrasted with the four NPS, SM, DM, and RPI indicators. Experimental results using 
technical benchmarks problems were conducted and proved the effectiveness of the hybridization and 
the advantage of HPSO algorithm compared to other local search algorithms in the resolution of the 
scheduling problem. The results of the experimental comparison are set out in Table2. 
According to the experimental comparison results, the multi-objective mixed particle swarm 
optimization algorithm proposed in this paper is better than the SPEA2 algorithm in most instances. 
The results are better in various indicators, and more non-dominated solutions could be obtained. The 
distribution, extensibility, and relative growth ratio indicators have also been improved to a certain 
extent, thus confirming the effectiveness of the algorithm. 
Figure 4 shows the comparison of the Pareto solution set provided by the two algorithms to solve the 
ta021 problem. It can be shown that the Pareto solution set obtained by MPSO-VNS is relatively well 
distributed and convergent. 

 
Figure 4-Comparison of the results of two algorithms for solving the ta021 problem 
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Table 2-Experimental comparison results 

Benchmar
k 

Problems 
descriptio

n 
NPS SM DM RPI 

N M 
SPEA

2 
MPSO
-VNS 

SPEA
2 

MPSO
-VNS 

SPEA
2 

MPSO
-VNS 

SPEA
2 

MPSO
-VNS 

Ta001 20 5 13 34 40.21 16.11 17.29 15.91 0.0255 0.0077 

Ta002 20 5 39 17 28.30 19.65 46.43 23.88 0.0168 0.0058 

Ta003 20 5 10 56 49.47 27.49 16.02 29.82 0.0279 0.0093 

Ta004 20 5 34 58 23.23 15.78 18.98 25.26 0.0209 0.0058 

Ta005 20 5 35 37 46.84 29.72 38.17 18.59 0.0175 0.0002 

Ta006 20 5 36 37 23.19 26.90 19.11 20.02 0.0245 0.0012 

Ta007 20 5 12 30 31.23 22.89 52.37 22.43 0.0264 0.0086 

Ta008 20 5 22 56 43.17 24.33 52.20 30.31 0.0297 0.0048 

Ta009 20 5 18 31 50.23 18.70 48.49 17.16 0.0000 0.0084 

Ta010 20 10 34 20 18.44 22.20 21.34 28.18 0.0260 0.0021 

Ta011 20 10 23 50 57.31 30.03 45.95 25.42 0.0184 0.0055 

Ta012 20 10 38 32 50.92 23.74 38.92 21.09 0.0297 0.0063 

Ta013 20 10 15 26 37.43 23.50 59.05 18.60 0.0158 0.0003 

Ta014 20 10 18 33 35.18 18.48 44.74 21.47 0.0144 0.0061 

Ta015 20 10 14 19 35.90 22.90 51.27 22.70 0.0240 0.0036 

Ta016 20 10 14 21 29.98 24.61 35.42 16.70 0.0068 0.0005 

Ta017 20 10 36 58 38.44 25.62 34.55 24.64 0.0149 0.0049 

Ta018 20 10 27 58 38.11 21.86 52.94 18.03 0.0270 0.0019 

Ta019 20 10 27 41 52.26 20.81 18.42 21.07 0.0172 0.0012 

Ta020 20 20 14 17 51.41 30.58 21.98 24.32 0.0254 0.0021 

Ta021 20 20 36 25 44.59 15.18 22.30 19.53 0.0222 0.0015 

Ta022 20 20 29 31 32.26 29.24 32.70 19.65 0.0176 0.0019 

Ta023 20 20 20 52 52.60 29.89 53.67 24.41 0.0074 0.0004 

Ta024 20 20 25 15 39.71 27.03 51.54 19.82 0.0200 0.0064 

Ta025 20 20 22 16 31.22 16.49 17.70 28.72 0.0025 0.0028 

Ta026 20 20 12 22 58.12 19.17 33.67 30.97 0.0188 0.0054 

Ta027 20 20 17 44 55.30 20.98 39.18 26.53 0.0198 0.0070 

Ta028 20 20 13 48 40.32 25.71 34.13 20.33 0.0219 0.0050 

Ta029 20 20 15 44 43.42 17.50 46.00 24.11 0.0267 0.0054 

Ta030 20 20 17 35 42.51 26.47 43.17 16.61 0.0295 0.0045 
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Conclusions 
     A multi-objective hybrid optimization algorithm, combining particle swarm optimization algorithm 
and variable neighborhood search algorithm for the multi-objective PFSP problem, was proposed in 
this paper. NEH heuristic algorithm was used to initialize the population. The results showed 
remarkable improvement in several aspects, that include: the quality of the initial solution; application 
of continuous PSO algorithm for effective global search, based on the ROV rule; introduction of non-
dominated solutions for external collection management; implementing a policy of high dominance 
and aggregation distance to efficiently preserve external collections; implementing a two-stage global 
optimal selection method to fairly direct population convergence; using a vector neighborhood search 
algorithm to conduct a clustered search on an external range of Pareto solution that improves the 
central search capability of the algorithm. The algorithm integrates the global search functionality of 
the PSO algorithm with the local search functionality of the vector neighborhood search algorithm to 
maintain an efficient balance between localized search and centralized search, which significantly 
increased the algorithm's search capability. The Taillard benchmark problem is solved using the dual 
algorithm and the test results are compared with the SPEA2 algorithm. For this paper, the algorithms 
obtained good results when its effectiveness was tested. 
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