On S_s-Compact Functions

Haider J. Ali
Department of Mathematics, College of Science, Al-Mustansiriyh University

ABSTRACT

The purpose of the present paper is to extend the notion of semi compact functions by using s_s-compact spaces. We introduce further types of this concept namely s_s-compact, s_s^*-compact and s_s^{**}-compact functions. Furthermore theorems, facts and several examples have been given to illustrate our results.

INTRODUCTION

In 1963 Levine introduced new notion of sets called semi-open set in a topological spaces. In 2014 J. M. J. defined new class of semi-open sets and gives several properties about this set. In 2000 Ressen D. A. introduced the notion semi-compact functions these are the function in which the inverse image of every compact set in Y is semi-compact set in X. In this work we continue to study this notion by using s_s-compact set which introduced by [2]. Also we introduce some types of these functions.

PRELIMINARIES

Definition 1[1]: A subset A of a topological space X is said to be semi-open set if there exist open set U with $U \subseteq A$ and $A \subseteq cl(U)$, that is $U \subseteq A \subseteq cl(U)$.

Definition 2[1]: A subset A of a space X is said to be α-open if $A \subseteq int(cl(int(A)))$.

Definition 3[2]: A semi-open subset A of a space X is called s_s-open if for each $x \in A$ there exist semi-closed set F such that $x \notin F \cap A$. The family of all s_s-open subsets of topological space X is denoted by $S_sO(X)$.

Proposition 1[2]: A subset A of a space X is S_s-open iff $A = \bigcup F_i$, where A is semi-open and F_i is semi-closed for each i.

Remark 1: Every S_s-open set is semi-open set, but the converse may be not true, as in the following example.

Example 1[2]: Let $X=\{a, b, c\}$ and $T=\{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$, then we have $SO(X)=\{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$, and hence $SC(X)=\{\emptyset, X, \{a\}, \{b\}, \{b, c\}\}$ so $S_sO(X)=\{\emptyset, X\}$ implies that $\{a\} \notin SO(X)$ but $\{a\} \notin S_sO(X)$.

Proposition 2[2]: Let $\{A_i: i \in I\}$ be collection of S_s-open sets in topological space X, then $\bigcup \{A_i: i \in I\}$ is S_s-open set in X.

Remark 2[2]: The intersection of two S_s-open sets need not be S_s-open set in general, as in the following example.

Example 2[2]: Consider the intervals $[0, 1]$ and $[1, 2]$ in R with usual topology. Since R is T_1 space and hence it is semi-T_1, so both the intervals are S_s-open and we have $[0, 1] \cap [1, 2] = \{1\}$ which is not S_s-open.

Remark 3:

i. there is no relation between S_s-open and open set.

ii. the sets $\{a, b\}$ and $\{a, c\}$ are open set but not s_s-open set.

iii. in example 2 the sets $[0, 1] \cap [1, 2]$ are S_s-open sets which are not open sets.

iv. in discreet space each open set is S_s-open set.

Proposition 3[2]: Let A, B be two subsets of a space X. If A is S_s-open set and B is both α-open and semi-open, then $A \cap B$ is S_s-open set.
In this section we introduce other types of semi-compact functions namely \(S^*_c \)-compact, \(S^* \)-compact, \(S^{**}_c \)-compact and \(S^{**} \)-compact functions by using the concept of \(S_c \)-compact sets. Certain facts, example and theorems have been given to explain our results.

Proposition 4[2]: Let \((Y, T)\) be an open subspace of space \((X, T)\). If \(A \subseteq S_c O(X, T)\) and \(A \subseteq Y\) then \(A \subseteq S_c O(Y, T_d)\).

Proposition 5[2]: Let \(Y\) be semi-regular set in a space \((X, T)\). If \(A \subseteq S_c O(Y, T)\), then \(A \subseteq S_c O(X, T)\) where \(A \subseteq Y\).

Definition 4[2]: Let \(A\) be a subset of topological space \((X, T)\). A point \(x \in A\) is said to be \(S_c \)-interior point of \(A\) if there exists an \(S_c \)-open set \(U\) containing \(x\) such that \(U \subseteq A\). The set of all \(S_c \)-interior point of \(A\) is said to be \(S_c \)-interior of \(A\) and denoted by \(S_c \text{Int}(A)\).

Proposition 6[2]: For any subset \(A\) of topological space \(X\). The following statements are true:
1. The \(S_c \)-interior of \(A\) is the union of all \(S_c \)-open sets which are contained in \(A\).
2. \(S_c \text{Int}(A)\) is \(S_c \)-open set in \(X\).
3. \(S_c \text{Int}(A)\) is the largest \(S_c \)-open set contained in \(A\).
4. \(A\) is \(S_c \)-open set iff \(A = S_c \text{Int}(A)\).

Finally from (4) we get \(S_c \text{Int}(A) = S_c \text{Int}(S_c \text{Int}(A))\).

Definition 5[2]: The intersection of all \(S_c \)-closed sets containing \(F\) is called \(S_c \)-closure of \(F\) and we denote it by \(S_c \text{Cl}(F)\).

Proposition 7[2]: For a subset \(F\) of a space \(X\), the following statement are true:
1. \(S_c \text{Cl}(F)\) is \(S_c \)-closed set in \(X\) containing \(A\).
2. \(S_c \text{Cl}(F)\) is the smallest \(S_c \)-closed set containing \(A\).
3. \(F\) is \(S_c \)-closed iff \(F = S_c \text{Cl}(F)\). So \(S_c \text{Cl}(S_c \text{Cl}(F)) = S_c \text{Cl}(F)\).

Definition 6[3]: Let \(X\) and \(Y\) be topological spaces, then the function \(f: X \rightarrow Y\) is said to be \(S \)-compact (resp. \(S^* \)-compact, \(S^{**} \)-compact functions) if the inverse image of each compact set (s-compact set, s-compact set) in \(Y\) is \(S \)-compact set (compact set, s-compact set) in \(X\).

Definition 7[4]: A space \(X\) is called semi-compact if every semi-open cover of \(X\) admits a finite subcover.

Definition 8[2]: A space \(X\) is called \(S_c \)-compact if every \(S_c \)-open cover \(\{U_y; y \in \Delta\}\) of \(X\), there exists a finite subset \(\Delta \subseteq \Delta\) such that \(X = \bigcup_{y \in \Delta} U_y\).

Remark 4[2]: Every semi-compact space is \(S_c \)-compact but the converse is not true in general, as in example 4.1.15[2].

SOME TYPES OF SEMI-COMPACT FUNCTIONS
In this section we introduce other types of semi-compact functions namely \(S^*_c \)-compact, \(S^*_c \)-compact and \(S^{**}_c \)-compact functions by using the concept of \(S_c \)-compact sets. Certain facts, example and theorems have been given to explain our results.

Definition 9: Let \(X\) and \(Y\) be topological spaces, then the function \(f: X \rightarrow Y\) is said to be \(S^*_c \)-compact function if the inverse image of semi-compact set is semi-compact set.

Definition 10: Let \(X\) and \(Y\) be topological spaces, then the function \(f: X \rightarrow Y\) is said to be \(S^*_c \)-compact function if the inverse image of semi-compact set is semi-compact set.

Definition 11: Let \(X\) and \(Y\) be topological spaces, then the function \(f: X \rightarrow Y\) is said to be \(S^{**}_c \)-compact function if the inverse image of semi-compact set is semi-compact set.

Example 3: The identity function \(f: (X, T_d) \rightarrow (Y, T_d)\) is \(S_c \)-compact, \(S^*_c \)-compact and \(S^{**}_c \)-compact functions.

Proposition 8: Let \(X\) and \(Y\) be topological spaces and let \(f: X \rightarrow Y\) be a function then
1. Every \(S^*_c \)-compact function is \(S_c \)-compact function.
2. Every \(S^*_c \)-compact function is \(S^{**}_c \)-compact function.
3. Every \(S^{**}_c \)-compact function is \(S_c \)-compact function.

Proof (1): Let \(f\) be \(S^*_c \)-compact function, to prove \(f\) is \(S_c \)-compact function. Let \(K\) be semi-compact in \(Y\), thus \(K\) is \(S_c \)-compact set, but \(f\) is \(S^*_c \)-compact function, thus \(f^{-1}(K)\) is semi-compact in \(Y\) so \(f^{-1}(K)\) is \(S_c \)-compact set. Further \(f\) is \(S_c \)-compact function. By the same way can prove the other cases.

The following diagram explain the relationships of our concepts.

Remark 5: The converse of above proposition is no true in general.

Definition 12[5]: A space \(X\) is called locally indiscrete if every open subset of \(X\) is closed.

Proposition 9[2]: If a space \(X\) is locally indiscrete then the following are equivalent:
1. \(X\) is \(S_c \)-compact space.
2. \(X\) is semi-compact space.
3. \(X\) is compact space.

By above proposition we can make the converse proposition is true.

Proposition 10:
1. Every \(S_c \)-compact function from locally indiscrete space into locally indiscrete space is \(S^*_c \)-compact function.
2. Every \(S^{**}_c \)-compact function from locally indiscrete space into any space is \(S^*_c \)-compact function.
3. Every S_c-compact function from any space into locally indiscrete space is S_c^{**}-compact function.

Definition 13: A function $f: X \rightarrow Y$ is said to be S_c^{**}-continuous function, if $f^{-1}(K)$ is S_c-open (closed) subset in X, whenever F is S_c-closed (open) subset in Y.

Proposition 11: Every S_c^{**}-continuous image of S_c-compact set is S_c-compact set.

Proof: Let $f: X \rightarrow Y$ be S_c^{**}-continuous, and K be an S_c-compact subset of X. To show that $f(K)$ is S_c-compact subset of Y. Let $W = \{G_i : \forall i \in I\}$ be S_c-open cover of $f(K)$, since f is S_c^{**}-continuous function, thus $f^{-1}(W) = \{f^{-1}(G_i) : \forall i \in I\}$ be S_c-open cover of K, and since K is S_c-compact set, there is finite sub cover of K such that $K \subseteq \cup_{i \in I} f^{-1}(G_i)$ so $f(K) \subseteq (\cup_{i \in I} f^{-1}(G_i))$. Thus $f^{-1}(G_i) \subseteq \cup_{i \in I} G_i$. Then $f(K) \subseteq \cup_{i \in I} G_i$. Therefore $f(K)$ is S_c-compact set.

Proposition 12: Every S_c-compact subset of locally indiscrete T_2-space is closed.

Proof: Let X be locally indiscrete T_2-space and let A be S_c-compact set in X. To show that A^C open, let $x \in A^C$ then for each $a \in A$ there exist two open sets $U_{x,a}$ and V_a such that $x \in U_{x,a}$ and $a \in V_a$ and $U_{x,a} \cap V_a = \emptyset$ (since X T_2-space) the collection $\{V_a : a \in A\}$ be open cover of A. Since X is locally indiscrete thus every S_c-compact set is compact. Therefore there exists a finite subcollection $V_{a_1}, V_{a_2}, \ldots , V_{a_m}$ that cover of A. Let $U_i = U_{x,a_1} \cap U_{x,a_2} \cap \ldots \cap U_{x,a_m}$ thus $U_i \in T$, $x \in U_i$ and $U_i \cap K = \emptyset$ thus $U_i \cap A^C = \emptyset$ so $x \notin U_i \subseteq A^C$. Therefore x is interior point of A^C so A^C is open set in X, then A is closed.

Proposition 13: Every S_c-closed subset of S_c-compact space is S_c-compact set.

Proof: Let (X, T) be S_c-compact space. And let A be S_c-closed sub set of X. to prove A is S_c-compact set. Let $\{G_i : i \in I\}$ be S_c-open cover of A; that is $A \subseteq \cup_{i \in I} G_i$. Thus $X = A^C \cup U_{i \in I} G_i$ Since X is S_c-compact space. Then $X = A^C \cup (\cup_{i \in I} G_i)$. Therefore $A = (\cup_{i = 1}^n G_i)$ that is A is S_c-compact set.

Proposition 14: Every S_c^{**}-continuous function from S_c-compact into locally indiscrete T_2-space is S_c^{*}-closed function.

Proof: Let f be S_c^{**}-continuous function (where X is S_c-compact and Y is locally indiscrete T_2-spaces). We will prove that f is S_c^{*}-closed function. Let F be S_c^{*}-closed set in X, thus F is S_c-compact set, and since f is S_c^{**}-continuous function, then $f(F)$ is S_c-compact set in Y, since Y is locally indiscrete T_2-space thus $f(F)$ is closed set. Therefore f is S_c^{*}-closed function.

Proposition 15: Let X be topological space and let Y be semi-regular subspace of X. If A is S_c-compact set in X, thus A is S_c-compact set in Y (where $A \subseteq Y$).

Proof: Let A be S_c-compact set in X, to prove A is S_c-compact set in Y. Let $\{U_i : i \in I\}$ be S_c-open cover of A in Y, thus $\{U_i : i \in I\}$ is S_c-open cover of A in X (by proposition 5). Since A is S_c-compact set in X, then there is $I \subseteq I$, thus $A \subseteq \cup_{i \in I} U_i$. Therefore A is S_c-compact set in Y.

Proposition 16: Let Y be a-open subspace of X. Then if A is S_c-compact set in Y then A is S_c-compact set in X (where $A \subseteq Y$).

Proof: Let A be S_c-compact set in Y, to prove A is S_c-compact set in X. Let $\{U_i : i \in I\}$ be S_c-open cover of A in X, thus $\{U_i : i \in I\}$ is S_c-open cover of A in Y (by proposition 4). Since A is S_c-compact set in Y, then there is $I \subseteq I$, thus $A \subseteq \cup_{i \in I} U_i$. Therefore A is S_c-compact set in X.

Proposition 17: If A is S_c-compact set in X and F is S_c-closed set in X, then $A \cap F$ is S_c-compact set in X.

Proof: Let $\{U_i : i \in I\}$ be S_c-open cover of $A \cap F$, that is; $A \cap F \subseteq \cup_{i \in I} U_i$. Since F is S_c-closed set in X, then F^C is S_c-open set, thus $\{U_i \cap U_i^C\}$ is a S_c-open cover of A, as well as A is a S_c-compact set in X, then there is finite subcover $(U_i \cap U_i^C \cap \ldots \cap U_n \cap C^C)$ of A, that is; $A \subseteq (\cup_{i = 1}^n U_i)$ and F^C. Then $A \cap F \subseteq (\cup_{i = 1}^n U_i)$, thus $A \cap F$ is S_c-compact set in X.

Now we study the restriction of S_c-compact function and the composition of S_c-compact set.

Remark 6: If X and Y are topological spaces and $f: X \rightarrow Y$ is S_c-compact function, then the function $f|_A: A \rightarrow Y$ is not necessary S_c-compact function. But if we add a condition the remark is true.

Proposition 18: Let $f: X \rightarrow Y$ is S_c-compact function and let A be semi-regular S_c-closed subset of X, then $f|_A: A \rightarrow Y$ is S_c-compact function.

Proof: Let $K \subseteq Y$ be S_c-compact set, to show that $(f|_A)^{-1}(K) = A \cap f^{-1}(K)$ is S_c-compact set in A. Since f is S_c-compact function, thus $f^{-1}(K) \subseteq X$ is S_c-compact set in X. And since A is S_c-closed subset of X, thus by above proposition $A \cap f^{-1}(K)$ is S_c-compact set in X. Now to prove $(f|_A)^{-1}(K) = A \cap f^{-1}(K)$ is S_c-compact set in A. Since A is Semi-regular thus $A \cap f^{-1}(K)$ is S_c-compact set in A (by proposition 5). Therefore $f|_A$ is S_c-compact function.

Theorem 1: Let X and Y be topological spaces and let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be a functions then

1. If f is S_c-compact function and g is S_c^{**}-compact function. Then $g \circ f$ is S_c^{**}-compact function.
2. If \(f \) is \(S_* \)-compact function and \(g \) is \(S_\text{c} \)-compact function. Then \(g \circ f \) is \(S_* \)-compact function and \(S_*^{**} \)-compact function.

3. If \(f \) is \(S_* \)-compact function and \(g \) is \(S_*^{**} \)-compact function. Then \(g \circ f \) is \(S_* \)-compact function and \(S_*^{**} \)-compact function.

4. If \(f \) is \(S_*^{**} \)-compact function and \(g \) is \(S_*^{**} \)-compact function. Then \(g \circ f \) is \(S_*^{**} \)-compact function and \(S_*^{**} \)-compact function.

5. If \(f \) is \(S_*^{**} \)-compact function and \(g \) is \(S_* \)-compact function. Then \(g \circ f \) is \(S_*^{**} \)-compact function and \(S_*^{**} \)-compact function.

6. If \(f \) is \(S_*^{**} \)-compact function and \(g \) is \(S_*^{**} \)-compact function. Then \(g \circ f \) is \(S_*^{**} \)-compact function.

7. If \(f \) is \(S_*^{**} \)-compact function and \(g \) is \(S_*^{**} \)-compact function. Then \(g \circ f \) is \(S_*^{**} \)-compact function.

Definition 13: Let \(X \) be a topological space and \(W \subseteq X \), then \(W \) is said to be \(S_* \)-compactly closed set if \(W \cap K \) is \(S_* \)-compact set in \(X \) for every \(S_* \)-compact set \(K \) in \(X \).

Example 3: Any subset of discrete space is \(S_* \)-compactly closed set.

Remark 7: Every \(S_* \)-closed set is \(S_* \)-compactly closed set, but the converse is no true in general, as in the following example.

Example 4: Let \((X, T) \) be indiscrete space, then any proper subset of \(X \) is \(S_* \)-compactly closed set, but it is not \(S_* \)-closed set (since only \(S_* \)-closed set in \(X \) is \(\emptyset \) and \(X \)).

Theorem 2: Let \((X, T) \) be a topological space and let \(A \) be semi-regular subset of \(X \), then if \(A \) is \(S_* \)-compactly closed set in \(X \), then the inclusion function \(i: A \rightarrow X \) is \(S_* \)-compact function.

Proof: Let \(A \) be \(S_* \)-compactly closed set, to show that \(i: A \rightarrow X \) is \(S_* \)-compact function. Let \(K \subseteq X \) be semi-compact set thus \(A \) is \(S_* \)-compact set, to prove \(i^{-1}(K) \) is \(S_* \)-compact set in \(A \). Since \(A \) is \(S_* \)-compactly closed set in \(X \), thus \(A \cap K \) is \(S_* \)-compact set in \(X \). But \(i^{-1}(K) = A \cap K \) is \(S_* \)-compact set in \(X \). And since \(A \) is semi-regular set in \(X \), then \(i^{-1}(K) \) is \(S_* \)-compact set in \(A \). Therefore \(i: A \rightarrow X \) is \(S_* \)-compact function.

References

