Research article

Toxic pathological effect of mitomycin-c on male reproductive organs in rat

Hala Abbas Naji Khalil Gazar Chelab Atiaf Ghanim Rhyaf

Department of pathology and poultry diseases/College of Veterinary Medicine/ University of AL-Qadisiyah
Corresponding Author Email: Hala.abbas@qu.edu.iq
Co-Author Email: Khalil.Chelab@qu.edu.iq, Atiaf.Ghanim@qu.edu.iq

(Received 24/8/2017, Accepted 25/12/2017)

Abstract
The aim of present study was detected the effect of Mitomycin-c on the histological structure on male reproductive organ. In this study used (24) healthy adult male rats were divided into three groups, each group includes (8) animals: the 1st toxic group was injected (6.5mg/kg) of Mitomycin-c subcutaneous (s/c) once daily, the 2ed therapeutic or low dose group was injected (3.25 mg/kg) of Mitomycin-c subcutaneous (s/c) once daily, while the 3rd control group was injected physiological normal saline (0.9% NaCl2). The experimental period was (10) weeks. Animal, which were treated with Mitomycin-c along the period of experiment showed, sever pathological changes, particularly in testes and epididymis.

Keywords: Male reproductive organs, Mitomycin-c, Pathological effect, Rat.

Introduction
For the 40 years ago, chemotherapy had helped in cancer management in humane and animal patients. More than 50 agent are beneficial in humane medicine, but the quantity of the partial use in veterinary medicine is smaller (1). Chemotherapy may controlling generalized rapidly progressive not receptively to surgery or radiotherapy or may help increment the disease–free interval after other initial treatment, it may prohibits spread of a neoplasm by controlling going early metastasis that are proliferation rapidly and have a comparatively small likelihood of containing resistant cells (2). In recent years, chemotherapy has gets a popular form of anticancer treatment, but it is often difficult to bring about because most of chemotherapy’s useful agents are poisonous; this results from the look alike between cancerous cells and normal cells (3). Drug that kill tumors are not specific enough to leave normal cells unhurt. Therefore, virtually all cancer chemotherapy is a susceptibly compromise between effectiveness and toxicity, resulting in significant side effects (4). Quinone–bunting alkylating agents are a kind of chemical agents that have received considerable interest as anticancer drugs since the late 1950’s, therefore Mitomycin-c is a pattern of the highly active quinine–containing alkylating anticancer drug (6). The Mitomycin were first find out by (7), and Mitomycin-c was isolate by (8) from Streptomyces caespitonus in 1958. All are antibiotics effective against both Gram-positive and Gram-negative bacteria (7, 5), but only Mitomycin–C has marked anticancer activity. Mitomycin–C is given to medicating upper gastro-intestinal (e.g. esophageal carcinoma, anal cancer, breast cancer, besides by bladder instillation for superficial bladder tumors (8). The Mitomycin-C require intracellular activation
(6) by devaluation of the Mitomycin-c activate the a zidine and carbamate alkylating groups and findings in the formation of DNA cross link which seem to be the primary mechanism for the antitumor effects of this agent (8). If oxygen is present, the reduced Mitomycin products can redox cycle to constitute reactive oxygen species. Interactive oxygen species damage cellular components, including DNA, spermatogenic cell degeneration in the mature mammalian testis happens both spontaneously during normal spermatogenesis and in response to cytotoxic agents. Mitomycin-c is antibiotic that affects DNA synthesis (13). The aim of present study was to investigate some histopathological changes produced by toxicity of mitomycin-C (chemotherapeutic agent) on male reproductive system in rat.

Material and Methods

Ethical approval
The Animal Ethical Committee of Veterinary Medicine College, University of Al-Qadisiyah, Iraq, has approved the present study under permission No: 444. The present study was conducted on (24) white male rat of approximately the same age (8-10 weeks) and body weight (210 gram). The animals were housed in a 6*4*3 m³ room in animal house, under 12 hours light / 12 hours dark cycle at 28±2ºC for at least 1 week before the experiment, and these conditions were preserved until the end of the experiment. Animal cages were kept clean, food and water were given regularly every day. The animals were put as (8) rat in each standard plastic cages and this study continued for (6) weeks.

Experimental Design:
Rat were randomly divided into (3) equal groups (8) animals for each group, the dose of mitomycin-C was selected according to previous studies that demonstrated significant testicular toxicity (13).

First group: - as toxic dose received (6.5 mg/kg) subcutaneous once daily.
Second group: - as a therapeutic (low dose) received (3.25 mg/kg) subcutaneous once daily.
Third group: - is control group received only normal saline (0.9 NaCl2) subcutaneous once daily. For histopathology, pieces of 1-2 cm from testis and epididymis were taken then kept in 10% neutral buffered formalin for fixation, processed routinely in histokinette, cut at 5 Mm thickness by microtome (jung 4291, west Germany) and stained with haematoxylin and eosin stain then examined under light microscope (9).

Treatment:
Mitomycin-c (mitomycin-c kyowa) R is a crystalline mitomycin-c, vial of 10mg for injection subcutaneous, (India: kyowa Hakko Kogyo co. LTD., Japan). Each 10mg was dissolved in 500ml of distilled water to obtain solution included 0.02% mitomycin-c. Animals were injected once daily and for 6 weeks subcutaneous (3.25 mg/ kg B.W.).

Results
The result of first group (toxic group) demonstrated sever vaculation of Spermatogonia, marked atrophy of seminiferous tubules, reduced number of spermatocytes & degeneration of leydig cell Figure(1) and Figure(2). Also in the present study, the testes in animals of toxic dose showed presence of spermatid multinucleated giant cells, degeneration of Leydig cells and vaculation of Spermatogonia Figure (3) & Figure (4). In addition, note one epididymal tubule showed empty from sperms and marked hyperplasia of epithelial cells Figure (5). In the second group (low dose group) the epididymis tubules of this group were demonstrated few contain sperms Figure (7&6). The testes note complete spermatogenesis characterized by high
numbers of Spermatogonia, primarily & secondary spermatocyte with presence of sperm in lumen of seminiferous tubules which showed compact and circulated Figure (8).

Figure (1): Testis. (First group), note marked atrophy of seminiferous tubules, vaculation of Spermatogonia (arrows) and reduced number of spermatocytes & degeneration of leydig cells (arrows). 40X H&E.

Figure (2): Testis. (First group), note severe degeneration of seminiferous tubules, vaculation of Spermatogonia (arrows) and reduced number of spermatocyte. 40X H&E.

Figure (3): Testis. (First group), note degeneration of testicular tissue & presence of spermatid multinucleated giant cell (arrow). 40X H&E.

Figure (4): Testis. (First group), note degeneration of Leydig cells, vaculation of Spermatogonia (arrow) & presence of spermatid multinucleated giant cell. 40X H&E.
Figure (7): Epididymis. (Second group), note some epididymal tubules contain few sperms and the others were filled. (Arrow) 20X H&E.

Figure (6): Epididymis. (Second group), there is note epidermal tubule contains few sperms hyperplasia of epithelial cells & presence of long stericelias (arrows). 40X H&E.

Figure (5): Epididymis. (first group), note one epididymal tubule showed empty from sperms arrow). 40X H&E (end marked hyperplasia of epithelial cells

Figure (8): testes. (Second group), note complete spermatogenesis characterized by high numbers of Spermatogonia, primarily & secondary spermatocyte with presence of sperm in lumen of seminiferous tubules which showed compact & circulated (arrow) (arrow). 40X H&E.

Discussion
Cancer happen when cells grow too rapidly & in an uncontrolled way. For cancer cells to grow, new DNA needs to be made. Mitomycin-c is drug that is used to medicate certain cancers with mitomycin-c cancer cells cannot make DNA; this kills cancer cells (17). However, mitomycin-c can also be hurtful to other normal cells & organs in the body, this hurtful effect is called mitomycin-c toxicity, using mitomycin-c for prolonged
which stays in the body, can increase the risk of toxicity (13). Therefore, the current study demonstrated that mitomycin-c considered as testicular toxicant to male reproductive system of male due to major histopathological changes, which showed in testes & epididymis. The tests were appeared affected in all treated animals especially in toxic dose group animals. The present study showed microscopic changes in testes & epididymis which characterized by evidence suppression of spermatogenesis which resulting in oligospermia (reduce in number of sperms) in all treated animals (therapeutic &toxic doses animals), it was reported by (11, 12), they reported that oligospermia may be occur due to long treatment of mitomycin-c .Also the result of toxic group demonstrated sever vaculation of spermatogonia due to degenerative process of seminiferous tubules and this reported by (14), they indicate that there is debilitating in seminiferous tubules due to taking high doses of mitomycin-c. Also in the present study, the testes in animals of toxic dose showed presence of spermatid multinucleated gaint cells. They are special cells indicate the degenerative process which occurring in seminiferous tubules. This result proved by (15), note presence of spermatid multinucleate giant cells in testes of rat due to long treatment of mitomycin-c. epididymis tubules of this group were demonstrated empty and not contain sperms due to inhibition of production of sperms (spermatogenesis) because epididymis is the pathway of sperms to outside from the testes in the intermediate dose ,toxicological changes were less previous group(14, 16). In testes, there is suppression of spermatogenesis & vaculation of spermatogonia, spermatozoa present in large numbers more than second group, also there was no presence of spermatid multinucleated giant cells .So the epididymal tubules contain few sperms others were filled this result proved by (17,12).

References
4-Danshiitssoodol N, de Pinho CA, Matoba Y, Kumagai T, Sugiyama M. "The mitomycin C (MMC)-binding protein from MMC-producing microorganisms protects from the lethal effect of bleomycin: crystallographic analysis to elucidate the binding mode of the antibiotic to the protein". J Molec Biol (2006);360 (2): 398–408.
5-Tomasz Maria. "Mitomycin C: small, fast and deadly (but very selective)." Chemistry and Biology (1995);2 (9): 575–579.
7-Hata TY Sano, R Sugawara, A Matsumae, K Kanamori, T Shima , T Hoshi. Mitomycin anew antibiotic from streptomyces. j antibiotic. (1956);9,141-146.
10-Chemwatch Material Safety Data Sheet.(2011). TCH 32647 C293LP Version

